Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Sep;62(9):3333–3338. doi: 10.1128/aem.62.9.3333-3338.1996

Recombinant Rhizobium meliloti strains with extra biotin synthesis capability.

W R Streit 1, D A Phillips 1
PMCID: PMC168129  PMID: 8795223

Abstract

The growth of Rhizobium meliloti 1021 in an experimental alfalfa (Medicago sativa L.) rhizosphere was stimulated by adding nanomolar amounts of biotin. To overcome this biotin limitation, R. meliloti strains were constructed by conjugating the Escherichia coli biotin synthesis operon into biotin auxotroph R. meliloti 1021-B3. Transconjugant strains Rm1021-WS10 and Rm1021-WS11 grew faster in vitro and achieved a higher cell density than did R. meliloti 1021 and overproduced biotin on a defined medium. The increase in cell yield was associated with as much as a 99% loss in viability for Rm1021-WS11, but data suggested that a separate stabilizing factor in the E. coli DNA reduced cell death in Rm1021-WS10. In rhizosphere tests, the recombinant strains showed delayed growth and competed poorly against Rm1021.

Full Text

The Full Text of this article is available as a PDF (296.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beattie G. A., Handelsman J. Evaluation of a strategy for identifying nodulation competitiveness genes in Rhizobium leguminosarum biovar phaseoli. J Gen Microbiol. 1993 Mar;139(3):529–538. doi: 10.1099/00221287-139-3-529. [DOI] [PubMed] [Google Scholar]
  2. Bosworth A. H., Williams M. K., Albrecht K. A., Kwiatkowski R., Beynon J., Hankinson T. R., Ronson C. W., Cannon F., Wacek T. J., Triplett E. W. Alfalfa yield response to inoculation with recombinant strains of Rhizobium meliloti with an extra copy of dctABD and/or modified nifA expression. Appl Environ Microbiol. 1994 Oct;60(10):3815–3832. doi: 10.1128/aem.60.10.3815-3832.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown S. W., Speck D., Sabatié J., Gloeckler R., O'Regan M., Viret J. F., Lemoine Y., Ohsawa I., Kisou T., Hayakawa K. The production of biotin by recombinant strains of Escherichia coli. J Chem Technol Biotechnol. 1991;50(1):115–121. doi: 10.1002/jctb.280500114. [DOI] [PubMed] [Google Scholar]
  4. Chang Y. S., Wu C. H., Chang R. J., Shiuan D. Determination of biotin concentration by a competitive enzyme-linked immunosorbent assay (ELISA) method. J Biochem Biophys Methods. 1994 Dec;29(3-4):321–329. doi: 10.1016/0165-022x(94)90042-6. [DOI] [PubMed] [Google Scholar]
  5. Cronan J. E., Jr The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell. 1989 Aug 11;58(3):427–429. doi: 10.1016/0092-8674(89)90421-2. [DOI] [PubMed] [Google Scholar]
  6. Fenton A. M., Stephens P. M., Crowley J., O'Callaghan M., O'Gara F. Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Appl Environ Microbiol. 1992 Dec;58(12):3873–3878. doi: 10.1128/aem.58.12.3873-3878.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Figurski D. H., Helinski D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. doi: 10.1073/pnas.76.4.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ifuku O., Koga N., Haze S., Kishimoto J., Arai T., Wachi Y. Molecular analysis of growth inhibition caused by overexpression of the biotin operon in Escherichia coli. Biosci Biotechnol Biochem. 1995 Feb;59(2):184–189. doi: 10.1271/bbb.59.184. [DOI] [PubMed] [Google Scholar]
  9. Mazzola M., Cook R. J., Thomashow L. S., Weller D. M., Pierson L. S., 3rd Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol. 1992 Aug;58(8):2616–2624. doi: 10.1128/aem.58.8.2616-2624.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Meade H. M., Long S. R., Ruvkun G. B., Brown S. E., Ausubel F. M. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol. 1982 Jan;149(1):114–122. doi: 10.1128/jb.149.1.114-122.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. O'Sullivan D. J., O'Gara F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev. 1992 Dec;56(4):662–676. doi: 10.1128/mr.56.4.662-676.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. O'flaherty S., Moenne-Loccoz Y., Boesten B., Higgins P., Dowling D. N., Condon S., O'gara F. Greenhouse and Field Evaluations of an Autoselective System Based on an Essential Thymidylate Synthase Gene for Improved Maintenance of Plasmid Vectors in Modified Rhizobium meliloti. Appl Environ Microbiol. 1995 Nov;61(11):4051–4056. doi: 10.1128/aem.61.11.4051-4056.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Otsuka A. J., Buoncristiani M. R., Howard P. K., Flamm J., Johnson C., Yamamoto R., Uchida K., Cook C., Ruppert J., Matsuzaki J. The Escherichia coli biotin biosynthetic enzyme sequences predicted from the nucleotide sequence of the bio operon. J Biol Chem. 1988 Dec 25;263(36):19577–19585. [PubMed] [Google Scholar]
  14. Paau A. S. Improvement of Rhizobium inoculants. Appl Environ Microbiol. 1989 Apr;55(4):862–865. doi: 10.1128/aem.55.4.862-865.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sabatié J., Speck D., Reymund J., Hebert C., Caussin L., Weltin D., Gloeckler R., O'Regan M., Bernard S., Ledoux C. Biotin formation by recombinant strains of Escherichia coli: influence of the host physiology. J Biotechnol. 1991 Aug;20(1):29–49. doi: 10.1016/0168-1656(91)90033-r. [DOI] [PubMed] [Google Scholar]
  16. Sakurai N., Imai Y., Masuda M., Komatsubara S., Tosa T. Molecular breeding of a biotin-hyperproducing Serratia marcescens strain. Appl Environ Microbiol. 1993 Oct;59(10):3225–3232. doi: 10.1128/aem.59.10.3225-3232.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Staskawicz B., Dahlbeck D., Keen N., Napoli C. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol. 1987 Dec;169(12):5789–5794. doi: 10.1128/jb.169.12.5789-5794.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Streit W. R., Joseph C. M., Phillips D. A. Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact. 1996 Jul;9(5):330–338. doi: 10.1094/mpmi-9-0330. [DOI] [PubMed] [Google Scholar]
  19. Triplett E. W., Barta T. M. Trifolitoxin Production and Nodulation Are Necessary for the Expression of Superior Nodulation Competitiveness by Rhizobium leguminosarum bv. trifolii Strain T24 on Clover. Plant Physiol. 1987 Oct;85(2):335–342. doi: 10.1104/pp.85.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Triplett E. W., Sadowsky M. J. Genetics of competition for nodulation of legumes. Annu Rev Microbiol. 1992;46:399–428. doi: 10.1146/annurev.mi.46.100192.002151. [DOI] [PubMed] [Google Scholar]
  21. West P. M., Wilson P. W. Growth Factor Requirements of the Root Nodule Bacteria. J Bacteriol. 1939 Feb;37(2):161–185. doi: 10.1128/jb.37.2.161-185.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES