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Using information theory, it is argued that from among possible
definitions of what an atom is when it is in a molecule, a particular
one merits special attention. Namely, it is the atom defined by the
‘‘stockholders partitioning’’ of a molecule invented by Hirshfeld
[(1977) Theor. Chim. Acta 44, 129]. The theoretical tool used is the
minimum entropy deficiency principle (minimum missing informa-
tion principle) of Kullback and Liebler [(1951) Ann. Math. Stat. 22,
79]. A corresponding analysis is given of the problem of assessing
similarity between molecules or pieces of molecules.

Fundamental to chemistry is the understanding of molecules
as combinations of atoms. It is not surprising, then, that the

concept of atoms in molecules (AIM) has been much discussed
in the literature (1). Chemistry mainly involves small changes
among atoms and molecular fragments, with reasonably well-
understood molecular invariants, e.g. AIM, functional groups,
molecular subsystems, etc., which tend to maintain their identity.
Most molecular systems may be thought of as consisting of
slightly perturbed atoms (or atomic ions), possibly deformed by
the presence of molecular remainders and exhibiting modified
net charges arising from charge transfers andyor the formation
of chemical bonds. These chemical atoms therefore are open
subsystems.

The imposing variety of published theoretical methods for
partitioning a molecular density into AIM contributions, e.g.
refs. 1–15, testifies to the importance of this theme for chemistry.
The different methods are based on different principles, some to
a degree arbitrary (5) or heuristic (15), which can produce
conflicting trends in the associated atomic net charges (effective
oxidation states). Methods differ in the theoretical technique
used, e.g., topological analysis of the density, wave-function
description, or density-functional description. They also differ in
the physicalyheuristic principles invoked, e.g., electronegativity
equalization, zero flux, and minimum-promotion energy rules.
They can have specific disadvantages, e.g., basis set dependence.
The well-known and appealing quantum-topological approach
(1–4) suffers from the fact that its defined atomic densities are
not ‘‘y-representable.’’ [An atomic density is y-representable
when there exists an external potential that has this density as a
ground-state density.]

Appropriate isolated atom densities constitute good refer-
ences for defining properties of chemical atoms in terms of fast
convergent Taylor series in the external potential and charge
transfer displacements relative to the potentials and charges of
the free atoms. The sum of the isolated atomyion densities, with
nuclear cusps at the actual positions of the nuclei, defines the
density distribution of the promolecule (15). The promolecule is
a key ingredient in the density difference analysis of the chemical
bond done by Hirshfeld (15), in which the assumption is made
that in forming a molecule each atom partakes of a local gain or
loss in proportion to its local contribution to the promolecule
density. In the present paper, we will recover this Hirshfeld
‘‘stockholder partitioning’’ of a molecular density into atomic
components.

One would hope to find that a chemical atom, like its free
analog, would possess a single cusp in its electron density, linked

to the effective atomic number of the nucleus (16). AIM
densities should be related to both promolecule and molecular
densities, as representing the atomic fragments in a particular
molecular system. One would want some degree of overlap
between the densities of these chemical atoms, to reflect the
presence of chemical bonds (1, 17, 18).

That atomic ground states, andyor small perturbations
thereof, are uniquely appropriate reference states for a detailed
description of AIM, was well understood by the pioneers, for
instance Pauling and Mulliken, in their use of the concepts of
hybridization, promotion, polarization, and ionic character. Ide-
ally, an AIM definition will preserve as much information as
possible about the separated atoms. [Here and later, the word
atoms usually stands for atoms or ions.]

In defining AIM, how can one preserve, to the extent possible,
the information content of ground-state atoms? It is natural to
use some information—theoretic principle (19–26) for this
purpose. And here is where density-functional theory (DFT) (27,
28) helps. For, DFT states that the electron density itself carries
all of the information about a ground state. So, we may define
AIM in a way that makes the atomic densities resemble as much
as possible the isolated atom densities, and thereby achieve the
‘‘best’’ atoms we can have in a molecule in an information
theoretic sense.

Kullback–Leibler Entropy Deficiency Functional
Suppose that P0(rY) is a given (reference) well-behaved proba-
bility distribution and that P(rY) is some trial probability distri-
bution, the information content of which we want to make as
close as possible to that of P0, subject to one or more constraints.
Define (25) the entropy deficiency (missing information) func-
tional by

DS@PyP0# 5 E P~rY!1nF P~rY!
P0~rY!GdrY, [1]

and let there be constraints of the form

Fk@P# 5 Fk
0 k 5 1, 2, . . . , n. [2]

Then the P which is the ‘‘best’’ approximation to P0 that satisfies
the constraints is obtained by solving the minimum entropy
deficiency (missing information) principle

dHDS@PyP0# 1 O
k

lkFk@P#J 5 0 , [3]

Abbreviation: AIM, atoms in molecules.
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where {lk} are Lagrange multipliers. DS and the lk are found
by solving Eqs. 2 and 3 simultaneously. A given Lagrange
multiplier measures how sensitive the entropy deficiency is to the
corresponding constraint. If there are several solutions for DS,
one takes the minimum one.

This constrained entropy extremization (24) constitutes the
most unbiased manner to assimilate (as completely as possible)
the information included in the reference distribution and the
auxiliary conditions. For specific P and P0, Eq. 1 gives a
non-negative number, which defines the information distance
between the two distributions, or the entropy deficiency of P
relative to P0.

Example: To begin to approach the AIM problem, suppose
that an accurate AB electron density is known, r, and that we
want to represent it as the sum of two densities rA and rB, with
electron numbers NA

0 and NB
0 , both fixed, and that we want to

keep rA as close to rA
0 and rB as close to rB

0 as possible. We take

DS@rA,rBurA
0 ,rB

0 # 5 E rA1nFrA

rA
0 GdrY 1 E rB1nFrB

rB
0GdrY,

[4]

and the constraints

NA
0 5 E rAdrY ; N@rA# , NB

0 5 ErBdrY ; N@rB# , [5]

with the Lagrange multipliers lA and lB, respectively. Eqs. 2 and
3 then give

1nSrA

rA
0 D 5 constant 5 1; rA 5 rA

0 ,

[6]

1nSrB

rB
0D 5 constant 5 1; rB 5 rB

0 .

That is, if the ‘‘atoms’’ A and B are closed (not allowed to
transfer electrons), entropy does not drive any density change.
One will need to implicate electron transfer to define the atom
in a molecule.

Derivation of the Hirshfeld AIM Stockholder Partitioning
An elementary modification of the example just given produces
what we want, open atoms A and B, with electron numbers NA

and NB not necessarily equal to NA
0 and NB

0 but still conforming
with NA 1 NB 5 NA

0 1 NB
0 5 N0. We can require exhaustive

allocation of the whole electronic distribution in AB to either A
or B,

rA~rY! 1 rB~rY! 5 r~rY! . [7]

This constraint requires using a Lagrange multiplier l(rY) that is
a function of rY. Here r denotes the accurate (presumed known)
density of the AB system, which is normalized to N0 electrons.
Also normalized to N0 is the isoelectronic promolecule density
r0 5 rA

0 1 rB
0 . Implementing the minimum entropy deficiency

principle of Eq. 3, with the constraint of Eq. 7, gives the equation
for the AIM densities rA and rB,

O
} 5 A,B

H 1nFr}~rY!
r}

0 ~rY!G 2 1nD~rY!J dr}~rY! 5 0, [8]

where 1n D(rY) 5 l (rY) 21. Hence

r}~rY! 5 r}
0 ~rY!D~rY! , } 5 A,B. [9]

The proportionality factor D(rY) is determined from the con-
straint of Eq. 7:

D~rY! 5 r~rY!yr0~rY! . [10]

We therefore find

r}~rY! 5 w}~rY!r~rY!, w}~rY! 5 r}
0 ~rY!yr0~rY!, } 5 A,B. [11]

This is the ‘‘stockholder partition’’ of the electron density
proposed long ago by Hirshfeld (7).

The sharing factor w}(rY) determines the relative share of atom
} in the promolecule density r0(rY). The result is trivially gen-
eralized to any number of constituent atoms. The ‘‘atoms’’ could
be neutral atoms, ions, or functional groups.

The Kullback–Liebler entropy deficiency minimization of Eq.
8 is seen to provide a solid theoretical basis for the Hirshfeld
prescription, which is known to yield fairly transferable charge
distributions and moments (15,30), which can be used e.g. in
calculations of the electrostatic potential and the interaction
energy. The AIM fragments defined by Eq. 11 have continuous
but well-localized densities. This partitioning procedure is basis
set independent and it can be used for either theoretical or
experimental densities.

The AIM densities of Eq. 11 possess correct behavior at the
separated (isolated) atoms limit, where all internuclear distances
R}b 3 `, because D(rY) 3 1 when r(rY) 3 r0 (rY). The AIM
densities fulfill, quite well through not perfectly, the proper
nuclear cusp and long-range decay conditions. These densities
are most probably y-representable or at least ensemble y-repre-
sentable. [Recent unpublished work by Paul Ayers on the
y-representability problem implies that Hirshfeld atomic
densities are either y-representable or infinitely close to y-
representable.]

The bonding factor D(r#) of Eq. 10 indicates how the free atom
density has been modified in the chemical atom. In the usual case
where there is density accumulation in the molecular bonding
region and depletion in the nonbonding regions of atoms bonded
in a molecule, relative to r0, bonded atoms are polarized toward
their bonding partners.

The chemical potentials of the bonded atoms each must be
equal to the molecular chemical potential m (8, 9, 31). The
argument follows. For the fixed molecular external potential y
we have:

E 5 E~N! 5 E~NA 1 NB!, N 5 NA 1 NB, [12]

so that

dE 5
­E
­N

dN ; mdN [13]

5 S ­E
­NA

D
NB

dNA 1 S ­E
­NB

D
NA

dNB [14]

mdN 5 mdNA 1 mdNB [15]

Subtracting Eq. 15 from Eq. 14 gives:

0 5 Fm 2 S ­E
­NA

D
NB

GdNA 1 Fm 2 S ­E
­NB

D
NA

GdNB

[16]

Therefore, if we define

mA 5 (­Ey­NA)NB
and mB 5 ~­Ey­NB!NA

, [17]

we find:

m 5 mA 5 mB . [18]
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AIM from a Modified Entropy Functional
To illustrate the many possibilities for extensions and variations
of this analysis, we examine another entropy deficiency func-
tional, in which in addition we include the information distance
between r(r#) and the resultant molecular density r#A(rY) 1 r#B
(rY) [ r#(rY), which is not fixed but is to be determined. The
modified Eq. 4 becomes

DS@r# A,r# BurA
0 ,rB

0 ,r# 5 DS@r# A,r# BurA
0 ,rB

0 # 1 E r# ~rY!1nFr# ~rY!
r~rY!GdrY.

[19]

We minimize this subject to the constraint on the fixed overall
number of electrons,

N@r# # 5 N0 5 NA
0 1 NB

0 :

dHDS@r# Ar# BurA
0 ,rB

0 ,r# 2 l E @r# A 1 r# B#drYJ 5 0, [20]

where l is a global Lagrange multiplier. Setting 1nc 5 l 22 we
obtain the optimum AIM densities,

r# } 5 Îcr}
0 ~ryr0!1y2 ; Îcr}

0 D# ; } 5 A,B, [21]

and the optimum overall density

r# 5 Îc@rr0#1y2 . [22]

The proportionality constant can be determined from the global
constraint in Eq. 20:

Îc 5 N0y E @rr0#1y2drY . 1. [23]

Thus, the variational principle of Eq. 20 gives the optimum
molecular density r# (rY), as the geometric mean of the promol-
ecule and the true ground-state density of the molecule.

Comparison of Eq. 21 with Eqs. 9 and 10 indicates that this
modified entropy deficiency minimization also gives chemical
atoms, which are properly polarized toward the bonding region
of a covalent bond. However, this effect is weaker in Eq. 21
because D# (rY) 5 [D(rY)]1y2, where D(rY) (Eq. 10) stands for the
bonding factor of the Hirshfeld stockholder atoms. Nevertheless,
it is reassuring that the last ‘‘similarity’’ term in Eq. 19, which
drives r# toward r, is seen to modify the promolecule density r0

in the qualitatively correct direction, toward r, thus generating
a partial bonding in a molecule. The density r# is a transition
density between r0 and r.

Both the Hirshfeld atoms of Eq. 11 and the modified chemical
atoms of Eq. 21 represent open atomic fragments in a molecule,
with the effective charges

q} 5 Z} 2 N@r}# or q# } 5 Z} 2 N@r# }# [24]

generally different from the free atom (ion) charge, q}
0 5 Z}

2N[r}
0 ], caused by the charge transfer component of the chem-

ical bond. Equal chemical potentials do not generally obtain in
this case, however.

Information-Theoretic Measure of Molecular Similarity
A molecular similarity concept sometimes is invoked to charac-
terize structural resemblance of different molecules or their
fragments. Measures that have been used have included overlap
integrals for electronic density, electrostatic potential, and Fukui
function (32). Here, we assume that similarity of electronic
structure implies a closeness of the information content of

electronic density distributions. This again calls for a measure of
the information distance as provided by the entropy deficiency
functional of Eq. 1.

In a typical screening search through candidate species with
densities {ri}, which are being tested for similar chemical activity
to the reference system with density r0, one would select those
with the minimum value of the entropy deficiency DS[riur0].
When reactivity of a specific ‘‘active site’’ is required, the
densities of the relevant molecular fragments should be chosen
as the input information carriers.

The simplest variational criterion for the minimum entropy
deficiency between the test molecularyfragment density ri and
the reference density r0 normalized to N[r0] 5 N0, subject to the
normalization constraint N[ri] 5 Ni

0, would be

d$DS@riur0# 2 lN@ri#% 5 0, [25]

giving

Pi~rY! ;
ri~rY!
Ni

0 5 P0~rY! ;
r0~rY!
N0

. [26]

The most favorable matching therefore is achieved when the
shape functions Pi(rY) and P0(rY) are as close as possible. This
result is reminiscent of the recent extension of the Hohenberg–
Kohn theorems (26) by Ayers (33), demonstrating that the shape
function of the bound states of a molecule determines all
properties of the system under consideration. Requiring the
maximum amount of common information in ri and r0 indeed
calls for the same shape functions for the two compared
densities.

As a final example, consider the optimum matching criterion
of a trial electron density r, with two reference densities r1

0(N[r1
0]

5 N1
0) and r2

0(N[r2
0] 5 N2

0), subject to the usual normalization
constraint, N[r] 5 N0:

d$DS@rur1
0# 1 DS@rur2

0# 2 lN@r#% 5 0. [27]

Solution of this equation gives

r 5 C~r1
0r2

0!1y2, C 5 N0yN. [28]

The optimum match is the normalized geometric mean.
One encounters such a problem in heterogeneous catalysis,

when matching the adsorbate density (r) with the two surface
active sites (r1

0, r2
0) involved in bonding the adsorbate. Another

example is a molecule binding to two sites of another molecule.
The maximum value of r(rY) is expected in the overlapping
region between r1

0 and r2
0, because the least biased information

distance criterion of Eq. 27 calls for r to resemble (appreciably
overlap with) the overlap density between the two reference
densities.

Summary and Concluding Remarks
In this paper we have used the information theory to decom-
pose a molecular electron density into its component atomic
densities. More particularly, we have selected the entropy
deficiency (informative distance) approach of Kullback and
Leibler (25), using the free atom densities as the reference
distributions, to obtain AIM densities. Such a reference is both
natural and unique in chemistry, because by the Hohenberg–
Kohn theorem the isolated atom densities carry all the infor-
mation of the periodic table, which is the fountainhead of
chemical thought.

We have demonstrated that the minimum entropy deficiency
(missing information) principle subject to the constraint of the
exhaustive partitioning of the molecular density recovers the
‘‘stockholder’’ definition of bonded atoms done by Hirshfeld
(15), thus providing it with a fundamental theoretical derivation.
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These Hirshfeld chemical atoms are unbiased pieces of the
molecular density, which are the least distant in their informa-
tion content from their isolated atom analogs. The chemical
atoms have equalized chemical potentials at the global, molec-
ular level, and they are probably y-representable. Their overlap
in a molecule accords with the familiar classical interpretation of
the origin of the chemical bond (17). The quantum-topological
atoms, in contrast, have zero overlap (1).

In an extension, we have demonstrated how the entropy
deficiency functional can be used to generate the bonding
character of chemical atoms. The resulting optimum density of
a molecule then is given by the geometric mean of the true
ground-state density and that of the promolecule (having free
atom densities centered at the actual positions of nuclei in a
molecule). Both the intermediate polarization (promoted) and
final charge transfer stages of the atomic density reorganization
in a molecule have been discussed. We also have illustrated the

use of the entropy deficiency minimization principle in molec-
ular similarity problems.

Finally, we note that the same ideas apply to excited electronic
states. In this case, however, the reference, ground-state densi-
ties of free atoms might not be the ones that give the minimum
value of the informative distance. Using the excited-state den-
sities of separated atoms as reference densities may give more
realistic excited-state (promoted) AIM densities, while still
linking the resulting chemical atoms to the isolated atoms
(periodic table) information. The information-theoretic ap-
proach should be helpful in quantitative studies of charge
transfer and effective oxidation states.
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