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Abstract
High levels of binding sites for melanocortin peptides exist within the arcuate nucleus, and a
functional response to melanocortin peptides has been demonstrated in arcuate POMC neurons.
Because the MC3R is thought to function as an inhibitory autoreceptor on POMC neurons, we
reasoned that peripheral injections of MC3R-specific agonists would act within the arcuate nucleus
to inhibit POMC neurons and thereby stimulate feeding. We demonstrate that the peptidergic MC3R
agonist, D-Trp8-γ-MSH, stimulates feeding via the MC3R when injected peripherally. These data
provide the first evidence that feeding can be stimulated by peripheral injection of MC3R-specific
agonists.
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1. Introduction
1.1. The melanocortin system and MC3R

Numerous studies have demonstrated that the hypothalamic melanocortin system is critical for
the maintenance of body weight and energy homeostasis [6,12]. The available data strongly
support a model wherein hypothalamic pro-opiomelanocortin (POMC) neurons in the
hypothalamus and brainstem regulate body weight via their release of α-MSH that in turn
activates the type 4 melanocortin receptor (MC4R) in many parts of the brain. Genetic deletion
of POMC or the MC4R in mice (MC4RKO) and mutations in the MC4R in humans leads to a
well-defined phenotype consisting of increased lean body mass and fat mass, relative
hyperphagia, and disturbance in the metabolic response to overnutrition [12]. This has in turn
led to the proposal that melanocortin agonists may be useful in the treatment of obesity, and
that melanocortin antagonists may be useful to treat cachexia in chronic diseases [27]. While
the importance of the MC4R in maintaining appropriate metabolic homeostasis is clear, the
role of the melanocortin-3 receptor (MC3R) remains relatively obscure. MC3RKO mice have
reduced lean body mass and increased fat mass and are slightly hypophagic relative to WT
controls [2,4]. The effect of MC3R deficiency on feeding and resting oxygen consumption is
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complex. Remarkably, despite the increased adiposity seen in the MC3RKO mice, the animals
do not exhibit increased food intake or weight gain, even on a high fat chow that is known to
induce hyperphagia in MC4RKO animals [2,3]. It has also not been possible to demonstrate
differences in resting basal or total metabolic rate in this model [2,4]. At this point, it appears
that the obese phenotype of the MC3RKO mouse may be explained by defects in fatty acid
oxidation and decreases in home-cage activity[2,4].

1.2. The MC3R as an inhibitory autoreceptor
Many of features of the MC3R KO phenotype are consistent with the putative role for the
MC3R as an inhibitory autoreceptor on POMC neurons [1,10,23]. In this capacity, deletion of
the MC3R might be expected to enhance POMC neuronal function, thereby leading to the
observed decrease in lean body mass and relative hypophagia observed in this animal model.
Obviously, the fact that the MC3R is also expressed in the ventromedial hypothalamus (VMH)
and more than 30 other brain nuclei in the rat [29] as well as in multiple in peripheral tissues
[5,16,17] indicates that this is unlikely to be the only role for this receptor. Nonetheless, our
previous studies demonstrated that MC3RKO mice were highly susceptible to cachexia during
acute and chronic disease, whereas the MC4RKO mice were resistant to cachexia [26,28].
Therefore, we proposed that peripheral signals produced during illness activate POMC neurons
and thereby increase signaling at MC4 receptors. This predicts that the loss of an auto-inhibitory
‘brake’ on these neurons, as provided by the MC3R, would enhance cachexia in our models,
and this what was found [26]. This model also predicts that MC3R agonists should stimulate
feeding, and therefore provide a potential therapeutic target to dampen the effects of cachexia.

1.3. Specific peptide MC3R agonists
In a search for potent and receptor-selective agonists and antagonists of melanocortin receptors,
Grieco et al. screened a series of peptide compounds created by substituting D-amino acids at
each position of the endogenous MC3R selective melanocortin peptide, γ-MSH [18]. They
found that the D-Trp8 analogue had both high affinity for the MC3R (IC50 approximately 6
nM), and 100-fold selectivity for the MC3R relative to the MC4R. In previous studies, we have
demonstrated that this MC3 agonist limits POMC neuronal activation in slice culture by
increasing the inhibitory GABA tone on these neurons, presumably by activating arcuate NPY/
GABA neurons [10]. This area of the brain is also known to express the MC3R and to have a
very high binding capacity for γ-MSH [29,31]. Furthermore, the arcuate nucleus is known to
respond to a variety of circulating peptide compounds, and is thought to have a relatively
permeable blood-brain barrier [7]. Thus, we hypothesized that peripheral injections of D-Trp8-
γ-MSH would act on the MC3R within the arcuate nucleus to inhibit POMC neuronal activity,
and thereby stimulate feeding. Presumably this peptidergic compound would have limited
access to other brain regions, and therefore, provide us insight into the role of the arcuate MC3R
in the absence of its effects elsewhere in the brain. Here, we have demonstrated that peripheral
injection of this potent MC3R agonist can stimulate feeding by acting at the MC3R, even in
satiated animals.

2. Materials and methods
2.1. Animals

WT C57BL/6J mice were obtained from Jackson Laboratories (Bar Harbor, Maine). MC3RKO
mice, and their wild-type (WT) controls were derived from the original C57BL/6J × 129
colonies [2,21] maintained within the Vollum Institute that had been bred seven generations
into the C57BL/6J strain and maintained as homozygous lines. MC4RKO mice, described
previously [21], were bred 10 generations into the same C57BL/6J strain. All mice were raised
group housed in a 12 h light/dark cycle. For studies measuring food intake, mice were housed
individually and food intake estimated by measuring the weight of powdered food remaining
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in feeding chambers designed to maximize spill capture (Nalgene mouse food chambers). Mice
were weaned at 21 days and allowed ad libitum access to powdered Laboratory Rodent Diet
(Purina) that was weighed and replaced daily. In all studies, male animals aged 6–10 weeks
were used. All studies were conducted according to the NIH Guide for the Care and Use of
Laboratory Animal and approved by the Animal Care and Use Committee of the Oregon Health
Sciences University.

2.2. Compound administration
Each animal was handled daily for a minimum of 5 consecutive days prior to the initiation of
each experiment, simulating the restraint used during the injection of the compounds. D-Trp8-
γ-MSH dissolved in normal saline and administered i.p., with a fresh batch of compound being
prepared from lyophilized stock immediately prior to injection. Knockout mice and littermate
controls had basal feeding monitored for 2 days, and then during each 12 h period following
an i.p. saline injection to demonstrate that the observed effects were not due to differential
stress responses observed in other models of melanocortin blockade [11]. All animals were
weighed prior to compound injection, and the doses were normalized to individual animal body
weight.

2.3. Feeding studies
Animals were individually housed for a minimum of 1 week prior to starting each experiment.
Animals were habituated to eating powdered mouse chow from containers designed to
minimize spill and contamination of the remaining food. For each of the daytime studies, the
animals were first habituated to the handling and injection protocol by giving saline injections
daily 1 h after lights on (0700 or 0800 h, depending on daylight savings time status) for 3
consecutive days. In each case, we confirmed that the food intake of the WT animals and the
knockout models was not different after the third sham injection, indicating that the differential
response to stress observed in other models of melanocortin blockade had been attenuated
[11]. On the fourth experimental day, the animals were injected with D-Trp8-γ-MSH or saline
control 1 h after lights on, and food intake was measured at 2, 4, 6, 12 and 24 h. For the nocturnal
feeding study, an identical paradigm was used, except that the habituation and experimental
injections were given 1 h prior to lights off (1800 h). In the initial dose–response study, animals
were injected with doses ranging from 0.005 to 500 mcg i.p. (n = 10 per group) and food
consumption at 2, 4, 6, 12 and 24 h was measured. The experiment was repeated on the
following day with all groups re-randomized to treatment. For each of the experiments
involving knockout models, half of the WT and half of the receptor-knockout animals received
saline, and the other half received D-Trp8-γ-MSH.

2.4. Statistical methods
In the dose–response study, differences between groups were measured by one-way ANOVA
to compare all groups. Differences between feeding and activity curves in all other experiments
were analyzed by two-way, repeated measures ANOVA with time and treatment as the
measured variables. Post hoc Bonferroni testing was used to determine differences between
groups within an experiment. Data sets were analyzed for statistical significance using either
the PRISM software package (GraphPad) for ANOVA with repeated measures.

3. Results
3.1. Daytime food intake, dose–response

The MC3R is expressed in a limited number of hypothalamic nuclei, and is thought to function,
in part, as an autoinhibitory receptor on POMC neurons [1]. We reasoned that a peptide agonist,
injected peripherally, would have access to sites within the arcuate nucleus (which has a
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minimal blood-brain barrier), but not to sites further into the brain parenchyma. Therefore, the
expected outcome of peripheral MC3R agonist injection would be an inhibition of tonic POMC
neuronal activity that in turn would lead to an increase in food intake. In collaboration with
Dr. Victor Hruby, we were able to obtain a very specific and potent MC3R agonist, D-Trp8-γ-
MSH [18]. Animals were individually housed for 2 weeks prior to the start of the experiment.
For 3 consecutive days prior to injecting the test compound, animals were injected i.p. with
saline at 1 h after lights on. On the experimental day, animals were injected with doses ranging
from 0.005 to 500 mcg i.p. (n = 10 per group) and food consumption at 2, 4, 6, 12 and 24 h
was measured. The experiment was repeated on the following day with all groups re-
randomized to treatment. The difference between groups was significant when the 5 mcg group
was compared with all other groups at 2 and 4 h. The data for cumulative food intake at 4 h is
shown in Fig. 1. No differences were observed in the consumption of water (ANOVA p = 0.8,
not shown).

3.2. Repeated daily injections
To confirm and extend these findings, groups of WT animals (n = 15) were injected with saline
for 3 days (1 h after lights on), followed by an injection of 5 mcg D-Trp8-γ-MSH or saline
control with food intake measured at noon on days 4–6. These data show that the effect of
peripheral injection of MC3R agonists reproducibly stimulate food intake in satiated animals,
and that the repeated injections of this compound may produce some tolerance effects. The
results of this experiment are shown in Fig. 2. We were also able to demonstrate increased feed
intake in animals injected immediately prior to lights-out (i.e. nocturnal food intake, Fig. 3).

3.3. Studies in MC4RKO mice
In our early dose–response studies, we found that animals treated with 50 or 500 mcg of D-
Trp8-γ-MSH had lower food intake that saline-treated controls. We hypothesized that this effect
was due to “spillover” stimulation of the hypothalamic MC4R. To test this hypothesis, and to
demonstrate the specificity of the effect of this compound on the MC3R, we injected groups
of MC4RKO mice (saline n = 14, D-Trp8 n = 14) or WT controls (saline n = 20, D-Trp8-γ-MSH
n = 20) with saline on days 1–3, followed by test compound on day 4. Food intake was measured
at 2, 4 and 6 h after injection. These data show that the inhibitory effect of 50 mcg of D-Trp8-
γ-MSH on feeding are due to stimulation of the MC4R, as the MC4RKO animals showed
stimulation of feeding with the 50 mcg dose, while WT animals showed a relative inhibition
of feeding (Two-way repeated measures ANOVA p < 0.005 for group, p = ns time; Fig. 4). As
with previous studies, this effect was of relatively short duration, with no effect seen after the
4 h time point (ANOVA 0–2 h p < 0.001, 2–4 h p < 0.01, 4–6 h p = 0.5; 6–12 h p = 0.6). The
cumulative food intake over the first 4 h of this study is shown in Fig. 5.

3.4. Studies in MC3RKO mice
In a final experiment, we tested the effect of D-Trp8-γ-MSH on feeding in MC3R knockout
mice. In this case, we hypothesized that there would be no stimulation of feeding in the receptor-
knockout mouse. Groups of MC3RKO mice and WT controls (n = 10) were individually housed
for 2 weeks. On days 1–3, the animals were injected i.p. with saline at 0700 h. On the fourth
day, animals were injected with 5 mcg of D-Trp8-γ-MSH (n = 5 per genotype) or saline (n = 5
per genotype) at 0700 h, and food intake was measured 2, 4 and 6 h later. In this case, significant
stimulation of feeding was observed only in the WT animals, whereas no stimulation of feeding
was observed in the MC3RKO (ANOVA p < 0.05 for group, p = 0.88 for time). As with
previous experiments, this result was significant at 2 and 4h (Fig. 6).
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4. Discussion
4.1. Stimulation of food intake with MC3R agonists

Several lines of evidence suggest that γ-MSH acts on the MC3R within the hypothalamic
arcuate nucleus to dampen the activity of arcuate POMC neurons via direct and indirect neural
mechanisms [1,10,29,31]. Because hypothalamic POMC neurons provide a tonic inhibition of
food intake, we reasoned that stimulation of the MC3R within the arcuate should lead to an
increase in food intake [13]. We also proposed that peripheral injections of peptidergic
compounds would be expected to have the most potent effects in brain areas with an attenuated
blood-brain barrier, such as the arcuate nucleus. To test this hypothesis, we performed
peripheral injections with a potent and receptor-specific MC3R agonist (D-Trp8-γ-MSH) in
groups of wildtype and melanocortin receptor-knockout mice. In our first study, we established
a general dose–response relationship and demonstrated that a dose of 5 mcg of this compound
would reproducibly stimulate food intake both when given to satiated animals (daytime
feeding) and when given to animals at the start of their normal feeding cycle. This stimulation
of food intake was of short duration (4–6 h), and this compound was still effective in MC4RKO
animals. These results are consistent with the findings of Cowley et al. who demonstrated that
this compound produces an inhibition of POMC neuronal activity that is due to an increase in
inhibitory synaptic transmission (due to GABA release onto POMC neurons), presumably due
to the activation of GABAergic NPY neurons in the arcuate nucleus [8,10]. Thus, our
observations may be due to the release and action of NPY, a peptide that is known to have
orexigenic activity that is of short duration [24]. With repeated daily injections, an attenuation
of the stimulatory effect on food intake was observed. Tolerance to the orexigenic effect of
NPY is not observed with repeated injections [30]. Thus, we speculate that the decrease in
efficacy of D-Trp8-γ-MSH over several days is due to tolerance to the drug itself, perhaps due
to receptor desensitization.

4.2. Potential peripheral effects of MC3R agonists
The MC3R is expressed in multiple peripheral tissues, and MC3R agonists are known to limit
the inflammatory response of macrophages [15,25], and produce sodium excretion by the
kidney [20]. It is possible that our results are due to one or more peripheral effects of D-Trp8-
γ-MSH. For example, sodium loss and diuresis could produce both thirst and hunger in an
attempt to replace lost sodium. However, we did not observe any changes in water consumption
with this compound, making this an unlikely explanation. Given that our animals were healthy
and housed in a pathogen-free environment, it is also unlikely that the stimulation of feeding
is due to an anti-inflammatory effect. The possibility that there were important effects on other
tissues known to express the MC3R including adipose tissue, skeletal muscle, kidney, stomach,
and pancreas, will require further studies [5,14].

4.3. Potential stimulation of the MC4R
We observed a decrease in feeding in animals given a high dose of D-Trp8-γ-MSH, relative to
saline-treated controls. It is possible that this was due to either a non-specific illness effect of
the compound, or due to one or more effects of peripheral stimulation of the MC3R (e.g.
hypotension due to natriuresis). However, we did not observe this decrease in MC4RKO
animals. Indeed, these animals responded to a dose of D-Trp8-γ-MSH that produced relative
anorexia in WT animals with a further stimulation of food intake. Thus, we propose that this
inhibition of food intake may be due to activation of the MC4R, which has moderate affinity
for this compound (EC50 = 100 nM). Central and peripheral injections of MTII, a non-selective
agonist of the MC3R and MC4R, inhibits food intake in both WT and MC3RKO mice [4,13,
19]. This indicates that significant stimulation of the MC4R eliminates any potential orexigenic
effects of stimulating the MC3R in the arcuate nucleus. This is consistent with the idea that
the MC4R exerts its effects downstream of the arcuate POMC neurons, and that the cellular
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response to cells innervated by arcuate neurons depends on an integration of both orexigenic
and anorexigenic neural inputs [9].

4.4. Conclusions
We have shown that peripheral injections of D-Trp8-γ-MSH, a potent and selective
melanocortin-3 agonist, can stimulate food intake in mice. These data provide physiological
support for the hypothesis that one role of the MC3R is to act as an inhibitory autoreceptor in
POMC neurons. Compounds with orexigenic activity are known to improve the quality of life
of individuals affected with involuntary weight loss due to chronic disease [22]. Our own
studies have demonstrated that many features of experimental cachexia can be attenuated by
blocking melanocortin signaling [28]. Thus, these data also provide a potential therapeutic
target for this debilitating disorder of energy homeostasis.
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Fig. 1.
Feeding response to peripheral injection of D-Trp8-γ-MSH. Animals were injected with doses
ranging from 0.005–500 mcg i.p. (n = 10 per group) and food consumption at 2, 4, 6, 12 and
24 h was measured (dark bars). The experiment was repeated on the following day with all
groups re-randomized to treatment (open bars). The difference between groups was significant
when the 5 mcg group was compared with all other groups at 2 and 4 h. The data for cumulative
food intake at 4 h is shown (*p < 0.05).
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Fig. 2.
Feeding response to peripheral injection of 5 mcg of D-Trp8-γ-MSH. Groups of WT animals
(n = 15) were injected with saline for 3 days, followed by an injection of 5mcg D-Trp8-γ-MSH
or saline control with food intake measured 4 h later (days 4–6 (*p < 0.05)).
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Fig. 3.
Nocturnal feeding response to peripheral injection of 5 mcg of D-Trp8-γ-MSH at 1800 h. Groups
of WT animals (n = 15) were injected with saline for 3 days (1800 h), followed on the
experimental day by an injection of 5 mcg D-Trp8-γ-MSH or saline control at 1800 h (*p <
0.05).
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Fig. 4.
Feeding response to peripheral injection of high dose D-Trp8-γ-MSH in WT and MC4RKO
animals. Groups of MC4RKO mice (n = 14) or WT controls (saline n = 20, D-Trp8-γ-MSH n
= 20) were injected with saline on at 0800 days 1–3, followed by test compound on day 4. Food
intake was measured at 2, 4, 6 and 12 h after injection (ANOVA p < 0.01 at 0–2 and 2–4 h
intervals; *p < 0.05, **p < 0.001 vs. WT saline; #p < 0.01 vs. KO 50 mcg D-Trp8).
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Fig. 5.
Four-hour cumulative feeding response to peripheral injection of D-Trp8-γ-MSH in WT and
MC4RKO animals. (ANOVA p < 0.001 for treatment, post hoc *p < 0.05, **p < 0.001).
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Fig. 6.
Feeding response to peripheral injection of D-Trp8-γ-MSH in WT and MC3RKO animals.
Groups of MC3RKO mice and WT controls (n = 10) were injected i.p. with saline at 0700 h
on days 1–3. On the fourth day, all animals were injected with 5 mcg if D-Trp8-γ-MSH at 0700
h, and food intake was measured 2, 4 and 6 h later. In this case, significant stimulation of
feeding was observed only in the WT animal, whereas no stimulation of feeding was observed
in the MC3RKO (ANOVA p < 0.01).
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