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Summary

The ubiquitousness of RFLPs in the human genome has greatly helped the mapping of human disease genes,

and it has been suggested that population measures of association between disease and marker loci could
help with this mapping. For rare diseases, random samples are taken from within disease genotypes in order
to obtain reasonable sample sizes, but this sampling strategy requires a modification of the usual measures

of association. We present theoretical predictions for the mean and variance of such a modified measure,

under the assumption that the disease gene is maintained at a constant low frequency in the population.
The coefficient of variation of this modified measure is large enough that caution is needed in using the measure
to locate disease genes, and, furthermore, the coefficient of variation cannot be made arbitrarily small by
increasing sample size. The modified association measure is calculated for recently published data on cystic
fibrosis.

Introduction

The discovery of widespread existence RFLPs has
greatly accelerated the mapping ofthe human genome.
As envisioned by Botstein et al. (1980), the mapping
procedure depends on the determination, throughout
the genome, of a large number of well-spaced RFLPs.
These marker loci can be used as reference points on
the genetic map, and a gene of interest can be localized
by identifying the markers to which it is closely linked.
This genetic approach is appropriate for diseases in
which the gene product is not known and in which
direct probing of the genome is not possible. The ap-
proach is currently being implemented with some suc-
cess, and the chromosomal locations of a number of
disease genes have already been reported (e.g., see
Gusella et al. 1983; Eiberg et al. 1985; Kerem et al.
1989).
The chromosomal density of RFLPs is an important

determinant of how well a disease gene can be local-
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ized. Even if a known RFLP is within a centiMorgan
(cM) of the gene, it is still necessary to search over a
million base pairs to determine exact location and be-
gin a molecular characterization of the gene. In prac-
tice, it is not known a priori which markers are close
to the disease locus, and it is often suggested (e.g., see
Pritchard et al. 1991) that population measures of
association (or linkage disequilibrium) between dis-
ease and marker can be used to identify the most likely
chromosome region where the disease gene may lie.
Any such clue as to the position of a locus, particularly
if it was more precise than can be achieved from link-
age studies with family data, would be of considerable
help in molecular studies.

Identifying genomic regions on the basis of statisti-
cal measures of association does not depend on any
population genetic theory or model, other than that
which supposes the strength of association between
genes to increase as physical and genetic distances be-
tween them decrease. An obvious question to explore
is what could be gained by invoking a population ge-
netic model. We recently asked this question with ref-
erence to cystic fibrosis (CF) (Weir 1989), but our
concerns about the large sampling variance of mea-
sures of association (Hill and Weir 1988) may have
been influenced by our analysis not taking account of
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the conditional sampling structure of the data in those
studies.

Previous work by ourselves and others (e.g., see
Hill and Weir 1988) was based on moments of gene
frequencies at two loci, with attention paid to the
steady-state expectation of measures of association
under models of drift, recombination, mutation, and
selective neutrality. Expectations were expressed in
terms of a parameter, F = 4Nr, whereN is the diploid
population size and where r is the recombination rate
between the two genes. It has been proposed that this
parameter could be estimated by equating observed
and expected values of the association measure (e.g.,
see Estivill et al. 1987). Furthermore, if it is assumed
that physical and genetic distances are linearly related,
which is not unreasonable for recombination fractions
less than 1 cM, then the physical distance between
marker and disease loci could be inferred from the
known physical distances between markers.
We have noted (Weir and Hill 1986; Hill and Weir

1988; Weir 1989) that a major problem with this ap-
proach arises with the large variances of measures of
association. The sampling-variance component of the
total variance can be minimized with sufficiently large
samples, but the genetic variance arising from the sto-
chastic nature of evolutionary forces is beyond the
control of the investigator.
The expected values of the measures of association

discussed by Hill and Weir (1988) were derived under
the assumption that individuals were sampled at ran-
dom from the population. For rare diseases, of course,
samples are taken independently from within each dis-
ease genotype category in order to obtain sufficiently
large samples. The CF data discussed by Weir (1989)
were, in fact, for disease-locus heterozygotes only
(Weir 1990), and measures of association for such a
sampling scheme have been discussed (Chakravarti et
al. 1984; Chakraborty 1986).
A second limitation of the traditional approach is

that it is based on expectations over all replicate popu-
lations, whereas the data analyzed in practice require
at least minimal levels ofpolymorphisms at the marker
loci. Expectations conditional on polymorphism were
investigated by Hudson (1985), for random samples
of chromosomes at selectively neutral loci. On the ba-
sis of simulation results, Hudson showed that these
conditional expectations were substantially larger
than unconditional expectations. Although he did not
present variance calculations, his work suggests that
sampling variance may not be as important an issue
for conditional as it is for unconditional measures.

The conventional measure of linkage disequilib-
rium is not appropriate for samples collected from
each disease genotype. A more suitable measure was
proposed by Nei and Li (1980) and Chakravarti et al.
(1984). In this paper we present the predicted mean
and variance of this measure, under the assumption
that the disease gene frequency in the population re-
mains more or less constant over time. Our work de-
pends on coalescent theory for models with balancing
selection (Kaplan et al. 1988). We also present a re-
analysis of the CF data of Kerem et al. (1989).

Theory

Suppose the disease is caused by a single gene H.
Evolutionary forces are assumed to act to preserve an
approximately constant frequency of the disease in the
population over time. Possible mechanisms are high
mutation rate, increased fertility, reproductive com-
pensation, and heterozygote advantage. A discussion
of these mechanisms for cystic fibrosis was given by
Tsui and Buchwald (1991, p. 233). If there is a single
disease allele H, then its frequency q will also be ap-
proximately constant. Diseases with a low mutation
rate are likely to have arisen from few, or possibly one,
mutation. Huntington disease appears to fall into this
category (Gusella 1991). Also, the strong linkage
disequilibrium between the CF locus and closely
linked markers suggests that most, if not all, CF genes
are descended from a single ancestral mutation (Tsui
and Buchwald 1991). The discovery that approxi-
mately 70% of the CF genes carry the same 3-bp dele-
tion (Kerem et al. 1989) supports this hypothesis. The
assumption of a single disease allele may not be cor-
rect, but it is the parsimonious one if haplotypes are
characterized only as being either diseased or normal.
This issue will be taken up in the Discussion. The
normal allele h has frequency p (p + q = 1). For rare
diseases, q will be small, and it is about .02 for CF
(Kerem et al. 1989).
Suppose marker locus M, with segregating alleles

M1 and M2, is linked to H. If the four haplotypes HM1,
HM2, hMl, and hM2 have population frequencies X1,
X2, X3, and X4, respectively, then the frequencies of
allele M1 among disease and normal haplotypes are
x = f(M11H) = X1/q andy = f(MAlh) = X3Ip, the
coefficient of linkage disequilibrium D in the popula-
tion is D = f(HM1) - f(H)f(Ml) = pq(x - y), and
the squared correlation of gene frequencies, r2, is r2
= D2/pqmIm2, where m1 and m2 are the population
frequencies of marker alleles M1 and M2, respectively.
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Since pq is assumed to be constant, a measure of asso-
ciation for data conditional on disease locus status is
d = x - y. In this paper we are concerned with the
magnitude of d and not with its sign, so it is more
convenient to work with d2. Nei and Li (1980) studied
the transient behavior of expected values of d and d2
for models without recurrent mutation. Estimation
procedures from genotypic data have been discussed
by Chakravarti et al. (1984) and Maiste and Weir
(1992). Our goal is to calculate the equilibrium mean
and variance of the distribution of d2 under the as-
sumption that variation at the marker locus follows a
selectively neutral infinite-site model with recurrent
mutation (Kimura 1969, 1971).

For a selectively neutral model with recurrent muta-
tion, Hill and Weir (1988) expressed the moments of
D2as linear combinations of identity coefficients, and
their approach can be extended to apply to d2. We
define the identity coefficient c as 4(ij) = Pr(i ran-
domly sampled haplotypes from the subpopulation
carrying the h allele and j randomly sampled haplo-
types from the subpopulation carrying the H allele
have the same allele at the marker locus).
From the definitions of the conditional frequencies

x and y, it follows that 4(ij) = s[x'y' + (1 - x)(1 -

y)]i, i,j > 0, where expectation, denoted by s, is over
all replicate populations subject to the same forces.
Independence of haplotypes, or random mating, is as-
sumed.
Expanding the definition of d2 allows its expected

value to be written in terms of identity coefficients:
2d2 = 2(x2 - 2xy + y2) = [X2 + (1 - X)2] - 2[xy
+ (1 - x)(1 - y)] + [y2 + (1 _ y)2], so that

2e(d2) = 0(2,0) - 24(1,1) + 4(0,2). (1)

Similarly,

2s(d4) = 0(4,0) - 4c(3,1) + 60(2,2) (2)
- 44(1,3) + 4(0,4).

To calculate the mean and variance of d2, it is therefore
sufficient to calculate the identity coefficients 4(ij) for
appropriate values of i and j.

In practice, only estimates of d2 are available. For
a sample of haplotypes, nH with the disease gene and
nHMI carrying the M1 marker, and nh with the normal
gene and nhM1 carrying the M1 marker, the maximum-
likelihood estimate of d2 is d2 = [(nHMI/nH) - (nhM1/
nb)]2. A slight extension of the use of identity coeffi-

cients can be used to compute moments of such esti-
mates. Following the same reasoning as used by Hud-
son (1985), we find that the first and second moments
of d2 satisfy equations (1) and (2), providing that the
kk(ij)} are replaced by [0*(ij)}, shown in the Ap-
pendix.
The formulas for the moments of d2 are not strictly

appropriate for interpreting data, since the possibility
of the sample of haplotypes being monomorphic at the
marker locus was not excluded from the derivations.
Only polymorphic markers are used, and this needs to
be taken into account. Minimally, there is a need for
information about the distribution of d2 conditional
on there being at least two different marker alleles in
the sample. Although it would be more informative
to condition on the marker sample frequencies, this
distribution is very difficult to obtain. Hudson (1985)
used a simulation technique to find this conditional
distribution for two linked neutral loci.

Let kM be the number of different alleles in the sam-
ple at the marker locus. Since d2 = 0 for kM = 1,

g(a2IkMk> 1) = Pr(km>1)

8(d2)
1 -4(nH,nh)

(3)

A similar result holds for the fourth moment. The
conditional moments are therefore easily obtained
from the unconditional moments. To simplify nota-
tion, the moments of d2 conditional on polymorphism
will be subscripted by P.

Further assumptions about the evolutionary forces
acting on the population and about the nature of
the variation at the marker locus are needed before the
identity coefficients can be calculated. We suppose the
population is finite, of size N, mating at random, and
that the marker locus variation is described by a selec-
tively neutral infinite-site model (Kimura 1969, 1971;
Watterson 1975). More specifically, mutations occur
at rate g per locus per generation, and each mutant is
unique. We also assume that there is no recombination
within the locus but that there is recombination be-
tween marker and disease loci.

Suppose two haplotypes are sampled at random,
and ignore for the moment which allele is present at the
disease locus. Under a selectively neutral infinite-site
model, the two marker genes are the same allele if
and only if there has been no mutation among their
ancestral genes since their most recent common ances-
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tor (MRCA). If To is the ancestral generation con-
taining the MRCA, and if G2 is the probability of the
two marker genes having the same allele, then

G2 = &[O )TO(l t)TO]

&(e -2,,TO) 4

(e -,T)2

where 0 = 4Nji and T = 2To/2N (i.e., time is now
measured in units of 2N generations).

It is not difficult to generalize this argument to larger
samples of haplotypes. If Gk is the probability that the
marker genes on k sampled haplotypes are identical
by descent, then

Gk = 8(e 2), (5)

where T is now the size of the ancestral tree describing
the genealogical history of the size-k sample at the M
locus, measured in units of 2N generations.

Past

Time - 0
H H h

The ancestral tree keeps track of when each com-
mon ancestor of the sampled marker genes occurs, as
well as which two sampled genes have the common
ancestor. In figure 1 we show the ancestral tree for a
sample of size 4. A more detailed discussion is given
by Kaplan et al. (1988).
A direct consequence of the selective neutrality of

the marker locus is that equation (5) continues to hold
even conditioning on the disease alleles with which the
marker alleles are associated. The conditioning affects
only the distribution of T. To calculate the 4(ij)'s,
therefore, it is sufficient to determine the statistical
properties of T conditional on i of the sampled marker
genes being on the same haplotypes as are H alleles,
with j being haplotypic to h alleles. Recent work of
Hudson and Kaplan (1988) shows how these condi-
tional distributions may be calculated for large popu-
lations, and these results are now described.
Hudson and Kaplan proved that, ifN is large, then

the distribution of T can be obtained by considering
the behavior of a finite-state Markov chain. Suppose
that nH haplotypes are sampled carrying allele H and

Q(T1 + T2 +T3) = (0,1)

h Q(Tl + T2 + t2l)= (0,2)

h

h

h

Q(T1 + T2) = (1,1)

Q(T1 + tl) = (2, 1)

Q(T1) = (1,2)

Q(0) = (2, 2)
h

Figure I Ancestral tree for a sample of size four, with two haplotypes carrying H and two carrying h. The Q process changes value
five times. At ancestral generations T1, T1 + T2, and T1 + T2 + T3, a common ancestor event occurs and IQI decreases by one. At ancestral
generations T1 + t11 and T1 + T2 + t21, recombination between the marker and disease loci occurs. The MRCA of the sample occurs
at ancestral generation To = T1 + T2 + T3.
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that nh haplotypes are sampled carrying h. For the
tth ancestral generation, define Q(t) = (ij) if i of the
ancestral genes of the sampled marker genes are linked
to an H allele and ifi are linked to an h allele (see fig.
1). Further, define IQ(t)I = i + j. Since the ancestral
genes of the sampled marker genes are necessarily
linked to either an H or an h, the Q process is well
defined, and Q(O) = (nH,nb). There are two ways in
which the Q process can change its value: Q(t) = (ij)
and Q(t + 1) = (i - 1,j) or(ij - 1), and Q(t) = (ij)
and Q(t + 1) = (i - 1,j + 1) or (i + 1,j - 1).
The first case corresponds to a common ancestor

event. If i + j = 1, then all the common ancestors of
the sample genes have occurred, and so To = min(t:
IQ(t)l = 1) is the ancestral generation in which the
most recent common ancestor of the sample occurs.
The second case corresponds to a recombination
event. For example, if Q(t) = (ij) and if Q(t + 1)
= (i - 1,] + 1), then an M1H haplotype in the tth
ancestral generation derives from an MjhIM2H par-
ent in the (i + 1 )th ancestral generation. Recombina-
tion events do not alter IQ(t)l.
Hudson and Kaplan show that, if time is measured

in units of 2N generations, then the Q process can be
approximated by a continuous-time finite-state Mar-
kov process with the following parameters: The time
Tij until the Q process changes its state has an exponen-
tial distribution with parameter kij = i(i - 1 )/2q +
(1 - 1)/2p + ipf/2 + jqf/2, whereF = 4Nr and
r is the recombination rate between the marker and
disease loci. Furthermore, when the Q process does
change state in the small time interval between t and
t + St, the probability distribution describing how this
change occurs is given by

Pr[Q(t + St) = (i - j) IQ(t) = (ij)] = i(i-1)
2q~ij

Pr[Q(t + St) = (iJ - 1)IQ(t) = (ij)] = ju - 1)
2pkXj

ipFPr[Q(t + St) = (i- 1 j+ 1)IQ(t) = (i)]= -

2kij

Pr[Q(t + St) = (i + 1j - 1)IQ(t) = (ij)] =

The size T of the ancestral tree can be written as

IQ(O)I
T= Z jTj,

j=2

where Tj is the length of time during which IQ(t)I =
j. A more convenient representation of T is

T = ,oIQ(u)ldu.

The identity coefficient 4(ij) can therefore be written
as E(ij)= -[e- lIQ(u)IduIQ(O) = (iJ)]. By means of this
representation of 4(ij) and the Markov properties of
the Q process, it is straightforward to obtain the fol-
lowing general recursion for the identity coefficients:

4O(ij) = £[e [(2 Tjii+-IQu)du]|Q(O) = (i j)]

i F(i-i j)

2 1)

1(1 -11) )j +ip]F
2X,- (-1,j+ 1)

jq 1)
+ + 1j- 1)
2kij~~~~

(6)

The derivation of equation (6) is obtained by condi-
tioning on the time of the first jump of the Q process
and on the state to which the jump is made.
For any sample size n > 1, equation (6) results in a

system of linear equations in which all of the 4(ij)
with i + j < n must be evaluated in order to obtain the
measure with i + j = n. This system of equations is
tri-diagonal, and so is easy to solve numerically even
for large values of n (Press et al. 1986).
The case of n = 2 is simple enough to present as an

example:

,0(250) = 1 +PFc/(1,1)4(,)-q( +X20) 0+X20

4(0,2) = 1 + qF0(1,1)
p(0+X02) 0+ 02

(1,1) -
IF

[po(0,2) + qO(2,0)]

whereX20 = (1/q) + prX02 = (1/p) + qF,andX1
= F/2. As F becomes large, simple algebra shows
that each of 4(2,0), 4(O,2), and 4(1 ,1) approaches 1 /
(1 + 0), the value of homozygosity for a selectively
neutral locus (Ewens 1979). Alternatively, as F ap-
proaches 0, 4(2,O) -- 1/(1 + qO), (O,2) - 1/(1 +
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Figure 2 r = 4Nr plotted against &p(d2). Each curve is for a different sample size, q = .02 and 0 = .01

p0), and 4(1,1) -- 0, so that, for this case of complete

linkage, s(d2) = 1/2 [1 /(1 + q0) + 1/(1 + pO)]

Numerical Calculations

The conditional distribution of d2 depends on the
parameters q, 0, F, nH, and nh. For many data sets, the
two sample sizes are approximately the same, so we

set nH = nh. For human diseases, the population fre-
quency of the disease allele is small, and here we take
q = .02, to allow application to CF (Kerem et al.
1989). Since RFLPs seldom have more than two al-
leles, we set the mutation parameter 0 = .01. How-
ever, other calculations have shown us that the results
are robust to small changes in 0. It is the recombination
parameter F that is of greatest interest. In figure 2 we
plot the conditional mean of d2 as a function of F.

Figure 2 shows that sample size has a small effect on
the magnitude of sp(d2), provided that nH and nb are

greater than about 25.

The sharp increase in F as sp(d2) decreases in figure
2 indicates that moment estimates of F obtained from
sample values of d2 less than .2 are probably not reli-
able. For example, if nb = nH= 50 and the observed
value of d2 is .2, then the estimate of F is 3.4. If the
value of gp(12) is .1 and the value d2 = .2 occurs by
chance, then the correct value of is 6.5, which is
about twice the estimate. It is therefore important to
assess the likelihood of observing .2 when the true
value is .1. In figure 3 we plot the conditional coeffi-
cient of variation of d2 for different sample sizes. This
quantity is an increasing function of F, with a maxi-
mum value of about 2. If nH = nh = 50, then the
coefficient of variation exceeds 1 for values greater
than .7, and an observed value of .2 when the true
value of the conditional mean is .1 is not unlikely.
Most of the variation is due to genetical sampling

(between replicate populations) and therefore cannot
be reduced by increasing the sample size. Even though
the coefficient of variation of d2 is not negligible, it is

1.0
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Figure 3 Coefficient of variation (CV) of the distribution of d2, conditional on polymorphism at the marker locus plotted against
F = 4Nr. Each curve is for a different sample size, q = .02 and 0 = .01.

substantially smaller than that of F2 (Hill and Weir
1988).
We have also investigated the effects of disease fre-

quency q and mutation rate 0. As long as these quanti-
ties are less than .1, which is undoubtedly the case,
they have little effect on the conditional moments of
d2.

Application

In table 1 we show the quantities d2 and F for the
CF data discussed by Weir (1989). Some loci had sam-
ple sizes that were judged to be too small for sampling
effects to be ignored and so were excluded. Both mea-
sures localize the CF locus to the same region of
the chromosome, which is not surprising, in view of
the algebraic relation between them: d2 = (nmlnM2/
nHnfh)2, where nM1 and nM2 haplotypes in the sample
carry the M1 and M2 marker alleles, respectively. For
most of the markers the ratio nMnM2/lnHnh is close to

one. We have obtained distributional results for d2,
while previous results for P apply to random samples
and so are not appropriate for these CF data collected
only from heterozygotes.
Kerem et al. (1989) published frequency data for 17

markers much closer to the CF locus. The values of d2
and the associated estimates of F are displayed in table
2. The AF508 deletion associated with CF is located
between 10-1X.6/HaeIII and T6/20/MspI (Kerem
et al. 1989). It is clear from table 2 that the two mea-
sures, P2 and d2, again are about equivalent in their
abilities to identify markers close to the disease gene.
The results suggest that the CF gene lies in the region
flanked by markers EG1.4/HincII and Hi.3INcoL.
Following the suggestion of Estivill et al. (1987), we
estimate F with the value for which the conditional
expectation of d2 equals its observed value, under the
assumptions q = .02 and 0 = .01. Markers 10-1.6/
AccI and 10-1X.6/HaeIII have the smallest F esti-
mates (and the highest d2 values). It would be expected
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Table I Discussion

Data from Weir (1989)

Probe

NJ1 ...............
NJ3 ...............
917................
917................
B79a ..............
B79a ..............
pF167.2..........
pB130............
pB174............
pJB521...........
pB192............
pA37 .............
Z5-1..............
7C22 .............
met5-9 ...........
metD .............
metD .............
metH .............
E7.................
pH-131 ..........
W 5-1.4...........
pJB89.............
J3.11 .............
J3.11 .............
311:p3HI ........
TM183 ..........
Z8-2..............
SA37..............
pB-48.............
SC33..............
pB47L ............
pA51 .............
S132...............
S132...............
pA21 .............
pG54 .............
TCRB ............

Enzyme

MspI
EcoRI
HindIll
HincII
HindIII
MspI
BglII
TaqI
TaqI
ScaI
TaqI
PstI
TaqI
EcoRI
TaqI
BanI
TaqI
TaqI
TaqI
Hinfl
HindIlI
MspI
MspI
TaqI
PvuII
TaqI
BglII
PstI
SstI
HdIII/BgI
BglII
TaqI
MspI
DraI
PstI
PstI
BglII

n

146
122
128
110
118
140
160
150
164
166
150
162
146
168
160
164
178
162
166
180
141
180
166
180
168
168
176
166
134
115
176
162
118
158
154
144
104

r2

.0004

.0029

.0004

.0030

.0000

.0039

.0000

.0068

.0022

.0012

.0035

.0344

.0008

.0056

.0069

.0933

.0316

.0194

.0630

.1919

.1381

.0036

.0428

.0036

.0074

.0165

.0004

.0123

.0037

.0000

.0173

.0010

.0270

.0175

.0020

.0139

.0033

d2

.0002

.0024

.0002

.0030

.0000

.0033

.0000

.0007

.0006

.0006

.0007

.0344

.0008

.0035

.0056

.0930

.0153

.0184

.0524

.1783

.1296

.0011

.0420

.0011

.0023

.0023

.0001

.0093

.0036

.0000

.0012

.0006

.0233

.0160

.0007

.0123

.0033

that F estimates would increase more or less monoton-
ically with distance away from the 10-1 X. 6 region,
but this is not the case. The large predicted values for
the coefficient of variation for d£2, as well as the rapid
increase in the value of 6p(d2) for small values of F

shown in figure 2, suggest that sampling error is a

likely explanation for the nonmonotonicity of the esti-
mated F values. Another possible explanation is that
recombination may not be uniform in the region, and
Kerem et al. (1989) suggest that there may be a recom-
binational hot spot in the vicinity of J44.

Attempts to locate human disease genes on the basis
of observed linkage disequilibria to markers continue
(e.g., see Kupke et al. 1991). These studies should
take account of the way in which data were sampled,
since, if samples were taken from within disease cate-
gories, it is necessary to use conditional measures of
linkage disequilibrium. We have given a theoretical
treatment of how these measures are expected to be-
have as functions of the recombination fractions be-
tween disease and marker loci, for the case when the
disease is controlled by a single locus.

Family-based linkage analysis can localize a disease
locus to about 1 cM, which is not sufficient for molecu-
lar studies. Although more detailed localizations rest
on physical mapping, there may be an advantage to
population-based association analyses to aid in the
search for genes. The results of Kerem et al. (1989),
as emphasized by Pritchard et al. (1991), show that
linkage disequilibrium did play a supporting role in
the search for the CF gene, while Snell et al. (1989)
and Theilmann et al. (1989) showed that linkage dis-
equilibrium was considered in the search for the Hun-
tington disease gene.

Traditional theory for the association measure F
assumes that data have been collected from a random
sample from the population as a whole. This is not the
case for rare human diseases, where, instead, sampling
is done within disease categories. Although this im-
plies that theory for the expected behavior of F does
not apply, the fact the nF is just the X2 test statistic for
detecting association between frequencies at two loci
means that it remains appropriate to use F to identify
regions of a chromosome that are likely to have a
particular disease gene.

For conditional haplotype data, an appropriate
measure of association is d2. As long as the ratio
nM1nM2/nHnh is close to 1, t and d2 are approximately
equal, and this is the case for the CF data in tables 1
and 2. It is the case because disease-locus heterozy-
gotes are sampled and because markers with a high
degree of polymorphism are used.

Since marker loci are necessarily polymorphic, we
work with the conditional distribution of d2. Figure 2
shows that the conditional mean of d2 is large enough
so that finite sampling effects are negligible, provided
that subsample sizes are 20 or more, which was the
case for the CF studies. The coefficient of variation for
d2 is low for small values of F, and it increases with
F, to a maximum of about 2. This variation reflects
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Table 2

Data from Kerem et al. (1989)

cv
Probe Enzyme n d2 (d2)

metD........... BanI 160 .1121 .1127 >10.0 >1.9
metD ........... TaqI 172 .0506 .0236 >10.0 >1.9
metH........... TaqI 152 .0296 .0282 >10.0 >1.9
E6........... TaqI 179 .0468 .0419 >10.0 >1.9
E7........... TaqI 164 .0533 .0486 >10.0 >1.9
pHl31 ........... Hinfl 179 .1759 .1646 4.3 1.8
W3D1.4 ........... HindIII 184 .1482 .1413 6.0 1.9
H2.3A ........... TaqI 140 .1093 .0992 >10.0 >1.9
EG1.4........... HincIl 163 .3193 .3042 1.3 1.4
EG1.4........... BglII 167 .3441 .3378 1.1 1.3
JG2E1........... PstI 179 .3280 .3271 1.2 1.3
E2.6 ........... MspI 121 .2477 .2193 2.7 1.6
H2.8A........... NcoI 138 .3186 .3159 1.4 1.3
E4.1 ........... MspI 147 .1719 .1461 5.9 1.8
J44........... XbaI 160 .2297 .1979 3.0 1.7
10-1X.6 ........... AccI 156 .3938 .3933 .9 1.2
10-1X.6 ........... HaeIII 162 .4101 .4094 .8 1.1
T6/20........... MspI 151 .0436 .0271 >10.0 >1.9
H1.3........... NcoI 164 .2790 .2603 1.8 1.5
CELO........... NdeI 165 .0101 .0025 >10.0 >1.9
J32........... Sad 130 .0068 .0061 >10.0 >1.9
J3.11 ........... MspI 172 .0214 .0214 >10.0 >1.9
J29........... PviII 153 .0331 .0320 >10.0 >1.9

the stochastic nature of evolution, and it cannot be
reduced with larger samples.
The estimates of r in table 2 do not increase more

or less monotonically as distance increases. This may
be due to recombination hot spots, but we suspect that
the large coefficients of variation and relatively small
chromosomal region under consideration make it
more likely that this behavior may be due to random
error. The pessimism of Hill and Weir (1988) in using
this approach to estimating r may be justified, but a
definitive answer will require additional data sets. If
future data sets depart from expectation in different
ways, then the explanation of random error will be
strengthened; but, if they depart in a fashion consis-
tent with that of table 2, then we will need to consider
modifications to our model. Certainly the situation
can be very complex, as shown by the recent paper by
MacDonald et al. (1991) on linkage disequilibrium
and Huntington disease.

All the results in the present paper are in terms of
the conditional moments of d2, because they are easy
to compute. Clearly it would be desirable to study the
distribution of d2 values conditional on marker gene

frequencies. The conditional probability that d2 ex-
ceeds some critical value would be of great interest,
especially if it could be expressed as a function of F.
At present it seems that conditional distributions of d2
will be found only from simulation, as in the work of
Hudson (1985) on neutral genes. Hudson's approach
can be used to simulate the conditional distribution of
d2, providing that the Q process is used to simulate the
ancestral tree.
A priori, one does not know the allele frequency

spectrum at the disease locus. If there is currently a
predominant allele, as appears to be the case with CF,
and if the frequency of this allele in the disease class
has remained high for a long time, then the model can
easily be modified, and the resulting calculations are
not very different from the ones we present here. Alter-
natively, if the frequency of the predominant allele is
drifting in time, or if there is no predominant allele
but many low-frequency alleles, then the modifica-
tions needed to the model are not clear and are a sub-
ject of future research.

Finally, our analysis has considered markers one at
a time. A more informative analysis should result from
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studying pairs of markers. In particular, it would be
of interest to be able to infer whether a disease locus
lies between two markers.
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Appendix
Identity Coefficients with Sampling

0*(2,O) = 1+nH-l(2H- )
nH nH

40*(0,2) = 1 +nh- (,2)
nh nh

0*(,4O) 1+ 7(nH-1),(2O) +6(nH- l)(nH- 2)(3,O)n, n3 nh

+(nHl 1)(nH-2)(nH- 3)* (4O)
nH

0*(034) 1 7(n-(1) 0(0H2) +6(nb-1)(nH1 2)f 0,3)nA, n;, ni

+(nn- 1)(nn- 2)( nb 3 (0,4
n;,

0*(3,1) = (1,) +3n- 1) (2,1) + (nH 1)(nH-2),,(3,1)n2 2 n2nH nH nH

(= (1,1)+ (n -1) ,(1 2) (nh 1)(nh- 2) (1,3)
ni ni ni

1 lH- 1 nb-i1

4*(2,2) -(1,1) + 4(2,1) -(1,2)
nHnh nHnh nHnh

+(nHl- 1)(nb-1)(22)
nHnih
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