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Summary

Ten rhodopsin mutations have been found in a screen of 282 subjects with retinitis pigmentosa (RP), 76 subjects
with Leber congenital amaurosis, and 3 subjects with congenital stationary night blindness. Eight of these
mutations (gly51-to-ala, val'0-to-ile, gly'06-to-arg, arg'35-to-gly, cys'40-to-ser, glyl88-to-glu, val2O9-to-met, and
his211-to-arg) produce amino acid substitutions, one (gln"-to-ter) introduces a stop codon, and one changes a

guanosine in the intron 4 consensus splice donor sequence to thymidine. Cosegregation of RP with gln"-to-ter,
gly106-to-arg, arg135-to-gly, cys'40-to-ser, gly188-to-glu, his211-to-arg, and the splice site guanosine-to-thymidine
indicates that these mutations are likely to cause retinal disease. Val'04-to-ile does not cosegregate and is
therefore unlikely to be related to retinal disease. The relevance of gly51-to-ala and val209-to-met remains to be
determined. The finding of gln"-to-ter in a family with autosomal dominant RP is in contrast to a recent report
of a recessive disease phenotype associated with the rhodopsin mutation gIu249-to-ter. In the present screen, all
of the mutations that cosegregate with retinal disease were found among patients with RP. The mutations
described here bring to 35 the total number of amino acid substitutions identified thus far in rhodopsin that are

associated with RP. The distribution of the substitutions along the polypeptide chain is significantly nonrandom:
63% of the substitutions involve those 19% of amino acids that are identical among vertebrate visual pigments
sequenced to date.

Introduction

Rhodopsin is the light-absorbing protein in rod photo-
receptors that mediates vision in dim light. It is the most
abundant protein in the mammalian retina, accumulat-
ing to a level of approximately 108 molecules per rod
photoreceptor (Knowles and Dartnall 1977, pp. 347-
423). Over 30 point mutations or small deletions in the
rhodopsin gene have been identified in patients with
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retinitis pigmentosa (RP), an inherited degeneration of
the retina that affects 1 person in 4,000 in the United
States (Heckenlively 1988). Among RP patients with
the same rhodopsin mutation, measurements of rod
photoreceptor function show patterns of impairment
characteristic of the particular mutation, although
there is individual variation in the time course and re-
gional distribution of retinal disease (Berson et al.
1991a, 1991b; Heckenlively et al. 1991; Jacobson et al.
1991; Fishman et al. 1992a, 1992b; Kemp et al. 1992;
Moore et al. 1992). All but one of the rhodopsin muta-
tions have been identified in patients with autosomal
dominant RP (ADRP; Dryja et al. 1990a, 1990b, 1991;
Farrar et al. 1991; Gal et al. 1991; Inglehearn et al. 1991,
1992; Keen et al. 1991; Sheffield et al. 1991; Sung et al.
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1991a; Artlich et al. 1992; Bell et al. 1992; Fishman et
al. 1992a, 1992b; Fujiki et al. 1992). One mutation, a
premature stop codon, has been identified in an individ-
ual with autosomal recessive RP (ARRP; Rosenfeld et
al. 1992). Carriers of that mutation were found to have
a severalfold decrease in light sensitivity but did not
exhibit a visual field loss indicative of a retinal dys-
trophy.
An analysis of the biochemical properties of 13 mu-

tant rhodopsins identified in patients with ADRP re-
vealed two broad classes (Sung et al. 1991b). Class 1
mutations resemble the wild-type protein in their accu-
mulation to high levels in the plasma membrane of
transfected cells and their ability to join in vitro to 11-
cis retinal to form a photolabile visual pigment. Class 2
mutations accumulate to lower levels, are inefficiently
transported from the endoplasmic reticulum to the
plasma membrane, and produce little or no photolabile
pigment upon incubation in vitro with 1 1-cis retinal.
The latter class of mutant rhodopsins are likely to be
defective in protein folding and/or stability. Examina-
tion of this first set of 13 mutant proteins suggests that
members of each class may be distributed in a nonran-
dom fashion along the polypeptide chain. Class 1 muta-
tions tend to cluster near the carboxy-terminus,
whereas many class 2 mutations either introduce a
charged residue into the hydrophobic membrane-span-
ning segments, introduce or remove a proline, or reside
near two cysteines that form an essential disulfide
bond.
The present paper describes the results of a screen

for rhodopsin mutations among 282 subjects with RP,
including ADRP, ARRP, multiplex cases in which two
or more family members are affected but the pattern of
inheritance is uncertain, and simplex cases. The simplex
cases presumably represent instances of recessive inher-
itance, X-linked inheritance ascertained in a male, or a
new mutation. We also report the results of screening
76 patients with Leber congenital amaurosis, a hetero-
geneous group of retinal dystrophies characterized by
severe congenital vision loss, and three patients with
congenital stationary night blindness.

Material and Methods

Sample Collection and Processing
Participants were recruited through their ophthal-

mologists or through the National Registry of the Reti-
nitis Pigmentosa Foundation. Control samples were
obtained from students at the United States Air Force

Academy. Genomic DNA was purified as described by
Sung et al. (1991a).

PCR Amplification and Denaturing Gradient Gel
Electrophoresis (DGGE)

Seven segments of the rhodopsin gene were amplified
by PCR using the 14 primer pairs listed in Sung et al.
(1991a). These seven segments encompass the coding
region and approximately 30 bp of intron sequence ad-
jacent to each of the five exons. Exons 1 and 4 were
each amplified as two partially overlapping segments;
sequences from exons 2, 3, and 5 were each amplified
as a single segment. One PCR primer in each pair in-
cluded a 40-base GC-rich segment (a "GC-clamp") to
facilitate detection of mutations by DGGE (Sheffield et
al. 1989). PCR products were resolved by DGGE in gels
containing a 50%-90% gradient of denaturant as de-
scribed by Myers et al. (1987).

Sequence Analysis ofPCR Products
Those PCR products that produced a variant pattern

by DGGE were amplified using a pair of primers carry-
ing two different restriction enzyme cleavage sites and
were subcloned into a plasmid vector. Multiple individ-
ual subclones were sequenced from each sample to en-
sure that two or more independent examples of each
variant sequence were obtained. The variant sequences
were verified in each case by hybridization with an al-
lele-specific oligonucleotide probe as described by
Sung et al. (199la). For each oligonucleotide hybridiza-
tion experiment, approximately 50 ng of PCR product,
as determined by agarose gel electrophoresis, was dena-
tured and loaded per slot. Slot blot analysis of control
subjects from the United States Air Force Academy in-
cluded in each case a positive control known to contain
the mutation of interest.

Results

Screening Strategy
To efficiently screen for rhodopsin mutations in pa-

tients with retinal disease, we collected blood samples
from unrelated patients, extracted DNA, amplified the
rhodopsin gene exons by PCR, and analyzed the PCR
products by DGGE. In an earlier paper we described
the use of this strategy to screen for rhodopsin muta-
tions among 161 unrelated probands with ADRP. In
the present study we screened for rhodopsin mutations
in 53 subjects with ADRP, 41 with ARRP, 56 with
multiplex RP, 117 with simplex RP, 15 for whom fam-
ily data was unavailable, 76 with Leber congenital
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Figure 2 Pedigrees of families in which a rhodopsin gene mutation was identified. Family members from whom a DNA sample was
collected are indicated by number; "1" indicates the proband. A history of nightblindness or visual field loss were considered diagnostic of RP.
Hatched symbols indicate subjects who are reported to have a visual defect consistent with RP. The question mark indicates a child whose visual
function appears grossly normal. All affected individuals whose DNA was tested were examined by an ophthalmologist.
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Figure 3 Analysis of coinheritance by hybridization of oligo-
nucleotides specific for the mutant allele to slot blots of PCR prod-
ucts from family members. Numbers refer to the pedigree diagram in
fig. 2; asterisks (*) indicate affected individuals; and "C" indicates a
control sample that does not carry the mutation.

amaurosis, and 3 with congenital stationary night
blindness.
DGGE of the seven rhodopsin gene PCR products

from each of the 361 subjects revealed 26 types of band
patterns that differed from the wild type. Seven of the
band patterns were derived from known sequence vari-
ants that do not alter the amino acid sequence (i.e., six

269_single-nucleotide substitutions-adenosine -to-gua-
nosine, guanosine2557-to-adenosine, cytidine3982-to-

1289 ~~~~~~~5145thymidine, cytidine4289-to-thymidine, guanosine -

to-adenosine, cytidine5321-to-adenosine; and one dou-
ble substitution-guanosine5145-to-adenosine and cyti-
dine5321-to-adenosine) (Dryja et al. 1991; Sung et al.

1991a; Rosenfeld et al. 1992; also see Nathans and
Hogness 1984 for numbering system). An additional
five band patterns were derived from sequence changes
that were also presumed to be phenotypically silent-
cytidine654-to-thymidine, cytidine25 5-to-thymidine, and
cytidine4289-to-thymidine, silent substitutions in co-
dons 120, 146, and 297, respectively; cytidine4345-to-
thymidine in intron 4; and cytidine53t1-to-thymidine in
the 3' untranslated region. Fourteen subjects revealed
DGGE band patterns that correspond to four muta-
tions identified in our earlier screen of ADRP samples
and that consist of five examples of P23H, four exam-
ples of P347L, three examples of R135W, and two ex-
amples of R135L (Sung et al. 1991a; amino acid substi-
tutions are referred to by the identity of the wild-type
residue, abbreviated using the single-letter amino acid
designation, followed by the codon number followed
by the introduced residue-e.g., arginine 135-to-glycine
is R135G). Each of these known mutations was present
in the heterozygous condition.
The remaining 10 mutations were each found once in

the heterozygous condition (fig. 1). These mutations
446_are guanosine -to-cytidine (G51A) in HS1849, cyti-

dine484-to-thymidine (Q64ter) in HS1711, guano-
604_ 610_sine -to-adenosine (V1041) in HS889, guanosine -

to-adenosine (G106R) in HS1193, cytidine2480-
to-guanosine (R135G) in HS1371, guanosine2496-to-
cytidine (C140S) in HS1708, guanosine3845-to-adeno-

GIO6R G188E

Figure 4 Model of human rhodopsin showing the locations
of the nine coding region mutations. The central region of the pro-
tein is shown traversing the lipid bilayer. The carboxy-terminus of the
protein resides on the cytosolic face of the protein. The zigzag lines
represent palmytoylation at cys322 and cys323 . The splice-site muta-
tion identified in subject HS461 is predicted to affect splicing effi-
ciency at the intron 4 junction located between codons 312 and 313
at the beginning of the cytosolic carboxy-terminal tail.
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sine (G188E) in HS194, guanosine3907-to-adenosine
(V209M) in HS343, adenosine3914-to-guanosine
(H211R) in HS1688, and guanosine4335-to-thymidine
(GT to TT at the donor splice junction of intron 4) in
HS461. One of the 10, V1041 in subject HS889, was
found in a family with Leber congenital amaurosis,
whereas the remaining nine mutations were found
among patients with RP. Mutation G106R in subject
HS1193 has been identified in two other screens of RP
patients (Fishman et al. 1992a; Inglehearn et al. 1992),
and the intron 4 splice-site mutation guanosine4335-to-
thymidine in subject HS461 has been observed in a 28-
year-old subject who does not have RP (Rosenfeld et al.
1992).
Pedigree Analysis and Allele Frequency in a Control
Population
To determine whether the 10 novel mutations were

associated with retinal disease, they were tested for co-
segregation with the disease phenotype in affected fami-
lies. Figure 2 shows pedigrees, and figure 3 shows the
results of hybridization with an allele-specific oligonu-
cleotide to PCR products from those relatives who par-
ticipated in the study. Examination of the pedigrees
indicates that HS194, HS461, HS1193, and HS1711
have an autosomal dominant mode of inheritance (i.e.,
males and females were affected in three or more gener-
ations) and that HS1371, HS1688, and HS1708 are
likely to have an autosomal dominant mode of inheri-
tance. Cosegregation with RP is evident in the families
of subjects HS194 (G188E), HS461 (guanosine4335-to-
thymidine), HS1193 (G106R), HS1371 (R135G),
HS1688 (H211R), HS1708 (C140S), and HS1711
(Q64ter), although in some cases the number of individ-
uals examined is too small for the cosegregation to be
considered statistically significant. In the family of sub-
ject HS889 (V1041), the mutation does not coinherit
with retinal disease. Whether the mutation cosegre-
gates with RP in families HS343 (V209M) and HS1849
(G51A) remains to be determined.
As an adjunct to the pedigree analysis, we examined

the frequency of each mutation in a control population
of 124 young adults with normal vision. As determined
by hybridization with allele-specific oligonucleotide
probes, none carries the mutations identified here, a
result that is consistent with a causal role for these
mutations in the genesis of retinal disease.

Discussion
Frequencies of Different Mutations in the RP Population
The genetic screen reported here has identified one

splice junction mutation and nine coding region muta-
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Figure 5 Histogram showing the number of probands with
ADRP who carry each of the 40 mutations reported to date (e.g., only
a single ADRP proband and his or her family have been found for
each of 26 mutations; for references, see text). From the present
study, only those seven mutations that cosegregate with RP have
been included. Bars representing the P23H and P347L mutations are
indicated.

tions in the rhodopsin gene in patients with retinal dis-
ease. The locations along the polypeptide chain of the
nine coding region changes are shown in figure 4. Pedi-
gree analysis suggests that seven of these mutations
(Q64ter, G106R, R135G, C140S, G188E, H211R, and
guanosine4335-to-thymidine) are likely to be causally re-
lated to RP and that one (V1041) is likely to be pheno-
typically silent. The phenotypic significance of the
remaining two mutations (G51A and V209M) is un-
known. The finding of 21 probands with clinically sig-
nificant rhodopsin mutations among 53 ADRP patients
and 56 multiplex RP patients is consistent with earlier
estimates of a 25%-30% frequency of rhodopsin muta-
tions among subjects with ADRP in the United States
(Dryja et al. 1991; Sung et al. 1991a).
The only rhodopsin mutation identified among 76

patients with Leber congenital amaurosis (V1041 in
HS889) appears not to be involved in retinal disease, as
it is present in an unaffected member of the pedigree
and is absent in an affected member. Apparently, muta-
tions in the rhodopsin gene rarely, if ever, lead to retin-
al disease of the severity seen in Leber congenital
amaurosis.
Most of the rhodopsin mutations identified to date

in subjects with ADRP have been found in only one or a
few families, as illustrated in the histogram in figure 5
(Dryja et al. 1990a, 1990b, 1991; Farrar et al. 1991; Gal
et al. 1991; Inglehearn et al. 1991, 1992; Keen et al.
1991; Sheffield et al. 1991; Sung et al. 1991a, 1991b;
Artlich et al. 1992; Bell et al. 1992; Fishman et al.
1992a, 1992b; Fujiki et al. 1992). This sample consists
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Figure 6 A, Locations of all amino acid substitutions in rhodopsin, associated with ADRP, reported to date (for references, see text).
From the present study only those seven mutations that cosegregate with RP have been included. Unblackened, light-gray, checkered, or black
circles indicate zero, one, two, or three different amino acid substitutions, respectively, identified at that location. B, Locations of amino acid
residues that are invariant among vertebrate opsins (black circles). Included in this analysis are the human, chicken, and goldfish rod and cone
opsins, bovine and lamprey rod opsins, and cavefish long-wavelength cone opsins (for references, see text).

of a total of 475 ADRP subjects from the United States,
Britain, Ireland, and Europe and 24 from Japan. All of
the subjects with P23H, by far the most common allele,
are from the United States (Farrar et al. 1990). The large
number of rare mutations suggests that many additional
mutations in the rhodopsin gene remain to be discov-
ered.

Phenotypic Variability among Rhodopsin Stop Codon
Mutations
The Q64ter mutation (subject HS1711) represents

the third example of a stop codon mutation in a patient
with RP. One stop codon mutation, Q344ter, was iden-
tified in a family with ADRP (Sung et al. 1991a). The
encoded protein is missing the last five amino acids and
resembles the wild type in its subcellular localization in
transfected tissue culture cells and in its ability to bind
1 1-cis retinal (Sung et al. 1992b). A second stop codon
mutation, E249ter, was recently found in the homozy-
gous condition in an individual with ARRP (Rosenfeld
et al. 1992). A heterozygous carrier of this mutation
showed a threefold decrease in light sensitivity, as mea-
sured electroretinographically, but did not exhibit vi-
sual field loss. The finding that Q64ter causes RP in the
heterozygous condition suggests that synthesis of a
rhodopsin fragment consisting of the first 63 amino
acids damages the rod cell. Cellular damage could result
from disruption of the lipid bilayer structure or from
interference with the folding or transport of other pro-
teins.

Mutation ofa Conserved Donor SpliceJunction Sequence
The mutation in subject HS461 changes the invariant

first two nucleotides in intron 4 from GT to TT. Coseg-
regation of this mutation and RP was observed in the
five family members tested. By analogy with the de-
crease in globin production caused by a GT-to-TT mu-
tation in the first intron of the human beta-globin gene
(Orkin and Kazazian 1984), the HS461 mutation would
be expected to decrease the efficiency of splicing at this
position and may lead to the use of cryptic splice junc-
tion donors within either exon 4 or intron 4. The re-
sulting protein is likely to be missing those sequences
that normally constitute the carboxy-terminal cytosolic
tail. This same mutation was found in the heterozygous
state by Rosenfeld et al. (1992) in a 28-year-old subject
who does not have RP, suggesting that its pathological
effect may either be delayed or variable.

Implications of the Nonrandom Distribution ofAmino
Acid Substitutions
The 7 mutations reported here which are implicated

in the pathogenesis of RP bring to 40 the total number
of rhodopsin mutations identified in patients with
ADRP. Of these, 35 are single amino acid substitutions.
Thirty-one of these mutant proteins have been pro-
duced by transfection of tissue culture cells (Sung et al.
1991b; C.-H. Sung, C. M. Davenport, and J. Nathans,
unpublished data). Mutations near the carboxy-ter-
minus resemble the wild type in yield, plasma mem-
brane localization, and ability to form a photolabile
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Figure 7 A, Left, Number of amino acid substitutions ob-
served per codon for the 35 rhodopsin substitution mutations identi-
fied to date in ADRP (fig. 6A). Right, Expected distribution based on

a model in which the 35 amino acid substitutions occur randomly
and with equal probability at each of the 348 codons. In this model
the probability that a given codon will have exactly n different substi-
tutions is P(n) = (347/348)35-"(1/348)'(35!/(35- n)!n!). To compare

this distribution with the observed distribution, a scaling factor, x, is
introduced so that the total probability density is equivalent to 35
mutations, hence 35 = x(P(l) + 2P(2) + 3P(3) . . .). B, Left, Ob-
served distribution of evolutionarily invariant amino acids among the
35 known amino substitutions in ADRP. Right, Distribution pre-

dicted if the locations of the substitutions and the invariant residues
were uncorrelated; i.e., 67/348 = .19 of each bar is filled. The filled
portion of each bar in the histogram represents that fraction of the 35
known amino acid substitutions that involve the 67 evolutionarily
invariant residues among vertebrate pigments (fig. 6B).

pigment on joining to 1 1-cis retinal (class 1 mutations).
These are presumed to be defective in some aspect of
visual pigment function that is not apparent in a heterol-
ogous expression system. By contrast, most of the
amino acid substitutions located elsewhere in the pro-

tein result in a defect in protein folding and/or stability
(class 2 mutations). As predicted from their locations
and the significant change that they produce in side-
chain properties, substitutions G106R, R135G, G188E,
and H211R are likely to be members of class 2 (C.-H.
Sung, C. M. Davenport, and J. Nathans, unpublished
data).

It would be of interest to determine which regions or

amino acids are most important for the correct folding
of human rhodopsin. Addressing this question by ana-

lyzing the spectrum of naturally occurring ADRP muta-
tions is complicated by the limited range of observed
amino acid substitutions due to the structure of the
genetic code, by differences in the mutability of differ-
ent nucleotides, and by sampling error in a patient pop-
ulation of finite size. Despite these complexities, several
patterns are emerging that are likely to reflect the im-

portance of particular structural features in determin-
ing protein folding and/or stability.

First, of the 13 mutations that occur in the hydro-
phobic transmembrane segments, 8 involve the intro-
duction of a charged amino acid, and 4 involve the
replacement or introduction of a proline. The former
type of substitution would be expected to increase the
free energy of transfer of this segment from an aqueous
to a lipid environment, and the latter type would be
expected to either remove or introduce a kink in the
alpha helix. Second, 14 mutations are located on the
extracellular face of rhodopsin, with a significant clus-
tering in the second extracellular loop. Some of these
extracellular substitutions may disrupt the apposition
of cysteines 110 and 187 which have been shown in
bovine rhodopsin to form an essential disulfide bond
(Karnik et al. 1988; Karnik and Khorana 1990). Third,
most of the mutations identified to date on the cyto-
solic face cluster near the carboxy-terminus and accu-
mulate in transfected cells to a level that is indistinguish-
able from that of the wild type (Sung et al. 1991b; C.-H.
Sung, C. M. Davenport, and J. Nathans, unpublished
data). The only mutations on the cytosolic face that do
not cluster near the carboxy-terminus are a deletion of
amino acids 68-71 (Keen et al. 1991) and amino acid
substitution C140S reported here. The paucity of sub-
stitutions in the three cytosolic loops suggests that they
are less important for maintaining a correctly folded
structure than are the extracellular loops (Doi et al.
1990). Fourth, the 35 different amino acid substitutions
identified in patients with ADRP are distributed over
only 25 codons, a degree of clustering that is higher
than predicted, on the basis of a model in which each
codon is equally mutable (figs. 6A and 7A). And fifth,
substitutions are more commonly observed to involve
amino acids that are invariant among the visual pig-
ments (figs. 6B and 7B). Thirteen of the 25 codons that
are targets of substitution mutations in patients with
ADRP coincide with those 19% (67/348) of codons
that are invariant among chicken (Takao et al. 1988;
Kuwata et al. 1990; Tokunaga et al. 1990; Okano et al.
1992; Wang et al. 1992), human (Nathans and Hogness
1984; Nathans et al. 1986), and goldfish (Johnson et al.
1993) rod and cone pigments, lamprey (Hisatomi et al.
1991) and bovine (Nathans and Hogness 1983)
rhodopsins, and cavefish long-wavelength pigments
(Yokoyama and Yokoyama 1990). Within this group of
13 codons are 6 of 7 of the codons where two or three
different amino acid substitutions have been found. As
a result, 63% (22/35) of the substitutions involve the
19% of residues that are evolutionarily conserved.
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Recently, mutations in the vasopressin receptor have
been reported in patients with diabetes insipidus (Pan et
al. 1992; Rosenthal et al. 1992; van den Ouweland et al.
1992). This represents the first example of mutations in
a human G-protein-coupled receptor aside from the vi-
sual pigments. It will be of interest to determine
whether the pattern of mutations identified in the rho-
dopsin gene holds generally for defects in other G-pro-
tein-coupled receptors.
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