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UNDERLYING MEDICINE

Chaos—predicting the unpredictable

W J Firth

Prediction is difficult, especially of the future.
NEILS BOHR

This short article describes some of the features
and history of chaos theory, with emphasis on its
implications for predictability in general, and some
thoughts on how these ideas might have an impact on
medicine. In particular, it is suggested that inability to
predict who will contract which diseases, or who will
respond to which treatments, may be intrinsic, rather
than simply due to incomplete knowledge of the
particular patient. It follows that we patients should
not expect too much of our doctors!

When I am sick and consult my doctor, what I want
to hear might go as follows: “Take these tablets three
times a day for a week; you’ll feel better after two days,
and will be ready for work after four.” I am expecting a
great deal: not only to be cured, but to have the course
of my cure predicted.

Yet prediction is not trivial or easy. In fact chaos,
the mainspring of this article, has shown us that
predictability is the exception rather. than the rule,
even for what seem like simple physical systems. A
human being is immeasurably more complex than any
demonstrably chaotic system—the question can be
turned around: How can anything be predicted about a
person?

There is nonetheless a strong social pressure for
answers to such questions as, Who will get cancer—or
a heart attack? and, How long before a HIV positive
subject develops AIDS?. At the risk of presumption, I
will suggest analogies and lines of reasoning which
imply that such questions make sense but can never be
answered. The best that can be done, for an individual
as well as a population, is to assess probabilities.

Determinism and its downfall

The tremendous success and power of Newton’s
mechanics—especially in predicting planetary orbits—
led to the ultimate statement of determinism, para-
phrased from Laplace in the eighteenth century:

The cover

The image on the cover (by David Ellis of Why Not
Associates, London) relates the abstract elements of
chaos theory to the concrete practice of medicine.
Most people associate the patterns of fractal geometry
with chaos theory: the pills are arranged in a fractal
pattern, repeated in exactly the same shape but smaller
sizes, spiralling to infinity. The mathematical element
is more directly conveyed by the numbers, which are
taken from a non-linear progression. Non-linearity is
fundamental to chaos, but it can also give stability and
hence individuality and continuity, which are repre-
sented in the human context by the skeleton. The
article fleshes out the background and applications of
chaos theory.
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“Given accurate positions, and velocities for all the
particles in the universe, and sufficient calculational
power, it would be possible to determine the entire
course of history.” Leaving aside implications for free
will, the statement is an impeccable mathematical
consequence of Newtonian mechanics, but it contains
two (related) fatal flaws. The hidden assumption is that
the calculational power required increases only in
rough proportion to the number of particles and the
time forward for which prediction is sought. In fact,
the increase is exponential, with the consequence that
to predict the weather for even just a few years would
require that the entire universe be fabricated into a
single giant computer. The flaws, then, lie in the
innocent words “accurate” and “sufficient.” Joseph, in
predicting 14 years of Egyptian weather, was either
lucky or divinely inspired.

The Laplace hypothesis, therefore, seems to require
that small causes have small effects: that a small
inaccuracy in the starting data should lead to only a
small error in prediction. This property is exactly true
only for linear systems, for which—by definition—
effect is proportional to cause. “Two heads are better
than one” adopts a similar hypothesis but has proved
drastically false in many spheres, notably the “two
Davids” of British politics in the 1980s. Real systems
are almost always non-linear, and small causes can
produce huge effects: “For want of a nail the shoe was
lost, for want of a shoe the horse was lost, for want of a
horse the King was lost” encapsulates the matter rather
well. Physics and mathematics have traditionally
concentrated on linear systems, for the very good
reason that they are predictable and mathematically
tractable. The world, however, is non-linear.

I won’t define non-linearity more precisely, beyond
one further contrast with linearity. The operation of a
linear system is wholly determined by its initial state
and its environment, whereas the behaviour of a non-
linear system depends upon its own state: it “looks at
itself.” In the field of economics, Adam Smith’s free
market ideas were based on a linearity assumption: that
there are enough: enterprises in the market that no

-single one could distort the market by its actions.

Today, of course, stock markets operate largely on the
basis of “second guessing” the behaviour of the market
itself, which is a highly non-linear situation. In such
cases small, even undetectable, causes can lead to
huge effects, such as in the big stock market crash of
1987.

Living organisms are certainly non-linear in the
above senses. Indeed, Darwinian selection is intrinsic-

. ally non-linear, since the breeding success of a species

is affected by the actions of the species itself. The
same is true of ecosystems: it is the non-linearity
of predator-prey competition which led population
dynamics to.be one of the pathbreakers in the study of
chaos.' '
Non-linearity is necessary for, and is fundamental
to, chaos, but it can also endow stability. Non-linear
systems can seek out and maintain essentially the same
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optimum state in response to a wide variety of external
conditions: it is precisely this feature that gives us
individuality and continuity.

Chaos

Chaos, in the modern technical sense, is used to
denote a form of time evolution in which the difference
between two states that are initially closely similar
grows exponentially with time. This type of behaviour
was suspected by Poincaré around 1900 for Newtonian
dynamics, but he did not have available the computa-
tional power that has fuelled chaos studies in recent
decades. The discovery of chaos is often ascribed to
Lorenz, who was interested in weather forecasting by
computer.’

Basically, weather is caused by a traffic problem in
the earth’s heat balance. Solar energy is primarily
absorbed at the surface, heating it up. In equilibrium,
that heat has to be dumped into cold space. The warm
air, because it is below the cool air, tends to rise, but
self evidently all of it can’t do so at the same time; hence
the traffic problem. For convection to occur, the air
rising in one location must sink back in another. Rising
air means low pressure and rain, sinking air means high
pressure and fine weather, so the resolution of the
traffic problem is at the heart of the problem of weather
prediction. Lorenz’s computer was primitive by
today’s standards, and so he sought to simulate the
weather with an absurdly simplified model, assuming
among other things a flat earth, but one that had what
seemed to be the essential ingredients: amplitudes for
convective circulation and for vertical and horizontal
temperature variation. At any one time the values of
these three quantities can be represented by a single
point in a three dimensional space: as time evolves that
point traces out a trajectory or orbit.

Lorenz’s model is deterministic —that is, the orbit is
unique, in the sense that there is only one orbit passing
through a given point of the space (phase space) in
which the orbit lies. Is it also predictable, in the sense
that nearby orbits stay close to each other? The answer,
as Lorenz found from watching the output chart from
his computer,?? is an emphatic “No.” Starting the
computer with similar, but slightly different, initial
data led to orbits that stayed close to each other for a
while but eventually always diverged in a manner that
turned out to be exponential. Figure 1 shows a phase
space orbit with this property, actually for an electronic
oscillator. It consists of two lobes joined by a kind of

FIG 1 —A strange attractor reconstructed from experimental data from a non-linear electronic oscillator which
flips chaotically berween two states much as the weather does in Lorenz’s model. The colour indicates the
speed on a trajectory: thus the blue region corresponds to the slow motion near the saddle which separates the
two lobes. (Courtesy T Mullin)
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neck; for the Lorenz model the lobes are somewhat
flatter, but that is of no importance here.

One lobe can, in simple terms, be regarded as
corresponding to anticyclonic weather and the other to
a depression. The exponential divergence means that
two orbits starting close to each other sooner rather
than later end up in different lobes, corresponding to
quite different weather. Real weather forecasting
necessarily involves errors and uncertainties in the
initial data (that is, current weather over a large area,
Laplace notwithstanding). Thus the starting position
must be considered not a point but a box (error box) in
the phase space. Exponential divergence then means
that that box gets stretched in at least one direction as
time develops,’ until eventually it is smeared across
both lobes, at which point weather forecasting has
become guesswork.

It follows that the determinism of the Lorenz model
(and by extension of Laplace) is only mathematical:
the physical universe is unpredictable, even if deter-
ministic, because of unavoidable uncertainties in our
knowledge of initial conditions. This kind of chaotic
behaviour has also been identified in systems as diverse
as dripping taps, traffic flows, lasers, heartbeats, and
stock markets. Chaos is also cumulative, in the sense
that when two non-linear systems are coupled together
they tend to be more prone to chaos and unpredict-
ability than are their several parts. In short, the
universe may be predetermined but there is no
conceivable experimental procedure by which we
could determine the future and expose free will as an
illusion.

It can be shown that all systems are linear close to
any static equilibrium, so that chaos is impossible
unless or until there is a continuous injection of enough
energy to drive the system to a high enough excitation
that non-linearity becomes appreciable. Chaos also
usually requires some kind of dissipative mechanism,
if only because a continuous unbalanced energy input
would soon blow the system apart. Thus the weather is
driven by solar energy, and viscous losses and radiation
to space dissipate that energy. Chaos is endemic in
strongly driven, dissipative systems. Organisms such
as people are typical of such systems; they are driven by
food and oxygen. Itis not, therefore, surprising that we
are, in whole and in numerous parts, chaotic.*

Attractors

Lorenz showed that the weather is intrinsically
unpredictable for all practical purposes. But his model
still offers us a substantial measure of predictability if
only we make a more modest demand. The weather
doesn’t swing all over the place, with blizzards one day
and blistering heat the next. We have a reasonably well
defined climate. In the Lorenz model this can be linked
with the fact that the orbit remains confined to the
region occupied by the two lobes. A massive volcanic
eruption, or meteor strike, might kick the weather off
the lobe structure, but we would expect it to settle back
to it (after a time). This is certainly the case for the
Lorenz model, and for that reason the lobe structure in
figure 1 is called an attractor. Any orbit that starts off
outside the attractor will inevitably be attracted into it
by the dynamics; hence the name.

The simplest attractor of all corresponds to the case
where all motion eventually dies out and is just a single
point in phase space. A “fixed point” attractor is clearly
not chaotic, nor is another simple attractor in which the
orbit is a closed loop corresponding to a sustained
oscillation. A chaotic attractor is strange: it is a
continuous curve, confined to a finite region of phase
space, which never crosses itself but yet never closes on
itself. Chaotic attractors are aptly termed “strange
attractors.” The geometrical structure of chaotic
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attractors somewhat resembles that of millefeuille
pastry, which is made by repeatedly rolling out
(stretching) and folding dough. Consider the effect of
this stretching and folding on two particles of the mix
(say salmonella bacteria from the eggs), which are
originally very close together. It can be shown that
their separation distance doubles at each stage, and
increases exponentially with time. This is very close to
the basis for the unpredictability of chaotic motion: if
there was only one bacterium it would be impossible
to predict which item of hors d’oeuvre it would
contaminate.

These remarks on the geometry of chaotic attractors
suggest that they may be fractals.® Fractals are a class of
objects with the property of having structure—often
the same structure —on many measurement scales. For
example, branching systems such as trees or blood
vessels often seem self similar in the sense that the form
of the structure looks much the same at many different
magnifications. Another example is a coastline: look at
a map showing only the outline of an island and it is
impossible to tell whether it is an islet in a loch or a
continent—apart from familiarity with the latter, of
course. To measure the length of the coastline of, say,
Ireland, one could get out some maps and some
measurement device—with the result that the larger
the scale of the map, the longer would be the coastline’s
measure. Self similarity and “odd” behaviour of lengths
of coastlines are linked through being characteristic of
objects whose dimension, instead of the simple one,
two, three of lines, surfaces, and solids can have values
like 1-23, which is the sort of value found for natural
coastlines. Abstraction and generalisation of these
observations led to the development of fractal
geometry, which is a rich and beautiful branch of
mathematics that deals with objects of non-integer
dimension. Chaotic attractors have been proved to be
fractal in some cases and conjectured to be so in many
more. Though very different in essence, chaos and
fractals seem to be closely linked in practice.

The Mandelbrot set is a rightly famous example of a
fractal structure, named for a pioneer of fractal
geometry.® This set, often said to be the most complex
—and beautiful —object known to man is generated by
a trivially simple rule: take a number, square it, and
add the number you first thought of; repeat ad
infinitum. For most starting numbers the process
diverges to infinity, but for some the successive
answers remain always bounded—these form the
Mandelbrot set. The interest and beauty of the
Mandelbrot set lies in the amazing complexity of its
boundary, which cannot be predicted or defined, only
explored and admired. (One technicality: this beauty
flowers only when complex numbers, represented as
points of a plane, are allowed.) The infinite complexity
of the boundary of the Mandelbrot set represents an
extreme sensitivity to initial conditions—the starting
number— highly reminiscent of chaotic dynamics but
actually more closely related to the infinitely structured
basin boundaries discussed below.

In the physiological sphere, one would suppose the
human heart to have an oscillatory attractor. In fact
there are indications that the healthy heartbeat is
actually slightly irregular, indeed chaotic. Be that as it
may, it must also have a fixed point attractor (cardiac
arrest) into which it can be “kicked” from the normal
state by an electrical or other shock. With luck or skill,
or both, it can sometimes be kicked back again:
resuscitation. These remarks illustrate a general and
important feature of non-linear systems: they can
possess more than one attractor, so that their actual
state depends on their history as well as their environ-
ment, which again is impossible in linear systems. That
a kick is needed to induce switching is in the nature of
an attractor: it attracts any nearby trajectories. In the
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FIG 2—Schema of “health” and “death” as two coexistent attractors.
Unbhealthy states A and B recover along the trajectories shown, but C is
fatal

case of the climate, there is reason to suspect that an ice
age type of climate coexists with our present more or
less equable climate, and thus that a big enough
volcanic eruption might trigger an ice age.

Coexistent attractors lead to a new kind of un-
predictability, which brings us back to the question of
medical prognosis. Let us suppose that “health” is an
attractor (probably chaotic) which must coexist
with “death” (a fixed point attractor) in some multi-
dimensional phase space which we don’t need to even
try to imagine, but which could be given a schematic
representation as in figure 2. “Illness” would then be a
state in which the system had got out of the health
attractor because of infection, injury, or whatever.
What is the prognosis?

Most ill states lead to recovery (even without medical
attention). That is a consequence of health being
an attractor state, which is in turn an inevitable
consequence of evolution: those “fittest” species which
prosper have robust healthy states. Thus we could
picture ill states A and B in figure 2 as being attracted
back to health along the paths indicated. They probably
correspond to the kind of illness I referred to at the
start of this article, where medical treatment affects
mainly the rate, rather than the fact, of recovery.
Furthermore, the return to health is by a fairly
predictable path, even if the healthy state is itself
chaotic.

Some illnesses are fatal, however, as illustrated by
point C in figure 2. Treatment is essential in this case,
but can we predict whether it will be successful? Can
we even predict which ill states are type C, and which
are type A or B?

In simpler or model systems with coexistent
attractors we can map out the phase space by simply
starting off at each point and watching where it ends
up. Figure 3 is an example of this procedure. Black
points end up on a fixed point, white on a coexistent
attractor. There are substantial regions (close to the
attractors themselves) of solid colour, corresponding to
full predictability. The most striking feature of this
figure is that further out the black and white pattern
becomes very intricate, and indeed it can be shown that
the pattern has a black and white structure on all scales,
so that predictability is lost unless there is infinite
accuracy of knowledge of the starting point, which is of
course impossible. Technically, the white and black
regions of figure 3 are termed the basins of attraction of
the two attractors, and the division between them—
which we can see is extremely convoluted —the basin
boundary.

This kind of unpredictability seems to me to relate to
questions about whether a seriously ill patient will
recover: what is often said to be a fine line between life
and death corresponds to the basin boundary. It is
indeed a fine line, and also an infinitely convoluted and
folded one, such that it is practically impossible to tell
on which side one is. If one is in the black region,
treatment is essential; but in the white region treatment
is likely to do more harm than good. The only sensible
course is to take a statistical view, and try to estimate
the “greyness” of different regions. But when a doctor
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FIG 3—Example (from non-linear optics) of a complex, probably
fractal, boundary between the basins of attraction of two competing
attractors. The white region is the set of points attracted to one attractor
(a fixed point) while the black region is attracted to the other (an
oscillation). The boundary between black and white has complex
structure on all scales accessible to a computer

estimates a 50-50 survival chance for a patient, it is
usually, I would guess, with the feeling that more
detailed knowledge of the patient would allow a better
prediction. What I am saying is that this is true, but
that the extra knowledge required increases much
faster than the improvement in prediction, so that to all
intents and purposes the outlook for individual
patients is at best statistically determinable.

Lastly in this context, it must be remarked that the
existence and location of attractors is not set in stone
but is a function of the environment—though not a
linear one. Thus I would reckon that smoking, for
example, would pull the health attractor towards the
death attractor in figure 2, making most forms of illness
more perilous. More generally, at some time for all of
us the basin boundary between life and death will,
whether through bad life habits or just age, come into
contact. with our chaotic health attractor, and we will

die. My point again relates to predictability: because

the basin boundary is so complex, detailed prediction
is impossible, especially as to whether we exit via
a trajectory marked. “cancer,” ‘“heart attack,” or
whatever.

What use is chaos?

I would like to close with some remarks on how
chaos and the associated ideas that have motivated this
article might be used more positively than as just a
better or more enlightening description of the real
world.

First of all, chaos has stimulated some important
technical developments in the way we can analyse and
interpret medical and other time series data. A key
concept here is “fractal dimension,” which as the name
implies was developed for fractals, but the practical
application of which has emerged as a byproduct of
attempts to prove that certain systems have strange
(chaotic, fractal) attractors, by analysing time evolution
data. When brain wave data in rats are “reconstructed”
the attractor for a healthy rat is computed to have
a “dimension” of about 5-9, while that for the same rat
in epileptic seizure has a dimension of only 2-5.” The

suggestion is that the “dimension” correlates with the
flexibility and adaptability of the organism: the larger
number implies a chaotic system with a well developed,
flexible response to stimuli, whereas the low value
associated with the seizure can be regarded as evidence
of suppression or malfunction of a number of key
elements of the rat’s physiology.

A somewhat similar argument can be applied to
electrocardiographic data: a healthy heart has a chaotic
beat instead of a simple, periodic one because a
periodic attractor has a low dimension, indicating a
(too) limited responsiveness to external stimuli or
crises. Indeed there is evidence that the heartbeat may
become very regular immediately before a heart attack.
Here, as above, chaos suggests new ways of analysis
of data which already offer some evidence of new
diagnostic approaches that could lead on to new
preventive techniques or treatment strategies.

This somewhat vague association of chaos with
adaptability can be and has been fleshed out.* I believe
that it can also be useful in getting to grips with the
detailed operation of natural selection, which still
seems unsatisfactorily understood even if the basic
genetic mechanisms are. Indeed, on a different tack,
genetic variability may provide the same sort of barrier
to disease as chaos does to prediction. Spread of a
disease might even be regarded as due to an over-
predictability of the target organism, much as a static
or straight running mouse is easy meat for a cat.

Problems such as the spread of disease involve
spatial complexity which adds, literally, new dimen-
sions to the already rich phenomenology of dynamical
chaos. This is an essential development if we are to do
more than hand wave about life and death in the way I
have done, for example, in figure 2. I believe, however,
that the insights gained through exploring chaos give
us some important clues as to how living organisms can
maintain themselves—and indeed how they might
have emerged in the first place.

Conclusion

What, finally, do I mean by “predicting the un-
predictable” in my title? I suggest two things: firstly,
that we can predict that very many important systems

-will have intrinsically unpredictable behaviour and,

secondly, and more positively, we can by taking a
broader view retain some predictive power—climate
versus weather—as well as gaining useful insight into
complexity.
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