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The formation and regulation of macromolecular com-
plexes provides the backbone of most cellular processes,
including gene regulation and signal transduction. The
inherent complexity of assembling macromolecular struc-
tures makes current computational methods strongly
limited for understanding how the physical interactions
between cellular components give rise to systemic proper-
ties of cells. Here, we present a stochastic approach to study
the dynamics of networks formed by macromolecular
complexes in terms of the molecular interactions of their
components. Exploiting key thermodynamic concepts, this
approach makes it possible to both estimate reaction rates
and incorporate the resulting assembly dynamics into the
stochastic kinetics of cellular networks. As prototype
systems, we consider the lac operon and phage k induction
switches, which rely on the formation of DNA loops by
proteins and on the integration of these protein–DNA
complexes into intracellular networks. This cross-scale
approach offers an effective starting point to move forward
from network diagrams, such as those of protein–protein
and DNA–protein interaction networks, to the actual
dynamics of cellular processes.
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Introduction

Cells consist of thousands of different molecular species that
orchestrate their interactions to form extremely reliable
functional units (Hartwell et al, 1999). Such molecular
diversity and the pervasive ability of cellular components to
establish multiple simultaneous interactions typically lead
to the formation of large heterogeneous macromolecular
assemblies, also known as complexes (Pawson and Nash,

2003). These complexes form the backbone of the most funda-
mental cellular processes, including gene regulation and
signal transduction. Important examples are the assembly of
the eukaryotic transcriptional machinery (Roeder, 1998), with
about hundred components, and the formation of signaling
complexes (Bray, 1998), with tens of different molecular
species.

One of the main challenges facing modern biology is to
move forward from the reductionist approach into the
systemic properties of biological systems (Alon, 2003). A
major goal is to understand how the dynamics of cellular
processes emerges from the interactions among the different
molecular components. Typical computational approaches
approximate cellular processes by networks of chemical
reactions between different molecular species (Endy and
Brent, 2001). A strong barrier to this type of approaches is
the inherent complexity of macromolecular complex forma-
tion. Complexes are typically made of smaller building blocks
with a modular organization that can be combined in a
number of different ways (Pawson and Nash, 2003). The result
of each combination is a specific molecular species and should
be considered explicitly in a chemical reaction description.
Therefore, there are potentially as many reactions as the
number of possible ways of arranging the different elements,
which grows exponentially with the number of the constituent
elements. Twenty components, for instance, already give rise
to over a million of possible species.

Two main types of avenues have been followed to tackle the
exponential growth of the number of molecular species that
arise during macromolecular assembly. One is based on
computer programs that generate reaction rate equations for
all of the macromolecular species (Bray and Lay, 1997). The
other generates the different species dynamically (Morton-
Firth and Bray, 1998; Lok and Brent, 2005). Yet, none of the
existing methods provides a consistent way to estimate the
reaction rates. This obstacle is remarkable because the poten-
tial number of rates is even higher than the number of possible
complexes. As a result, those methods often lead to unrealistic
situations, such as the formation of polymeric complexes that
do not exist under physiological conditions, which has been
noted explicitly as intriguing caveats of the existing method-
ologies (Bray and Lay, 1997; Lok and Brent, 2005).

Here, we review the thermodynamic concepts under-
lying macromolecular complex assembly and examine how
they can be used to both derive the dynamics of complex
formation and estimate the transition rates needed to build
a faithful computational model. The resulting stochastic
approach does not give rise to the formation of unrealistic
complexes and addresses the exponential growth of the
number of species by stochastically exploring the set of
representative complexes. In this way, it brings the properties
of macromolecular interactions across scales up to the
dynamics of cellular networks. To illustrate the applicability
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of this approach, we focus on DNA–protein complexes and
their integration in gene regulatory networks. We consider as
prototype systems the induction switches in the lac operon
(Müller-Hill, 1996) and phage l (Ptashne, 2004), the two
systems that led to the discovery of gene regulation (Jacob and
Monod, 1961).

Representation of macromolecular
complexes

A crucial aspect is to use a description for macromolecular
complexes that can capture the underlying complexity
in simple terms. It is possible to take advantage of the fact
that macromolecular complexes have typically unambiguous
structures, where only certain molecular species can occupy
a given position within the complex. In such cases, the specific
configuration or state of the macromolecular complex can be
described by a set of M variables, denoted by s¼(s1,ysi,ysM),
whose values indicate whether a particular molecular compo-
nent is present or not at a specific position. We chose si¼1 to
indicate that the component is present and si¼0 to indicate that
it is not present (Figure 1A). With this description, the
potential number of specific complexes is 2M and the number
of reactions 1

22
M(2M�1)E22M�1.

The use of binary variables provides a concise method to
describe all the potential complexes without explicitly enumer-
ating them. This type of approach has been used in a wide range
of interesting biological situations, such as diverse allosteric
processes (Bray and Duke, 2004), binding of molecules to
a substrate (Keating and Di Cera, 1993; Di Cera, 1995), binding

of multistate proteins to receptor docking sites (Borisov
et al, 2005), and signaling through clusters of receptors
(Bray et al, 1998; Duke and Bray, 1999). In practice, current
binary-variable approaches have strong limitations to tackle
the assembly of macromolecular complexes. On the one
hand, there are combinations of variables that do not have
a physical existence. Explicitly, if a component that bridges
two disconnected parts of the complex is missing, then the
complex does not exist and if two components occupy the
same position, they cannot be present within the complex
simultaneously. On the other hand, the structure of the
complex does not have to remain fixed. A complex can have
different conformations and the components can be present in
several states with different properties. None of the existing
approaches based on binary variables incorporates all these
key features needed to study macromolecular complex
formation. In the following section, we exploit the underlying
thermodynamics to put forward a binary description appli-
cable to macromolecular assembly.

Thermodynamics of assembly

Thermodynamics allows for a straightforward connection
of the binary description with the molecular properties of
the system. Each configuration of the macromolecular com-
plex has a corresponding free energy, which is a quantity
that indicates the tendency of the system to change its state.
Transformations that decrease the free energy of the system
are favored over those that increase it; that is, the tendency
of the system is to evolve towards the lowest free energy
minimum.

The statistical interpretation of thermodynamics (Gibbs,
1902; Hill, 1960) connects the equilibrium probability Ps of
state s with its free energy DG(s) through the expression

Ps ¼
1

Z
e�DGðsÞ=RT;

where Z¼
P

s e�DG(s)/RT is the normalization factor and RT
is the gas constant times the absolute temperature (RTE
0.6 kcal/mol for typical experimental conditions).

One crucial aspect is that the free energy of any given
configuration, s¼(s1,y,siy,sM), can be obtained to any
degree of accuracy by expanding the free energy in powers of
the binary variables:

DGðsÞ ¼DGð0Þ þ
XM

i¼1

DGisi þ
XM�1

i¼1

XM

j¼iþ1

DGijsisj

þ
XM�2

i¼1

XM�1

j¼iþ1

XM

k¼jþ1

DGijksisjsk þ � � �

The first term on the right-hand side of the equation is the
free energy of the empty complex, when none of their
components is present, and it serves as a reference free
energy; the second term takes into account the energetic cost
of placing each element in the complex; the third term
accounts for the pairwise interactions between elements; the
fourth term accounts for interactions that need a third element
to take place; and higher order terms, not shown in the
equation, account for interactions that take place only when
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Figure 1 Representation and thermodynamics of macromolecular
assembly. (A) An example of a macromolecular complex in one of eight
possible states is used as illustration of the binary description. The complex
consists of three molecular positions A, B, and C, described by binary variables
sA, sB, and sC, respectively. In this case, A and C are occupied (gray shapes)
and B is unoccupied (white shape with dashed contour). Red lines represent
pairwise interactions between the components. This description can easily be
connected to the thermodynamic properties of different configurations. Here, the
free energy DGo for the configurations and their contributions are expressed in
units of kcal/mol. The positional and interaction free energies are assumed to be
15 and �20, respectively. Note that the description refers to a three-molecule
complex at a specific location. If, instead, one molecule is used as a reference,
its positional free energy should not be counted. The free energy of the dis-
connected configuration (B) is much higher than the free energy of the
connected configuration (C). These energetic considerations indicate that the
disconnected configuration is extremely less abundant than the connected one.
The stability of a compact structure (D) is considerably higher than that of a
chain-like structure (C) because of the additional free energy of interaction.
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multiple elements are present. This expansion can be stopped
at any degree of complexity. Typical network diagrams, such
as those of protein–protein interactions, represent only up
to pairwise interactions (the first three terms). The main
advantage of this expansion is that the 2M free energies needed
to characterize all the possible configurations can be obtained
from a much smaller subset.

In order to connect the lower terms of this expansion directly
with experimental data, the most important piece of informa-
tion is that the free energy of binding, DGbind, between two
elements can be decomposed into two main contributions
(Vilar and Saiz, 2005):

DGbind ¼ DGpos þ DGint :

One of them, the interaction free energy DGint, arises
from the interactions between the two molecules, such as
electrostatic, hydrophobic and Van der Waals interactions
(Honig and Nicholls, 1995). The other, the positional free
energy DGpos, results from positioning the molecules in the
right place and orientation so that they can interact and it
accounts, among other potential contributions, for the loss
of translational and rotational entropy upon binding (Page and
Jencks, 1971).

The expression for the positional free energy can be written
as

DGpos ¼ DGo
pos � RT ln½N�;

where the quantity DGpos
o is the molar positional free energy

and [N] is the concentration expressed in moles (DGpos¼DGpos
o ,

for [N]¼1 M). In general, the free energy of binding depends on
the concentrations of the different components through the
positional free energy, DGpos.

Typical values of the molar positional free energy are
DGpos

o E15 kcal/mol (Finkelstein and Janin, 1989). This value
has been computed theoretically and measured experimen-
tally for simple molecules (Page and Jencks, 1971; Finkelstein
and Janin, 1989). For complex proteins, it might differ slightly.
For instance, for the binding of AChE-Fas2, it has been esti-
mated to be 9 kcal/mol (Minh et al, 2005). Such high values
of the positional free energy indicate that if the free energy
of interaction is zero, the state in which two molecules are
as close as if they were bound is extremely unlikely. Even small
values of binding free energies, such as DGbind

o E�2 kcal/mol,
would imply considerably high interaction free energies, such
as DGintE�17 kcal/mol (assuming DGpos

o E15 kcal/mol). This
is a crucial point in order to properly account for disconnected
complexes. If the bridging element is missing, there is a
missing positional free energy term and two missing inter-
action free energy terms (Figure 1B and C). Thus, the free
energy of the disconnected complex (Figure 1B) is much
higher than that of the connected one (Figure 1C), which
indicates that the disconnected complex is extremely less
abundant than the connected one under physiological condi-
tions. The contribution of the positional free energy is also
essential to avoid the presence of spurious polymeric
complexes. A compact complex (Figure 1D) will have addi-
tional free energies of interaction compared to the chain-like
one (Figure 1C), which will render it much more stable than

the polymeric chain. Finally, when two elements cannot be
present in the same position at the same time, with this
approach their interaction energy is infinitely large and the
complex does not exist in practice.

The term
P

i¼1
M�1P

j¼iþ 1
M DGijsisj accounts, among others,

for interactions between components of the complex that
have a multidomain structure, where domains interact in a
pairwise manner with each other. In general, as we show
in detail in the examples below, one should also consider
the conformational free energy that accounts for the struc-
tural changes needed to accommodate multiple simulta-
neous interactions. This type of interactions requires higher
order terms in the free energy expansion, such asP

i¼1
M�2P

j¼iþ 1
M�1 P

k¼jþ 1
M DGijksisjsk.

All these thermodynamic concepts blend naturally into
a binary-variable description to provide an approach that
incorporates the key elements needed for studying macro-
molecular complex assembly, such as avoiding the formation
of unrealistic polymeric complexes, taking into account dis-
connected complexes, considering conformational changes,
and incorporating mediated or multicomponent interactions.

The explicit way in which the thermodynamic approach is
applied depends on the degree of characterization of the
system. In the best-case scenario, all the required free energies
are known and the behavior of the system can be predicted
straightforwardly in full detail. If a few free energies are
missing, it is possible to build a model based on the known
interactions and obtain the unknown free energies by
‘reversing the model’ (Vilar and Leibler, 2003). The resulting
free energies can then be used in new situations. This type of
approach has been used, for instance, to infer for the first time
the in vivo free energies of looping DNA by the lac repressor as
a function of the length of the loop (Saiz et al, 2005). It is also
possible to use available sophisticated software packages to
compute free energies from the known structures (Honig and
Nicholls, 1995; Baker et al, 2001). Such sophistication has not
been achieved yet for computing reaction rates. On the other
hand, when a substantial amount of information is missing,
one can postulate interactions and use a thermodynamic
approach to explore the potential types of behavior. In general,
the thermodynamic approach needs quantitative inputs, but
the requirements are much less stringent than those of other
quantitative approaches based on chemical reactions.

Applications: making networks out
of complexes and vice versa

The formation of DNA loops by proteins and protein
complexes in the regulation of the lac operon and phage l
provides challenging examples to illustrate the applicability of
this approach. Full understating of these two genetic systems
requires the use of thermodynamic concepts not considered
by current methods to study macromolecular assembly. These
concepts are essential to tackle more complex situations, such
as gene regulation in eukaryotes, which relies widely on DNA
looping to implement action at a distance from regulatory
elements that are far away from the promoter region (Roeder,
2003; Yasmin et al, 2004). In particular, decomposition of
the free energy into interaction, positional, and conforma-
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tional contributions is crucial for understanding how weak
distal DNA binding sites can strongly affect transcription
(Vilar and Leibler, 2003) and how proteins that do not
oligomerize in solution do so on DNA to form DNA loops
(Revet et al, 1999; Dodd et al, 2001; Vilar and Saiz, 2005).
Hereafter, to simplify the notation, we will refer to positional,
interaction, and conformational free energies by p, e, and c,
respectively.

One remarkable aspect of our approach is that the binary-
variable method we propose has an equivalent representation
in terms of network diagrams, in which nodes indicate
whether or not a component or molecular conformation is
present and links represent the interactions among compo-
nents and molecular conformations. These networks can be
directly mapped to the underlying macromolecular structure
of the complexes and their properties, as illustrated in
detail below for the cases of DNA looping in the lac operon
and phage l.

The resulting networks strikingly resemble the under-
lying molecular structures because nodes are associated with
properties of the components, which have a determined
arrangement in space. In this type of interaction networks,
the whole network specifies a single state of the system, in
the same way as a state of the macromolecular assembly is
specified by indicating where each component is within the
complex. This component-oriented description allows for a
representation that is not affected by the exponential explo-
sion in the number of states as the number of components
increases.

In other widely used quantitative methods with network
representations, like Markov Chains, each node represents a
state of the system and therefore there are as many nodes in the
network as potential states. In those state-oriented networks,
only one node is occupied at a time and the behavior of the
system is represented by a series of jumps from one node to
another. In our case, several nodes can be occupied simulta-
neously and the behavior of the system is given by the
sequence of changes in occupancy. In Figure 2, we compare a
general interaction network representation for a three-compo-
nent complex with the graphical representation of a Markov
Chain for the same system. The number of nodes in the
interaction network is the same as the number of components.
In the Markov Chain network, in contrast, the number of
nodes is 2 to the number of components.

There are also qualitative graphical representations, like
‘Molecular Interaction Maps’ (Kohn et al, 2006) and ‘process
diagrams’ (Kitano et al, 2005), which aim at describing
many types of cellular and biochemical processes that extend
beyond macromolecular assembly. They can be translated into
computational models, but how to perform that translation
is not given explicitly by the representation and typically
depends on the details of the processes involved. As a result,
although the representation itself might not be affected by
an exponential increase in the number of states (Kohn
et al, 2006), the resulting mathematical description might
be susceptible to this problem. A key difference with our
approach is therefore that our representation gives straight-
forwardly the precise quantitative behavior of the system from
its equivalence with the equations that describe the macro-
molecular assembly.

This avenue for incorporating binary variables with thermo-
dynamics also presents important differences with the way in
which thermodynamic concepts have been used so far in
macromolecular assembly. Thermodynamic concepts applied
to gene regulation were pioneered by Shea and Ackers (Ackers
et al, 1982; Shea and Ackers, 1985) and subsequently used in a
variety of situations (Vilar and Leibler, 2003; Bintu et al, 2005;
Vilar and Saiz, 2005). In the traditional framework, the
probability for the system to be in a state k is given by

Pk ¼ 1

Z
½N�jk e�DGo

k
=RT;

where DGk
o is the standard (molar) free energy of the state

k, jk is the number of molecules bound in the state k, and
Z ¼

P
k ½N�jke�DGo

k
=RT is the normalization factor (Hill, 1960).

The summation is taken over all the states. Thus, to describe
the system with the traditional approach one has to give the
standard free energy for each state as well as the number of
molecules bound. Typically, this is done in the form of a table,
which has as many entries as the number of states of the
system. Thus, for a system with three components, there is
a table with eight entries for the standard free energy and
another eight for the number of molecules.

In the approach we have proposed, there is a simple
formula that accounts for the free energy of all the states, and
the resulting expressions have a compact form amenable
to computational and mathematical manipulations. As we
show in the following sections, this approach brings forward
explicitly the connection between macromolecular structure
and function and its integration into the biochemical dynamics
of cellular networks.
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Figure 2 Interaction networks. The state and properties of the
macromolecular structure can be described by an interaction network. Nodes
(big gray circles) in the interaction network represent whether or not a component
is present. Small black circles are joined to nodes and represent interactions
between the elements they join. Labels associated with black circles indicate
the contributions to the free energy arising when all the nodes they are linked to
are occupied. This graphical representation is equivalent to the mathematical
expression of the free energy in terms of binary variables. For the network shown
here, the free energy of a state s¼(sA,sB,sC) is given by DG(s)¼
p(sA þ sBþ sC)þ eABsAsBþ eBCsBsC þ eCAsCsA, where p is the positional
free energy and eAB, eBC, and eCA are the interaction free energies between the
different components. Instantiating all the possible values of the state variable s
leads to eight states, which have a Markov Chain (Norris, 1997) graphical
representation in which nodes indicate each specific state sAsBsC of the complex
and arrows indicate transitions from one state to another. Only transitions in
which a component gets in or out of the complex are displayed here.
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The lac operon

The lac operon consists of a regulatory domain and three genes
required for the uptake and catabolism of lactose (Müller-Hill,
1996). Its main regulator is the lac repressor, which can bind to
DNA at the main operator site O1, thus preventing transcrip-
tion of the genes, and to an auxiliary operator (O2 or O3) by
looping the intervening DNA.

For a system with two operators (O1 and O2), the lac
repressor–DNA complex (Lewis et al, 1996) can be in five
representative states (Vilar and Leibler, 2003): (i) none of the
operators is occupied, (ii) a repressor is bound to just the
auxiliary operator, (iii) a repressor is bound to just the main
operator, (iv) a repressor is bound to both the main and
the auxiliary operators by looping the intervening DNA, and
(v) one repressor is bound to the main operator and another
repressor, to the auxiliary operator.

We can express the free energy of all these states in a
compact form in terms of binary variables:

DGðsÞ ¼DGð0Þ þ pðs1 þ s2Þ þ pDNAsDNA

þ ðe1s1 þ e2s2ÞsDNA þ ðcL � ps1s2ÞsLsDNA;

where s1 and s2 are the binary variables that indicate whether
(si¼1, for i¼1, 2) or not (si¼0, for i¼1, 2) the repressor is
bound to O1 and O2, respectively; sDNA indicates the presence
(sDNA¼1) or absence (sDNA¼0) of DNA; and sL is a variable that
indicates the molecular conformation of DNA, either looped
(sL¼1) or unlooped (sL¼0). The quantities p and pDNA are the
positional free energies of the repressor and DNA, respectively;
e1 and e2, the interaction free energy between the repressor
and O1 and O2, respectively; and cL, the conformational
free energy of looping DNA. DG(0) is the free energy of the
reference state in which there is no repressor, DNA, or DNA
looping (all the binary variables are zero).

We are interested in the binding of the repressor to DNA and
therefore DNA is always present (sDNA¼1), which simplifies
the description to just three binary variables:

DGðsÞ ¼ ðp þ e1Þs1 þ ðp þ e2Þs2 þ ðcL � ps1s2ÞsL;

where we have chosen DG(0)¼�pDNA so that the reference
free energy is equal to zero when no repressor is bound
and there is no DNA looping. The network representation
of the lac repressor–DNA assembly with the three binary
variables (Figure 3A) has a close connection with the under-
lying molecular structural properties (Figure 3B), in such a way
that, given the structural arrangement of a complex, our
approach provides a straightforward avenue to obtain a network
representation with an associated thermodynamic description.
Explicitly, each node in the interaction network corresponds
to a binary variable in the equation for the free energy.

The decomposition of the free energy in its different contri-
butions (positional, interaction, and conformational) becomes
crucial to perform an expansion in terms of binary variables.
From the statistical thermodynamics point of view, the binding
of the repressor to two operators has only five relevant states
(i–v). With the binary description of the state of the complex,
there are three variables and therefore 23¼8 states. These
two descriptions are in fact equivalent because three of the
eight states in the binary description have significantly high
free energies, that is, extremely low probabilities, which for

practical purposes makes them irrelevant (see Figure 3C). The
high free energies arise because for these states positional and
conformational free energies are not balanced by interaction
free energies.

This approach can naturally be used to study the conse-
quences that DNA looping has in gene regulation. In the
lac operon, transcription takes place only when the main
operator O1 is free; that is, when the binary variable s1 is zero.
Thus, the transcription rate, t, is proportional to the average
value of 1 minus s1:

t ¼ 1

Z

X

s

tmaxð1 � s1Þe�DGðsÞ=RT;

where tmax is the maximum transcription rate. This model
shows a precise agreement with experiments (Oehler et al,
1994) over the three orders of magnitude of the measured
repression levels (Figure 3D). The specific form that DNA
looping confers to the repression level as a function of
the repressor concentration has two notable characteristics.
The repression level has both a significantly high value and
a relatively flat profile around physiological lac repressor
concentrations (B15 nM). Both properties have important
general consequences for the underlying microbiochemistry
of the cell. If concentrations of the different molecular species
are kept low to prevent nonspecific interactions, not only is
the binding to the specific sites decreased but also fluctuations
are expected to become important (Elowitz et al, 2002;
Paulsson, 2004; Rosenfeld et al, 2005). In the case of the
lac operon, the average number of repressors per cell is very
low, around 10, and, because of this low value, is expected to
fluctuate strongly from cell to cell. The effects of DNA looping,
as exemplified by the repression level, not only increase
specificity and affinity of the lac repressor for the main
operator but, at the same time, also make transcription fairly
insensitive to fluctuations in the number of repressors.

We can address a more general situation, which includes the
binding of different molecular species at identical positions
within the complex. To illustrate this possibility, we consider
the case of mutant lac repressors that do not tetramerize
(Oehler et al, 1990). In its dimeric form, the lac repressor has
just a single DNA-binding domain and thus cannot loop DNA.
In this case, the free energy is given by DG(s)¼(pdþ e1)s1dþ
(pdþ e2)s2d, where pd is the positional free energy of the
dimeric lac repressor and s1d and s2d are the two binary
variables that account for its binding to O1 and O2,
respectively. If this mutant repressor is expressed together
with the wild-type (WT) lac repressor, it will compete for the
binding to the operator sites and the free energy will be given
by the sum of the free energies for WT and mutant repressors
plus a contribution accounting for the interaction between the
two types of repressors:

DGðsÞ ¼ðp þ e1Þs1 þ ðp þ e2Þs2 þ ðcL � ps1s2ÞsL

þ ðpd þ e1Þs1d þ ðpd þ e2Þs2d þ1ðs1s1d þ s2s2dÞ:

The term N(s1s1dþ s2s2d) introduces an infinite free energy
of interaction when the two types of repressors are bound to
the same operator simultaneously, thus making the probability
of such states zero. The five-binary-variable description of the
WT and mutant lac repressor–DNA complex formation is a
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straightforward extension of the one for just WT lac repressor.
This example clearly illustrates how it is possible to use our
approach to add complexity without escalating into an
exponentially growing description.

Phage k
The genetic regulation of phage l provides an explicit example
in which the DNA loop is formed not by a single protein, as in
the lac operon, but by a protein complex that is assembled on
DNA as the loop forms. The lysogenic to lytic switch in phage l-
infected Escherichia coli lysogens is controlled at two operators
in the phage DNA. These two operators, known as the left,
OL, and right, OR, operators, are located 2.4 kb away from
one another. Each of them has a tandem of three DNA sites
where phage l cI repressors can bind as dimers (cI2): r1, r2,
and r3 for the right operator, and l1, l2, and l3 for the left
operator. Two cI dimers bound to r1 and r2 on the right

operator can form an octamer with two cI dimers bound to
l1 and l2 on the left operator by looping the intervening DNA.

Stability of the E. coli lysogens is accomplished by
repression of transcription by the phage l cI repressor of
the cro gene at the Pr promoter and regulation of its own
transcription at the Prm promoter. Explicitly, binding of cI
repressor dimers to r2, when r3 is vacant, activates its own
transcription. When r3 is occupied, cI transcription is turned
off. For a long time, one of the main puzzles in the regulation of
phage l was that the strength of r3 was too weak for it to be
occupied by cI2 at the observed physiological concentrations
(Ptashne, 2004). The missing element was that the formation
of the DNA loop by the octamerization of the cI repressor
dimers bound at r1, r2, l1, and l2 can bring l3 close to r3 so that
the cI repressor can bind cooperatively as a tetramer to these
two sites even though they are B2.4 kb apart.

Modeling of this system already gets close to the limits
of the traditional thermodynamic approach. The number of
states is 128, which accounts for all the combinations
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Figure 3 Repressor–DNA assembly and gene regulation in the lac operon. (A) The lac repressor’s binding to DNA can be described by a network of
interacting binary elements. Gray circles represent the two DNA-binding domains of the lac repressor bound at the DNA sites O1 (1) and O2 (2) and the lines and black
small circles represent interactions. The gray polyhedron represents whether or not DNA is looped (L). DG(s) is the expression of the free energy of the complex in terms
of the binary variables. (B) The cartoon illustrates the lac repressor (green) bound to looped DNA (orange), with the circles and the polyhedron indicating the repressor–
operator DNA binding sites and the DNA loop, respectively. The binary variables, s1 and s2, are 1 if the corresponding repressor–operator interaction takes place and are
0 otherwise. Contributions to the free energy (in units of kcal/mol) of the complex include positional (p¼15�0.6 ln[N]; considering DGpos

o E15 (Finkelstein and Janin,
1989) and RT¼0.6) and repressor–DNA interaction (e1¼�28.1 and e2¼�26.6) terms. Here, [N] is the lac repressor concentration expressed in moles. For the looped
DNA complexes (sL¼1), there are also contributions from the cost of DNA looping (cL¼23.35) and the interaction between sites 1 and 2 mediated by DNA looping (�p).
This subtraction of a positional free energy in the looped state accounts for the fact that the simultaneously binding of a single repressor to both operator sites should
include in the free energy two interaction terms and just one positional term. The free energies used here have been obtained from Vilar and Leibler (2003). To convert
from the in vivo natural units (molecules/cell) to the more common biochemical ones (concentration), we have used 1 molecule/cell¼1.5 nM. The looping free energy
has been computed as described in the caption of Table 1 in Vilar and Saiz (2005) with DGpos

o ¼15 kcal/mol. (C) The free energies DG(s) (in kcal/mol) of the eight
different states of the macromolecular network representation of the lac operon as a function of the lac repressor concentration indicate that the free energy of three
states [s¼(0, 0, 1), (0, 1, 1), and (1, 0, 1), with s¼(s1, s2, sL)] is too high and that only the other five states play a relevant role. (D) The repression level (R) as a function
of the lac repressor concentration for one (green circles and dashed lines) and two (red squares and continuous lines) operators shows an excellent agreement with the
available experimental data. The values computed with R¼[t/tmax]

�1¼[ 1
Z

P
s(1�s1)e�DG(s)/RT]�1 (lines) are compared with the experimental data (symbols) from

Oehler et al (1994) at two repressor concentrations for three different strengths of the main operator O1.
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of occupancies of the six binding sites in either the looped
or unlooped conformations of DNA. In terms of binary
variables, however, the free energy of all the possible states
of the assembly of the cI repressor–DNA complex is concisely
described by

DGðsÞ ¼
X3

i¼1

ðp þ eriÞsri þ er23sr2sr3 þ er12sr1sr2

þ er123sr1sr2sr3 þ
X3

i¼1

ðp þ eliÞsli þ el23sl2sl3

þ el12sl1sl2 þ el123sl1sl2sl3

þ ðcL þ eTsr3sl3 þ eOsr2sl2sr1sl1ÞsL:

Here, p is the positional free energy of the cI repressor
dimers; and eri and eli, with i¼1, 2, 3, are the interaction free
energy of the cI dimer with each of its three DNA binding sites

at the right and left operators, respectively. The terms of the
type er23sr2sr3 account for the pairwise interactions of cI dimers
bound at neighboring DNA sites. The terms with three binary
variables, such as er123sr1sr2sr3, are introduced because these
pairwise interactions are affected by the binding of cI repres-
sors to the other neighboring site. The term (cLþ eTsr3sl3þ
eOsr2sl2sr1sl1)sL accounts for the effects of DNA looping. It
includes looping (cL), cI tetramerization (eT), and cI octamer-
ization (eO) contributions to the free energy. This system has a
network representation (Figure 4A) with seven binary vari-
ables that closely follows from its molecular organization
(Figure 4B). As shown here, the seven-binary-variable
description is equivalent to previous modeling of this system
using the traditional thermodynamic approach (Dodd et al,
2004).

It is important to note that the expression, er23sr2sr3þ
er12sr1sr2þ er123sr1sr2sr3, can be rewritten in the more familiar
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Figure 4 cI repressor–DNA complex formation and its effects on the activity of the Prm promoter in phage l. (A) The network representation of
phage l cI dimers binding to DNA is displayed together with (B) a cartoon of the looped configuration with six cI dimers (in green) bound to looped DNA (in orange) and
the Prm and Pr promoters. cI repressor dimers can bind to any of the three sites on the right (r1, r2, and r3) and on the left (l1, l2, and l3) operator, with positional free
energy p¼15�0.6 ln[N] kcal/mol and interaction free energies eri and eli, with i¼1, 2, 3 for the right and left operators, respectively. The values used, in kcal/mol, are
er1¼�27.7, er2¼�25.7, er3¼�25.2, el1¼�28.8, el2¼�27.1, and el3¼�27.4. In addition, if two cI dimers are bound to two consecutive sites at the right or left
operators, there is a cooperative free energy of interaction between dimers, in units of kcal/mol, of er12¼�3.0 (r1 and r2) and er23¼�3.0 (r2 and r3) (right operator) and
of el12¼�2.5 (l1 and l2) and el23¼�2.5 (l2 and l3) (left operator), represented by the lines connecting the neighboring pairs of sites. These two terms have to be
compensated in the case that there is one dimer bound to each of the three sites in the left and/or right operators. This is indicated by the line connecting the three sites at
each operator with an interaction free energy term of er123¼3.0 kcal/mol (right) and el123¼2.5 kcal/mol (left), and as the diagram indicates, this only happens when the
three binary variables are sr1¼sr2¼sr3¼1 or sl1¼sl2¼sl3¼1. The additional binary variable sL indicates whether DNA is looped, which contributes to the free energy
with cL¼21 kcal/mol (free energy of DNA looping). DNA looping can mediate interactions between the dimers bound at the left and right operators and, thus, if
sr1¼sr2¼sl1¼sl2¼1, the cI dimers at both operators can interact and form an octamer, with a contribution to the free energy of the complex of eO¼�21.5 kcal/mol, and
if sr3¼sl3¼1, the two dimers can interact and form a tetramer with an additional free energy contribution of eT¼�3.0 kcal/mol. The values of the interaction free energies
have been taken from Dodd et al (2004) and modified slightly to improve the agreement with the experimental data. The octamer interaction and looping free energies
have been chosen so that cLþ eO¼�0.5 kcal/mol and their precise value does not affect the results provided that the preceding relationship between them holds.
DG(s) is the expression of the free energy of the complex in terms of the seven binary variables. (C) The activity of the Prm promoter as a function of the cI dimer
concentration is obtained from A¼ 1

Z

P
s(tactsr2 þ tbas)(1�sr3)e�DG(s)/RT, with tbas¼45 and tact¼tactnl(1�sL)þ tactlsL, with tactnl¼420 for unlooped DNA and

tactl¼200 for looped DNA (Dodd et al, 2004). The cI2 concentration of WT lysogens, [Nlys]¼2
 10�7 M, is used as reference. The computed activities (full lines) are
compared with the experimental data (red symbols) from Dodd et al (2004) for the WT (squares) system and two other cases: one with a weak l3 binding site with
e0

l3¼�21 kcal/mol (triangles) and the other with a large free energy of looping (cL¼N), equivalent to a system with no left operator (circles).
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form: er23sr2sr3(1�sr1)þ er12sr1sr2(1�sr3)þ (er123þ er12þ er23)
sr1sr2sr3, which indicates that the free energy of the cooperative
interactions between all the cI dimers bound to the right
operator is er123þ er12þ er23. This expression explicitly reveals
er123 as the correction to the free energy arising from the effects
of a third cI dimer on the intraoperator interactions between
pairs of cI dimers and illustrates how it is possible to expand
the free energy of a given configuration, s¼(s1,ysi,ysM), in
powers of the binary variables.

In general, there is the potential for establishing multiple
loops. In the traditional approach, considering two additional
loops will increase the number of states from 128 to 256. In
our case, this extension involves adding just three terms,
(cL2þeOsr2sl3sr1sl2)sL2þ (cL3þeOsr3sl2sr2sl1)sL3þN(sLsL2þ sLsL3þ
sL2sL3), to the free energy DG(s). Here, sL2 and sL3 are the
binary variables for the two additional loops and cL2 and cL3

are the corresponding free energies of looping. For the WT
situation, the probability of having these extra loops is very
small and they do not significantly affect the behavior of the
system (Dodd et al, 2004). However, they might become
important in mutants with altered binding.

The effects of the left operator and DNA looping in the
induction switch of phage l are apparent in the transcription
rate at the Prm promoter, which depends strongly on the
occupancy of r2 and r3. There is transcription at a basal level
tbas when neither r2 nor r3 are occupied and at an activated
level tact when r2 is occupied and r3 is free. The activated
transcription rate, in turn, depends on whether (tact¼tactl) or
not (tact¼tactnl) DNA is looped (Hochschild and Ptashne,
1988). These dependences are expressed mathematically
through

t ¼ 1

Z

X

s

ððtactnlð1 � sLÞ þ tactlsLÞsr2

þ tbasÞð1 � sr3Þe�DGðsÞ=RT :

The activity of Prm as a function of the cI repressor
concentration shows a sharp maximum for WT phage DNA
and a plateau-like maximum for two mutants in which the r3
site is not occupied at WT concentrations (Figure 4C). One of
these mutants has only the right operator and the other has a
weak l3 site. The narrower maximum of WTallows for tighter
control of the cI2 concentration, whose production sharply
decreases for high concentrations. This marked decrease is the
result of the extra layer of cooperativity of binding to r3
introduced by DNA looping and has important consequences
for the kinetics of the system.

Stochastic dynamics and macromolecular
assembly networks

A relationship between the kinetics and the thermodynamic
properties of the system can be exploited to infer transition
rates. It is known as the principle of detailed balance and
results from the fact that at equilibrium the rates of going from
state s to state s0 and its inverse, from s0 to s, are the same.
Mathematically, it implies Psks-s0¼Ps0ks0-s, where P is the
probability of the state denoted by its subscript and k is
the transition rate of the processes denoted by its subscript.
This expression, together with the equilibrium values of the

probabilities, Ps/Ps0¼e�(DG(s)�DG(s0))/RT, leads to the following
relationship between the probability transition rate constants
between two states:

ks!s 0 ¼ ks 0!se
�ðDGðs 0 Þ�DGðsÞÞ=RT:

The remarkable property of this expression is that reactions
with known rates can be used to infer the rates of more
complex reactions from the equilibrium properties. For
instance, the association rate of many regulatory molecules
to different DNA sites is practically independent of the
particular DNA sequence. The dissociation rate, in contrast,
strongly depends on the sequence. In this case, knowing one
association rate can be used to obtain the dissociation rates
for different binding sites through the principle of detailed
balance. The inferred rates can then be used to study the
dynamics of the system.

The dynamics can be simplified further by following a
procedure similar to that considered previously for the free
energy: it is also possible to perform an expansion for the
kinetics of the system, but now in terms of the number of
components that can change simultaneously in a transition.
We discuss in detail the case in which only one component can
change at a given time: either the component gets into or out of
the complex. For each component i, we can define on (kon

i ) and
off (koff

i ) rates for the ‘association’ and ‘dissociation’ rates,
respectively, which in principle will depend on the pre- and
post-transition states of the complex.

The explicit dynamics can be obtained by considering the
change in binary variables as reactions

si ! ð1 � siÞ

with rates

ri ¼ ð1 � siÞki
onðsÞ þ sik

i
offðsÞ:

The reaction changes the variable si to 1 when it is 0 and to 0
when it is 1, representing that the element gets into or out of
the complex. The mathematical expression of the transition
rate reduces to kon

i when the element is outside the complex
(si¼0) and to koff

i when the element is inside the complex
(si¼1). Typically, the on rate does not depend as strongly on
the state of the complex as the off rate. The on rate is essentially
the rate of transferring the component from solution to the
complex. The off rate, in contrast, depends exponentially on
the free energy. The principle of detailed balance can be used
to obtain the off rates from the on rates:

ki
offðsÞ ¼ ki

one�ðDGðs 0Þ�DGðsÞÞ=RT:

These remarkably compact expressions for the transition
rates between different states of the complex can be considered
together with other reactions that affect or depend on the state
of the complex. In this way, it is possible to integrate the
stochastic dynamics of macromolecular assembly into net-
works of chemical reactions and move the effects of macro-
molecular assembly up to the properties of cellular processes.
The stochastic dynamics of the resulting networks of reactions
and transitions can then be obtained with well-established
Monte-Carlo algorithms (Bortz et al, 1975; Gillespie, 1976).
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Phage k cI repressor self-regulation

We illustrate the integration of macromolecular assembly into
the dynamics of cellular processes through the kinetics of
phage l cI repressor’s self-regulation feedback. The traditional
approach to simulate the dynamics of this system would have
to consider all the 128 states of the cI–DNA complex as
chemical species. Therefore, considering just the kinetics
of binding, unbinding, and looping would involve 128 rate
equations, one for each state. In addition to writing down these
equations, the traditional approach would need as inputs the
values of the 8128 rates that connect the 128 states with each
other. The onerous complexity of the resulting procedure has
prevented so far the simulation of the stochastic induction
switch with DNA looping. There are kinetic studies only for the
induction without DNA looping (Arkin et al, 1998). With the
approach we have developed, the simulation of the stochastic
kinetics of phage l cI repressor’s self-regulation feedback
follows straightforwardly.

Our graphical representation, which accounts in full
quantitative detail for the assembly of macromolecular
complexes, can be seamlessly integrated with the canonical
textbook representation of chemical reactions (Figure 5A). In
principle, this type of integration is also possible with quali-
tative representations like ‘Molecular Interaction Maps’ (Kohn
et al, 2006) and ‘process diagrams’ (Kitano et al, 2005) to
provide them with a precise stochastic dynamics.

We have considered the cI–DNA complex together with
the different stages of protein production from transcription
at the promoter to protein dimerization for active repressors
to study the stochastic dynamics of the phage l repressor
self-regulation. The on rates of the different transitions are
kon

i ¼a[N] for i¼r1, r2, r3, l1, l2, and l3 (describing binding
to the DNA operators by cI repressor dimers, cI2) and kon

i ¼b
for i¼L (DNA looping), with a and b constants. The off rates
follow from the detailed balance principle, as delineated
previously. In addition, we consider the following chemical
reactions (see Figure 5A legend for details): cI mRNA produc-
tion and degradation; cI repressor production and degrada-
tion; cI repressor dimerization and cI2 dissociation; and
cI2 nonspecific binding and degradation. The rate of cI mRNA
production, kt, is a function of the state of the macromolecular
complex, as described previously: kt¼(kactsr2þ kbas)(1�sr3),
where kact and kbas are the activated and basal cI mRNA
production rates.

This self-regulatory network incorporates the macro-
molecular complexity at the promoter region as a module
(Figure 5A). Only a few of the elements of the DNA–protein
complex are directly coupled to the cellular dynamics.
Specifically, there is an input, the cI dimer concentration
([N]), and two main outputs, the occupancy of the r3 and r2
sites, which control the production of cI mRNA (kt).
Depending on the free energy of DNA looping, this module
has different behaviors (see Figure 5B–D). For a high free
energy of DNA looping (green curves), so that it is very difficult
to form the loop, the steady state cI2 concentration (Figure 5B)
is relatively high and noisy in the lysogenic state, when the
degradation rate of cI is low (Figure 5C). In contrast, for free
energies of DNA looping close to WT levels (red curves), cI2
concentration in the lysogenic state is tightly regulated and

remains narrowly constrained at low values, exhibiting small
fluctuations. Quantitatively, the fluctuations of concentration,
usually referred to as noise, are characterized by the vari-
ance divided by the mean of the number of molecules: Z¼
(/N2S�/NS2)//NS (Elowitz et al, 2002). In the lysogenic
state, DNA looping substantially lowers the strength of the
intrinsic noise, from values of Z¼7.9, when there is no
DNA looping, to Z¼2.7. Switching from the lysogenic to the
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Figure 5 Phage l cI self-regulation kinetics. (A) The phage l cI–DNA
assembly network can we viewed as a module within the network that controls
the production of cI repressors at the Prm promoter. Binding of cI dimers (cI2) to r3
(sr3¼1), represses transcription, whereas binding to r2 when r3 is unoccupied
(sr2¼1 and sr3¼0) activates transcription. The transcription rate is given
by kt¼(kactnl(1�sL)sr2þ kactlsLsr2 þ kbas)(1�sr3), with kactnl¼0.05 s�1, kactl¼
0.0225 s�1, and kbas¼0.005 s�1; cI mRNA is degraded and translated into cI
protein at rates kmdeg¼0.005 s�1 and kp¼0.05 s�1 per mRNA, respectively; and
cI monomers and dimers are degraded at a rate kdeg. The cI dimerization reaction
takes place with association and dissociation rate constants ka¼7
 108 M�1 s�1

and kdis¼9.9 s�1, respectively. cI dimers in solution can bind nonspecifically to
DNA, with an equilibrium binding constant Kns¼2.0
 104 M�1, or bind to one of
the free operators with an association rate kon¼a[N], with a¼7
 108 M�1 s�1.
Note that the values used for the association rates are the typical ones of diffusion-
limited reactions. The dissociation rates koff depend on the free energy difference
between the complexes with (s) and without (s0) the cI dimer via the detailed
balance principle: koff¼kone�(DG(s0)�DG(s))/RT. As cellular volume, we have
taken 10�15 l. The rates of looping and unlooping DNA are k on

L ¼30 s�1 (Vilar
and Leibler, 2003) and k off

L , respectively, with k off
L obtained also from the detailed

balance principle. (B) Time behavior of the number of cI dimers for the case with
WT operators (red) and with no left operator (green) when (C) the cI degradation
rate kdeg (in units of min�1) is switched from 0.025 min�1 to 0.4 min�1. Time
on the horizontal axis is given in hours. (D) Activity of the promoter Pr controlling
a reporter gene. In this case, there is transcription at a rate kt

rep¼
0.12(1�sr1)(1�sr2) s�1 only when both r1 and r2 are free. The reporter mRNA
translation, mRNA degradation, and protein degradation rates are kp

rep¼
0.01 s�1, kmdeg

rep ¼0.005 s�1, and kdeg
rep¼0.005 s�1, respectively.
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lytic states happens as the degradation rate of cI is sharply
increased. After the switch, cI2 concentration goes to almost
zero in both cases.

The concentration of cI2 also affects another important
output of the cI2–DNA assembly module: the occupancy of r1
and r2. This output controls the Pr promoter, which leads
to transcription at a given rate when r1 and r2 are free and to
no transcription when r1 or r2 are occupied. The activity of
a reporter gene controlled by this promoter does not show a
marked dependence on the free energy of looping (Figure 5D).
Therefore, DNA looping allows for tight control of cI2
concentration at low levels without substantially affecting
the turning on and off of genes at the Prm and Pr promoters.
Remarkably, it has recently been found experimentally that
turning on transcription of the Pr promoter by increasing the
degradation of cI2 is not affected by the presence of DNA
looping (Svenningsen et al, 2005). As in the case of the lac
operon, here DNA looping makes the system function reliably
with low numbers of molecules.

Conclusions: from molecules to networks

The study of cellular processes requires a balance of scope and
detail. Whereas single molecular interactions can be modeled
in full atomic detail with current technologies (Saiz and Klein,
2002; Karplus and Kuriyan, 2005), approximations in terms of
chemical reactions are needed when turning to processes that
reach the cellular scale and involve networks of interacting
molecular species (Endy and Brent, 2001; Hasty et al, 2002).
There are, however, many cellular processes, such as macro-
molecular assembly, that cannot naturally be described in
terms of chemical reactions. One of the major challenges of
current biology is therefore to incorporate the molecular
details into the description of the dynamics of cellular
processes.

We have presented here an approach for bridging the gap
between molecular properties and the dynamics of networks
of interactions. It can be applied in general to compute the
stochastic dynamics of macromolecular assembly networks
and their integration into cellular networks. This method is
based on a binary description of the potential states of the
system and a decomposition of the free energy into a combi-
nation of a small subset of elementary contributions of the
different components. Such decomposition not only brings
forward an extra level of regulation but also provides a starting
point to characterize and predict the collective properties
of macromolecular complexes, such as looped DNA–protein
complexes, in terms of the properties of their constituent
elements. The thermodynamic grounds of the method allow
for the use of the principle of detailed balance to obtain rate
constants, which prevents the appearance of the unrealistic
situations noted in existing approaches (Bray and Lay, 1997;
Lok and Brent, 2005).

The two examples explored here, the induction switches in
the lac operon and in phage l, represent perhaps the most
elementary gene regulatory networks of the most basic
organisms. And yet, to fully understand the transcriptional
regulation in both systems one has to consider thermodynamic
quantities that extend beyond standard theory of chemical
reactions: macromolecular assembly networks have mecha-

nisms built in that can be used to increase specificity and
affinity simultaneously and, at the same time, to control the
inherent stochasticity of cellular processes. In particular,
exploiting the flexibility of DNA (Cloutier and Widom, 2004;
Saiz et al, 2005), protein–DNA complexes can lead to the
suppression of cell-to-cell variability, the control of transcrip-
tional noise, and the activation of cooperative interactions on
demand (Vilar and Leibler, 2003; Vilar and Saiz, 2005). DNA–
protein complexes take full advantage of the conformational
properties of DNA by introducing long-range interactions, thus
making DNA an active participant in the delivery of the
information it encodes.

The mathematical part of the method we have presented has
a direct correspondence with a graphical network description,
where nodes represent whether or not an element or a property
of the component is present, and where the strength of the
links between nodes carries information about the effects
of these elements on the stability of the complex. Therefore,
our approach accounts for the precise stochastic biochemical
dynamics, as shown by the prototype systems considered here,
while keeping the simplicity of qualitative methods based
on network diagrams. This methodology thus offers a solid
starting point to move from qualitative to quantitative under-
standing of protein–protein (Jansen et al, 2003), protein–DNA
(Edwards et al, 2002), and other interaction networks
(Tavazoie et al, 1999; Shen-Orr et al, 2002) on a genomic scale.
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