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Abstract
Objective-To investigate the role of genetically

determined differences in the enzymes of alcohol
metabolism in susceptibility to liver damage from
misusing alcohol.
Design-Use of pADH36 probe to study PVU II

restriction length fragment polymorphism in alcohol
dehydrogenase 2 gene in white alcohol misusers and
controls.
Setting-Teaching hospital referral centres for

liver disease and alcohol misuse.
Subjects-45 white alcohol misusers (38 with

alcoholic liver disease) and 23 healthy controls.
Main outcome measures-Alcohol misuse, the

presence and severity of alcoholic liver disease,
alcohol dependency, and family history of alcohol
misuse.
Results-A two allele polymorphism (A and B)

was identified. In control subjects the allele fre-
quencies were 85% for A and 15% for B compared
with 370/0 and 63% respectively in alcohol misusers
(p < 0-001). B allele was significantly associated with
severe liver damage (p<0.05) as well as alcohol
dependency and family history of alcohol misuse
compared with controls.
Conclusion-Inherited variation in enzymes of

ethanol metabolism may contribute to the patho-
genesis of alcohol induced liver damage. This
supports the presence of a genetic component in
alcohol misuse.

Introduction
Although 10-15% of the population are classified as

chronic alcohol misusers,' the incidence of alcohol
related diseases varies considerably among people with
comparable levels of intake. Alcoholic fatty liver is
found in 90-100% of chronic misusers but only 10-20%
subsequently develop cirrhosis.2 A genetic effect in
alcoholism was first suggested by studies of children of
alcoholic parents adopted into non-alcoholic families,3
and studies of concordance in twins have shown some
genetic predisposition to alcohol induced cirrhosis.4
Multiple environmental and genetic factors clearly
influence drinking behaviour and the development of
alcoholism,5 and the inherited component in alcohol
induced liver damage is almost certainly derived from
several genes.
Genes influencing ethanol metabolism are likely to

be the most important candidate genes for alcoholic
liver disease. Studies in twins have shown that genetic

factors account for most of the repeatable variation in
ethanol metabolism between individuals.6 In addition,
dependent alcoholics undergoing detoxification show
alterations in ethanol metabolism compared with mis-
users without signs of dependency or control subjects.7
Acetaldehyde, the highly toxic product of ethanol
metabolism, is thought to play an important part in
alcohol induced liver damage and may also contribute
to the pathogenesis of alcohol dependency.89 It is
therefore likely that alcohol dehydrogenase, which
accounts for over 90% of ethanol metabolism in the
liver and determines the rate of acetaldehyde forma-
tion, is implicated in genetic susceptibility to alcoholic
liver disease.

Alcohol dehydrogenase shows considerable poly-
morphism. It has more than 20 different isoenzymes
with greatly differing kinetic properties in vitro.10'1
The enzyme is encoded by three gene loci, ADH1,
ADH2, and ADH3, which lie adjacent to each other on
chromosome 4. Polymorphism is present only at the
ADH2 and ADH3 loci.'2 We investigated the associa-
tion between a genetic marker-a two-allele restriction
fragment length polymorphism in the gene ADH2-
with historical features of alcoholic liver disease and
clinical features of alcohol dependency in a white
population.

Materials and methods
We studied 45 alcoholic patients and 23 non-

alcoholic control subjects, all ofwhom were white. The
patients were referrals to teaching hospital liver disease
and alcohol misuse units, whereas the control subjects
were research or laboratory staff recruited on a volun-
tary basis (table I). Although the average age of the
controls was younger (mean 36 v 52 years), most of the
alcohol misusers had established drinking habits by
their mid-30s. All of the controls drank less than an
average of 24 g of ethanol daily. All patients had
consumed at least 80 g of ethanol daily (mean 146 (SE
9 8) g/day) for a minimum of two (mean 13 6 (1 8)
years) and had come to medical attention because ofthe
direct consequences of their alcohol misuse. Twenty
one of the 45 patients showed clinical features of, and
satisfied questionnaire criteria for, alcohol dependency
and 19 had a family history of alcoholism, with at least
one affected first degree relative.

Thirteen patients were referred for either detoxifica-
tion or treatment of alcohol misuse, and 32 for
treatment of acute alcoholic hepatitis or complications
of cirrhosis (bleeding oesophageal varices, ascites, or
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hepatic encephalopathy). Information on quantity,
duration, and pattern of alcohol intake; severity of
alcohol dependency; and family history was obtained
by interview and completion of a questionnaire incor-
porating the criteria for alcoholism and dependency
in the Diagnostic and Statistical Manual of Mental
Disorders, third edition, revised and the severity of
alcohol dependence questionnaire. Diagnostic liver
biopsy specimens were obtained in 38 patients with
persistently abnormal liver function. Six had fatty liver
and the remaining 32 had histological features charac-
teristic of advanced alcoholic liver disease (four had
alcoholic hepatitis and fibrosis, 14 alcoholic hepatitis
with cirrhosis, and 14 cirrhosis). All patients were
negative for hepatitis B surface antigen and antibodies
to smooth muscle and mitochondria.

ANALYSIS OF RESTRICTION FRAGMENT LENGTH
POLYMORPHISM

Peripheral blood was stored at -70°C in 25 mM
EDTA. Leucocyte DNA was prepared by standard
phenol-chloroform extraction and precipitation in iso-
propanol and sodium acetate. DNA was digested with
the restriction enzyme Pvu II, and the resulting
fragments were separated by 0 7% agarose gel electro-
phoresis and transferred to nylon filters by Southern
hybridisation.
We selected a 1 3 kb genomicDNA probe (pADH36)

containing a polymorphic region of ADH2.3 A total
of 50 ng of the probe was labelled with phosphorus-32
by the random oligonucleotide technique and hybrid-
ised with the filters. Before hybridisation the filters
were incubated for 2 hours at 65°C in a mixture of six
times,strength saline sodium citrate, single strength
Denhardt's buffer, -'1% sodium dodeccylsulphate,
10mM sodium phosphate, and 1 iM EDTA adjusted
to pH 8, with 5% dextran sulphate and 25 p.g/ml
sonicated salmon DNA. This was followed by over-
night hybridisation at 65°C. The filters were then
washed to high stringency (in 0 1 strength saline
sodium citrate and 0-1% sodium dodecylsulphate at
55°C) and autoradiographed.
The frequencies of the A and B alleles were calcu-

lated by adding the number of people with AA or BB
genotype to half of those with the AB genotype.
Statistical analyses were done by the X2 test.

Results
Analysis of the restriction fragments that hybridised

to the pADH36 probe showed a two allele polymor-
phism. A and B alleles were denoted by hybridisation
of the probe with 5-1/0-8 kb and 3-1/2-9 kb doublets
respectively (figure). The number of subjects with
homozygous and heterozygous ADH36 genotypes and
the calculated frequencies ofA and B alleles conformed
to the model expected according to Hardy-Weinberg
equilibrium. In- control subjects, A- and B allele
frequencies were 85% and 15%, respectively, with only
two patients homozygous for the B allele (table II). In

5.1I kb l l 11

3.1I kb" I h
2.9 kb

Autoradiograph ofPvuII
restricted kucocyte DNAfrom
five control subjects andfive
akoholic patients after Southem
hybridisation with UP-labelled
pADH36 probe

.0.8 kb

Controls

_

Alchoic

TABLE i-Characteristics ofalcohol misusers and controls

Alcohol
misusers Controls
(n-45) (n-23)

Mean (SE) age (years) 52-3 (1 7) 35 (2 6)
Sex (M/F) 26/19 13/10
No (O/6) in socioeconomic class:
I 5(11) 5(22)
II 11(25) 14(61)
III 19 (42) 4 (17)
IV 9 (20) 0
V 1 (2) 0
Mean (SE) alcohol consumption (g/day) 146 (10) <24
Mean (SE) duration of misuse (years) 13-6 (1-8)
No (%/6) with alcohol dependency 21 (47)
No (O/6) with family history 19 (42)

TABLE n-Genotypes and allele frequencies for pADH36 restriction
fragment length polymorphism in controls and alcoholic patients

No of patients Allele frequency
with genotype (%)

AA AB BB A B

Controls (n-23) 18 3 2 85 15
Alcoholic patients (n-45) 7 19 19 37 63

X2-25-8.p<0-001 (df-2).

TABLE iII-Genotypes and allele frequencies of pADH36 restriction
fragment length polymorphism in patients with severe alcoholic
liver disease subdivided according to histology

No ofpatients Allele frequency
with genotype (%)

AA AB BB A B

Alcoholic hepatitis and 2 2 0 75 25
fibrosis (n-4)

Cirrhosis (n- 14) 1 2 11 14 86
Alcoholic hepatitis and 2 7 5 39 61

cirrhosis (n- 14)'-
All (n-32) 5 11 16 33 67

X'- 11-3, p <0 025 (df-4) for comparison between all three groups.
X2-6-1, p <0-05 (df-2) comparing alcoholic hepatitis and fibrosis with all
cirrhosis.
X'-8-1, p<0 025 (df-2) comparing all alcoholic hepatitis with cirrhosis
only.

contrast, the frequency of the B allele in the alcohol
misuser group was 63%, significantly higher than in
the control group (p<0 001). Histology was clearly
associated with the B allele (table III). In patients with
cirrhosis or alcoholic hepatitis with cirrhosis, the B
allele frequencies were 86% and 61% respectively,
higher than in the four patients with alcoholic hepatitis
with fibrosis. The B allele was associated with cirrhosis
(p < 0 05) and was more prevalent in patients with
cirrhosis without active hepatitis (p < 0 03).
The association with the B allele remained strong

when the 21 alcohol misusers with alcohol depend-
ency and those with family history were considered
separately (table III). B allele frequencies were
64% and 61% respectively (p<0.001 compared with
controls).

Discussion
Patients with alcoholic liver disease and alcohol

dependency both showed significant increases in the
frequency of the B allele of this Pvu II fragment of
ADH2 compared with controls. However, the relation
with severity of disease suggests that the B allele has a
role in susceptibility to severe liver damage. These
findings imply that an additional restriction site for the
Pvu II enzyme occurs within ADH2 in most alcoholic
misusers but only- a few controls. Analysis of the
sequence ofADH2 indicates that the additional restric-
tion site is probably in a non-coding region, suggesting
that this base alteration does not affect the fimction of
alcohol dehydrogenase 2.i4 Therefore the most likely
explanation is that the restriction fragment length
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Clinical implications

* Only 10-20% of chronic alcohol misusers develop cirrhosis
* Genes encoding enzymes of alcohol metabolism are candidates for
determining susceptibility to alcoholic liver disease and other alcohol related
diseases
* This study identified a new genetic marker for susceptibility to alcoholic
liver disease and alcohol dependency
* One allele of this alcohol dehydrogenase 2 polymorphism was associated
with severe liver damage
* Inherited variations in enzymes of ethanol metabolism can contribute
to the pathogenesis of alcohol induced liver damage

polymorphism is in linkage disequilibrium with either
a polymorphism in an adjacent regulatory sequence,
resulting in a change in ADH2 expression, or a coding
region of a neighbouring gene.
The ADH2 locus is the most polymorphic of the

alcohol dehydrogenase genes, with three alleles each
encoding different polypeptides (13, 12, and ,B3) that
have greatly differing rates of ethanol oxidation in
vitro."10 Even though we have not determined these
genotypes directly, published studies have shown that
the 1P allele is predominant in white Europeans5 16 and
that the 12 allele is uncommon (2% or less) in this
population. Since the probe we selected contained a
coding sequence specific for the 132 allele, it is unlikely
that the mutation site we detected corresponds to a
structural change in the enzyme.

INFLUENCE OF GENOTYPES

Direct genotyping of the alcohol dehydrogenase
genes from peripheral blood can be done using the
polymerase chain reaction to amplify polymorphic
areas of coding regions. Each of these polymorphic
areas corresponds to a structural change in alcohol
dehydrogenase and altered kinetic properties. Recent
studies have attempted to show that particular alcohol
dehydrogenase genotypes confer increased suscepti-
bility to alcohol induced cirrhosis. A study from
western France by Couzigou et al showed no dif-
ferences in ADH2 or ADH3 allele frequencies between
patients with cirrhosis and controls."5 Day et al,
however, identified a possible association between
ADH3 genotypes and cirrhosis in a population from
north east England.'6 Further large scale studies are
needed to clarify this issue.

Investigations into the genetic basis of susceptibility
to complex multifactorial conditions such as alcoholic
liver disease and alcohol dependency are difficult
because multiple genes, each with varying levels of
penetrance and differing interactions with the environ-
ment, are involved. A gene that determines ethanol
metabolism can be assumed to have a large effect, but
it is important to use accurate diagnostic criteria to
select alcohol misusers for study, and to ensure that
controls are racially matched. We therefore attempted
to define our alcoholic patients carefully. In view of
the increased female susceptibility to alcoholic liver
disease'7 and known racial variations in ADH2 gene
frequency," our samples were well matched with
respect to sex and race. We did not match the two
groups strictly according to age because it was a genetic
study and an ethanol intake of 80 to 160 g per day is
required over 10 to 20 years before chronic liver disease
develops.2 A questionnaire and measurements of
haematological and biochemical markers were used to
exclude heavy drinkers from the control population to
maximise the chance of detecting a difference.

ALDEHYDE DEHYDROGENASE

Our results suggest that genetic alterations asso-

ciated with the B allele of this ADH2 restriction
fragment length polymorphism may influence the rate
of ethanol metabolism in the liver and hence the rate of
formation of acetaldehyde. Acetaldehyde is rapidly
oxidised, principally by mitochondrial aldehyde
dehydrogenase. Reduced aldehyde dehydrogenase
activity may also contribute to the pathogenesis of liver
disease by reducing acetaldehyde clearance from
the liver. Mitochondrial aldehyde dehydrogenase is
inactive in at least 40% of Orientals because of a point
mutation in the gene'920; this has not been detected
in white people.'6 People who are homozygous for
this mutation rapidly accumulate acetaldehyde after
drinking ethanol and the resulting symptoms of
flushing, palpitations, and nausea cause aversion to
further intake. Studies in Japanese have indicated that
the presence of two copies of the point mutation
protects against alcoholic liver disease,2' although there
is some evidence that susceptibility to liver damage is
increased in the heterozygous state.22 However, in
whites it is likely that acetaldehyde induced liver
damage is more dependent on the rate of acetaldehyde
formation and is therefore influenced by alterations in
alcohol dehydrogenase activity.
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