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Introduction

In the past 4 years, pathogenic mitochondrial DNA
(mtDNA) mutations have been associated with a
broad spectrum of chronic degenerative diseases. The
mtDNA plays a central role in assembly of the mito-
chondrial ATP generating pathway, oxidative phos-
phorylation (OXPHOS). OXPHOS consists of five en-
zyme complexes (I-V), assembled from polypeptides
encoded by over 50 nuclear DNA genes and 13
mtDNA genes (table 1) (Shoffner and Wallace 1990).
Electrons derived from the oxidation of carbohydrates
and fats enter the pathway at complex I or complex
II, are transferred to coenzyme Q1o, and then move
sequentially to complex III, cytochrome c, complex
IV, and finally to oxygen, which is the terminal elec-
tron acceptor for OXPHOS. The energy released by
this electron transfer is used to pump protons across
the inner mitochondrial membrane at complexes I, I1I,
and IV. The resulting electrochemical gradient is used
by complex V to condense ADP + Piinto ATP. ATP
and ADP are then exchanged across the mitochondrial
inner membrane by the adenine nucleotide transloca-
tor (ANT).

One of the most novel features of mtDNA diseases
is their extraordinary phenotypic heterogeneity. De-
tailed analysis of mtDNA disease pedigrees has shown
that this is in part due to five unique characteristics of
mitochondrial genetics (Shoffner and Wallace 1990;
Wallace 1992). First, mtDNA in humans is maternally
inherited, with negligible contributions of mtDNA
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from the paternal lineage (Giles et al. 1980; Case and
Wallace 1981; Gyllensten et al. 1991). Thus, disease
manifestations caused by pathogenic mtDNA muta-
tions are concentrated along the maternal lineage. Sec-
ond, OXPHOS diseases are frequently caused by het-
eroplasmic mtDNA mutations in which both mutant
and normal mtDNAs are present within each cell.
Both cell division and mitochondrial proliferation re-
sult in a process called “replicative segregation” (Wal-
lace 1986), where cells accumulate variable propor-
tions of mutant and normal mtDNAs. Third, the
impact of an mtDNA mutation on a tissue depends on
the reliance of the component cells on mitochondrial
ATP production (Wallace 1986). Each cell or tissue
requires a minimum level of mitochondrial ATP pro-
duction, its threshold, to maintain normal function.
Thus, when mtDNA mutations cause a decline in ATP
production, cellular degeneration and death occur as
ATP levels fall below the expression thresholds of vari-
ous tissues. Organ systems with the highest ATP re-
quirements, such as the central nervous system (CNS),
will have the most frequent manifestations. Fourth,
the mtDNA fixes synonymous and replacement muta-
tions approximately 10 times faster than nuclear
OXPHOS genes (Neckelman et al. 1987; Wallace et
al. 1987). Since the mtDNA is a highly constrained
genome that occupies a pivotal role in energy metabo-
lism, pathogenic mtDNA mutations are likely to be
common. Finally, OXPHOS function declines with
age (Muller-Hocker 1989, 1990; Trounce et al. 1989;
Yen et al. 1991), in parallel with the accumulation of
somatic cell mtDNA mutations (Cortopassi and Arn-
heim 1990; Corral-Debrinski et al. 1991, and in press;
Hattori et al. 1991). The high mutation rate of the
mtDNA must in part be due to its close proximity
to free radicals generated by OXPHOS, its lack of
protective histones, and its limited mtDNA repair
mechanisms (Clark and Beardsley 1986; Richter et al.
1988; Breimer 1990; Lutz 1990). The accumulation
of somatic mutations may augment the effects of inher-
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Table |

Oxidative Phosphorylation

Shoffner and Wallace

Enzyme Complexes

Nuclear DNA

Subunits mtDNA Subunits

Complex I (NADH-ubiquinone oxidoreductase) ..............

Complex II (succinate—ubiquinone oxidoreductase) .........
Complex III (ubiquinone-cytochrome c oxidoreductase) ....
Complex IV (cytochrome ¢ oxidase) ........cccceevvvrnnerrvnnnnnns
Complex V (ATP synthase) .......cceeevvveriieenenierinenennnnnnnn.

>18 Subunits

10-16 Subunits

7 Subunits (ND1, ND2, ND3, ND4,
ND4L, NDS, and ND6)

4 Subunits 0 Subunits
7-9 Subunits 1 Subunit (cytochrome b)
10 Subunits 3 Subunits (COI, COII, and COIII)

2 Subunits (ATPase 6 and ATPase 8)

ited OXPHOS defects by further impairing OXPHOS
function.

Myoclonic Epilepsy and Ragged-Red Fiber
(MERRF) Disease and the Mitochondrial
Genetics Paradigm

MERREF is a maternally transmitted disorder asso-
ciated with OXPHOS impairment, myoclonic epi-
lepsy, dementia, ataxia, and mitochondrial myopathy
in severely affected individuals (Fukuhara et al. 1980;
Rosing et al. 1985; Wallace et al. 1988b). However,
significant degrees of phenotypic heterogeneity are fre-
quently observed in the maternal lineage family mem-
bers of MERRF pedigrees. The first clear indication of
the role that mitochondrial genetics can play in chronic
degenerative diseases came from molecular genetic
studies of MERREF. This disease is caused by an A-to-G
point mutation at nucleotide pair (np) 8344 in the
tRNALs" gene (MTTK*MERRF8334) (Wallace et al.
1988b; Shoffner et al. 1990). The MTTK*MERRF-
8334 mutation impairs mitochondrial protein synthe-
sis when present in high concentrations (Wallace
1986; Chomyn et al. 1991). The MERRF mutation is
invariably heteroplasmic, and the percentage of mu-
tant mtDNA, together with the age of family mem-
bers, has been found to correlate with the severity of
the resulting OXPHOS defect and with the extent of
clinical manifestations (Wallace et al. 1988b; Shoffner
et al. 1990).

Additional insights into the relationship between
genotype and phenotype in MERRF are provided by
three papers presented in this issue of the Journal (Bou-
let et al. 1992; Larsson et al. 1992; Silvestri et al.
1992). Severely affected MERREF patients were found
to have skeletal muscle levels of the MTTK* MERRF-
8334 mutation ranging from 80% to almost 100%
(Boulet et al. 1992; Larsson et al. 1992), values that

are typical of severely affected patients (Shoffner et
al. 1990). In other maternal lineage family members,
who were less severely affected, percentages of the
MTTK*MERRF8334 mutation ranged from 0% to
66% in fibroblasts, 0% to 82% in lymphocytes, and
0% to 92% in skeletal muscle (Larsson et al. 1992).
Moreover, for each individual, fibroblasts have the
lowest levels of the MTTK*MERRF8334 mutation,
lymphocytes have intermediate levels, and skeletal
muscle has the highest levels, suggesting that the nor-
mal mtDNAs impart a selective advantage to rapidly
replicating cells, though the extent of this effect may
vary between different cell types.

Consistent with the higher proportion of MTTK*-
MERRF8334 mutant mtDNAs in muscle, explanted
myoblast clones were frequently found to be homo-
plasmic for the mutant mtDNA, with only a small
number of clones being heteroplasmic or homoplas-
mic for the normal mtDNA (Boulet et al. 1992). Boulet
et al. hypothesized that this skewed distribution might
be due to a nonrandom mechanism of mtDNA segre-
gation, one that favored selection and fixation of the
MTTK*MERRF8334 mutation in myoblasts. They
predicted that since myoblasts harboring normal
mtDNAs had a growth advantage over those harboring
the mutants, patient muscle should be derived from
a myoblast population that contained predominantly
normal mtDNAs. An alternative explanation could be
that MERREF patients develop from ova containing
very high proportions of the MTTK*MERRF8334
mutation. Hence, both myoblasts and muscle may
have high proportions of mutant mtDNAs. This con-
cept is more likely, since during early development
there would be less of a selective advantage for cells
with normal mtDNAs. In the fetus, oxygen levels are
limited by factors such as a deficiency in the oxygen
transporter myoglobin (Weller et al. 1986) and a re-
duction in oxygen tensions in fetal blood, to about
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50% of that in adult arterial blood. Low oxygen ten-
sions are associated with increased glycolytic enzyme
transcripts and decreased OXPHOS transcripts (Web-
ster et al. 1990). Hence, during fetal development,
the reliance on glycolysis for ATP production could
remove any selective growth advantage imparted by
normal mtDNAs, allowing myoblasts with high per-
centages of mutant mtDNAs to persist and participate
in myogenesis.

Myotubes with varying percentages of the MTTK*-
MERRF8334 mutation demonstrated a sharp decline
in mitochondrial protein synthesis levels when the in-
tracellular concentration of normal mtDNAs fell be-
low 15% of the total mtDNAs (Boulet et al. 1992). At
this point, the translation efficiency of COI and the
cytochrome c oxidase enzyme activity were dramatically
decreased. This indicates that the MTTK*MERRF-
8334 mutation is functionally recessive, which is con-
sistent with our observations in members of a large
MERREF pedigree. When the mutant mtDNAs in-
creased above 85% in our MERRF pedigree, large
changes in clinical phenotype occurred with only small
changes in genotype (Shoffner et al. 1990). Because of
the precipitous nature of the expression thresholds,
patients born with high percentages of mutant
mtDNAs would be particularly sensitive to further in-
hibition of OXPHOS function. Therefore, even rela-
tively small reductions in OXPHOS function (Muller-
Hocker 1989, 1990; Trounce et al. 1989; Yen et al.
1991) that are associated with the age-related accumu-
lation of somatic mtDNA mutations (Cortopassi and
Arnheim 1990; Corral-Debrinski et al. 1991, and in
press; Hattori et al. 1991) could be sufficient to take
a patient who is near his or her OXPHOS threshold
and reduce ATP generation enough to produce clinical
manifestations.

In myoblasts and myotubes that contained similar
quantities of the MTTK*MERRF8334 mutation, the
efficiency of protein synthesis was greater in the myo-
tubes (Boulet et al. 1992). When myoblasts fuse to
form myotubes, an induction of muscle-specific genes
occurs that coincides with induction of contractile
proteins, mitochondrial proliferation, the differentia-
tion of OXPHOS-dependent type I fibers or the glycol-
ysis-dependent type II fibers, and a 2.4-4-fold in-
crease in mtDNA content (Webster et al. 1990).
Prominent changes occur in the transcription of
OXPHOS genes, including the nuclear-encoded ATP
synthase b subunit and the mtDNA-encoded 16S
rRNA, ATPase 6, and COIIl mRNAs whose expres-
sion is high in myoblasts, falls during exit from the cell
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cycle, and increases again in myotubes (Webster et al.
1990). Transcripts for the heart-muscle and skeletal
muscle-specific isoform of the ANT (ANT1) are not
present in myoblasts and are specifically induced in
myotubes (Webster et al. 1990; Stepien et al. 1992).
Hence, the changes in protein synthesis observed by
Boulet et al. (1992) are likely to reflect changes in
the regulatory mechanisms for mitochondrial mRNA
translation that are induced by cell differentiation.

Although the MTTK*MERRF8334 mutation ac-
counts for approximately 80%-90% of MERREF cases,
other mtDNA mutations or even nuclear DNA muta-
tions are likely to cause the remaining cases. The third
article in this issue of the Journal (Silvestri et al. 1992)
describes one such mutation, a heteroplasmic T-to-C
point mutation at position 8356 of the tRNAL¥"™ gene
(MTTK*MERRF8356). This point mutation may
disrupt base pairing at the first np of the TyC stem and
has been associated with two independent MERRF
pedigrees (Silvestriet al. 1992; Zeviani et al., in press).
The clinical description of the patient, by Silvestri et
al. (1992), was indistinguishable from the clinical pre-
sentations of patients who harbor the MTTK*MERRF-
8334 mutation.

All of these observations indicate that there is much
left to learn about the relationship between genotype
and phenotype in mtDNA diseases. By defining the rela-
tionships between the clinical, biochemical, and genetic
variability in MERRF pedigrees and the principles of
mitochondrial genetics, it became clear that mtDNA
mutations could be responsible for an enormous range
of disease manifestations that depended on which cell
types experienced reductions in ATP-generating ca-
pacity to below their threshold. For example, some
mtDNA mutations can produce clinical manifesta-
tions that are systemic, such as in Kearns-Sayre and
many chronic progressive external ophthalmoplegia
(CPEO) syndromes, MERRF, mitochondrial enceph-
alomyopathy lactic acidosis and strokelike episodes
(MELAS), Leigh disease, and retinitis pigmentosa plus
CNS degeneration. In contrast, other mtDNA muta-
tions produce clinical manifestations that are confined
primarily to specific tissues, such as the optic nerve
in Leber hereditary optic neuropathy (LHON), the
extraocular muscles and levator palpebrae in some
CPEO cases, the pancreas and auditory nerve in diabe-
tes mellitus and deafness, the cardiac and skeletal mus-
cle in hypertrophic cardiomyopathy and mitochon-
drial myopathy, and the skeletal muscle in isolated
mitochondrial myopathies (table 2). These differences
among OXPHOS diseases are not entirely accounted



Table 2

Pathogenic mtDNA Mutations

mtDNA Mutation

Phenotype

Reference(s)

1. Deletions and duplications:

Spontaneously occurring mtDNA deletions ........
Maternally inherited mtDNA deletion ..............
Spontaneously occurring mtDNA duplications ...

Maternally inherited duplications ....................

I1. Point mutations:

MTCYB*LHON15257: (G to A), aspartate to

ASPATAZINE ..oevvinrinninniiniirinnirnienerenneenaennns

MTND4*LHON11778: (G to A), arginine to

histidine .....ccoveniiiiiiiiiiiiiieieirieee e eaeaaee

MTCOI*LHON7444: (G to A), termination

codon to lysine .......ccceeeiiiniiiiiiiiniiinniinnnn

MTND1*LHON4160: (T to C), leucine to

Proline .....ccevrviiniiiiniiiiiiiiiiiia

MTND1*LHON3460: (G to A), alanine to

threonine .....c.vveieienieieniiinnenriiirenereanenees

MTND1*LHON3394: (T to C), tyrosine to

hiStidine .........eeerenereeemneiieininiiinieiies
Synergistic mtDNA mutations: MTCYB*LHON-

15812 (G to A), MTND6*LHON14484
(T to C), MTNDS*LHON13708 (G to A),
MTND2*LHONS244 (G to A), MTND1*-
LHON4917 (A to G), and MTND1*-

LHON4216 (T t0 C) ..covvvnniiiiiiiiiiienenineenne

MTND4*MELAS11084: (A to G), threonine to

AlaNINE ..uvvnieiiiiiiie e

MTATP6*NARP8993: (T to G), leucine to

AGININE ..evviiniiniinrneriinetarierireeertreesanseas

MTTK*MERRF8344: (G to A) .....ccceevrnniinnnnns

MTTK*MERRF8356: (T to C) ....eevvrrinnninnnnns

MTTL1*MELAS3243: (T to C) ..coeunirrinnnnennnn.

MTTL1*MMC3260: (A t0 G) ...oovvnnrrninnnnnnnn.

MTTL1*MM3250: (T t0 C) wevvvrrrnnneniinnninennnns
MTTL1*MELAS3243: (At0 G) ..oueeiinnnniiennnns

Kearns-Sayre and CPEO syndromes,
Pearson syndrome, malignant migraine

Diabetes and deafness

Kearns-Sayre and CPEO syndromes with
diabetes mellitus

Complex Kearns-Sayre and CPEO
syndromes which include proximal
renal tubulopathy, diabetes mellitus,
and cerebellar ataxia

LHON

LHON, rare pedigrees with LHON and
CNS degeneration

LHON
LHON plus CNS degeneration

LHON

LHON

LHON can occur when these mutations
are present in various combinations

MELAS

Retinitis pigmentosa, Leigh disease, highly
variable manifestations in single- or
multiple-organ systems

MERREF, Leigh disease, highly variable
manifestations in single- or multiple-
organ systems

MERREF, highly variable manifesta-
tions in single- or multiple-organ
systems

MELAS, highly variable manifesta-
tions in single- or multiple-organ
systems

Hypertrophic cardiomyopathy plus
mitochondrial myopathy

Mitochondrial myopathy

MELAS, CPEO syndromes, Leigh disease,
diabetes mellitus, highly variable
manifestations in single- or multiple-
organ systems

Holt et al. 1988; Rotig et al. 1989;
Bresolin et al. 1991; Wallace
et al. 1991

Ballinger et al. 1992

Poulton et al. 1989

Rotig et al. 1992

Brown et al. 19926

Wallace et al. 19884; Larsson et al.
1991

Brown et al. 19924
Howell et al. 19915

Howell et al. 19914; Huoponen et al.
1991

Brown et al. 19924

Brown et al. 1991, 19924, 1992b,
1992¢; Johns and Berman 1991;
Johns and Neufeld 1991; Mackey
and Howell 1992

Lertrit et al. 1992

Holt et al. 1990; Tatuch et al. 1992;
Shoffner et al., in press

Wallace et al. 1988b; Berkovic et al.
1989; Shoffner et al. 1990

Silvestri et al. 1992; Zeviani et al.,
in press

Goto et al. 1991

Zeviani et al. 1991

Goto et al. 1990, 19924, 1992b;
unpublished observation

NotEt. —Human Gene Mapping (HGM) designations are given for each point mutation (Wallace et al. 1991).
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for by replicative segregation of mutant and normal
mtDNAs. Since these clinical manifestations are found
in many commonly encountered disease classes, such
as diabetes mellitus (Ballinger et al. 1992) and cardio-
myopathies (Shoffner and Wallace 1992), mtDNA
mutations are likely to contribute to the genetic heter-
ogeneity of these disorders. As our understanding of
the molecular genetics of OXPHOS diseases matures,
valuable insights into common mechanisms for disease
are likely to emerge. Clearly, one relevant variable is
the interaction between nuclear and cytoplasmic genes
and the cumulative effects of multiple mutations. In
this issue of the Journal, Mackey and Howell (1992)
provide further support for the relationship between
multiple mtDNA mutations and LHON.

LHON

LHON is a maternally inherited OXPHOS disease
in which individuals experience acute, painless loss of
vision in the central visual field (Newman et al. 1991).
The typical ophthalmoscopic features of acate LHON
include circumpapillary telangiectatic microangiopa-
thy and swelling of the nerve fiber layer around the
optic disk. Once visual loss has occurred, spontaneous
recovery is uncommon but has been reported in a few
patients (Lessell et al. 1983; Stone et al. 1992). Ap-
proximately 40%-60% of LHON cases are caused by
a G-to-A point mutation in the ND4 gene at position
11778 (MTND4*LHON11778) (Wallace et al.
19884), and approximately 20% of cases are caused
by a G-to-A point mutation in the ND1 gene at posi-
tion 3460 (MTND1*LHON3460). Mutations in the
ND1 gene at position 4160 (MTND1*LHON4160)
and in the cytochrome b gene at position 15275
(MTCYB*LHON15257), as well as a growing cohort
of synergistic mutations, account for many of the re-
maining cases (table 2). To date, all LHON mutations
have been missense mutations in OXPHOS subunits
of complexes I, III, and IV.

Synergistic mtDNA mutations may produce a patho-
genic reduction in ATP-generating capacity by their
cumulative effect on OXPHOS function. For example,
the missense mutation at position 13708 of the ND5
gene (MTNDS*LHON13708) has been found in con-
junction with almost all of the other synergistic point
mutations and appears to be an important premuta-
tion for the development of the LHON phenotype
(Brown et al. 1991, 1992b; Johns and Berman 1991;
Johns and Neufeld 1991). The MTNDS5*LHON-
13708 mutation is a G-to-A transition that changes a
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leucine in NDS$ at amino acid 458 to a polar threonine.
This mutation is present at a prevalence rate of 5%
(16/320) in the Caucasian population (Johns and Ber-
man 1991; Brown et al. 1992b). However, an increase
in the probability for the expression of LHON occurs
when an mtDNA lineage with the MTNDS5*LHON-
13708 mutation also harbors a homoplasmic missense
mutation in the cytochrome b gene at np 15257
(MTCYB*LHON15257), which changes a highly
conserved aspartate to an asparagine. Additional con-
founding mutations can include a second cytochrome
b mutation at np 15812 (MTCYB*LHON15812),
which changes a valine to a methionine, and a hetero-
plasmic missense mutation in the ND2 gene at np 5244
(MTND2*LHONS244), which changes a glycine to
a serine (Brown et al. 1992b).

Additional evidence that synergistic interactions
among mtDNA mutations can cause LHON is pre-
sented in this issue of the Journal (Mackey and Howell
1992). Two large maternal LHON pedigrees are re-
ported that are distinctive in showing significant re-
coveries of visual acuity in affected individuals who
were less than 30 years old. Sequencing the mtDNA-
encoded subunits of complex I and III from these two
families revealed 10 missense mutations. The patho-
logical significance of these mutations is difficult to
evaluate, because of the small numbers of population
controls analyzed, the limited phylogenetic compari-
sons performed, and the availability of sequence data
on only half of the mitochondrial genome. However,
of these mutations, two homoplasmic mutations and
one heteroplasmic mutation showed interesting asso-
ciations with LHON in these two pedigrees. The
MTNDS5*LHON13708 (Brown et al. 1991, 1992b;
Johns and Berman 1991) and MTND1*LHON4216
mutations (Johns and Berman 1991) were homoplasmic
in both Australian pedigrees. These mutations are found
together at increased frequencies in LHON pedigrees,
relative to controls (Johns and Berman 1991). A mis-
sense mutation was identified at position 14484 of ND6
(MTND6*LHON14484), which changed a poorly con-
served methionine to a valine. The MTND6*LHON-
14484 mutation has been found in five LHON pedi-
grees: three Australian pedigrees (Howell et al. 1991b;
Mackey and Howell 1992), a singleton case of LHON
(Mackey and Howell 1991), and one American ped-
igree (Brown et al. 1992). This mutation was het-
eroplasmic in only one of these pedigrees (Vic2 in
Mackey and Howell 1992). In the two Australian ped-
igrees presented in this issue of the Journal (Mackey
and Howell 1992), the cumulative effect of the
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MTNDS5*LHON13708, the MTND1*LHON4160,
and the MTND6*LHON14484 mutations on OXPHOS
function may produce sufficient impairment of ATP
generation in the optic nerve to result in LHON. Se-
quence data on the remaining portions of the mtDNA
from these Australian pedigrees will be important for
assessing whether other relevant nucleotide substitu-
tions are present.

Practical Applications

The numerous complexities in correlating pheno-
type with genotype that have been discussed above
make it particularly difficult to manage patients and
counsel family members. Therefore, it is essential that
a coordinated approach to patient diagnosis, mutation
identification, genetic counseling, and institution of
metabolic therapies be utilized. Our diagnostic ap-
proach to these patients focuses on six elements: (1)
clinical evaluation, (2) pedigree analysis, (3) metabolic
testing, (4) enzymological analysis of OXPHOS func-
tion in skeletal muscle, (5) histochemistry and electron
microscopy of skeletal muscle, and (6) mtDNA muta-
tion analysis in appropriate tissues. In many individu-
als, clinical evaluation, pedigree analysis, and meta-
bolic testing permit recognition of phenotypes that are
associated with specific mtDNA mutations. For most
mtDNA point mutations, blood cell DNA can then
be tested, and, if the expected pathogenic mtDNA
mutation is identified, no further diagnostic testing is
required. Other maternal lineage family members can
then be tested for the mutation. However, most
mtDNA deletions are not readily detected in blood
(Holt et al. 1988), and failure to detect an mtDNA
point mutation in blood does not preclude its presence
in muscle and brain. By contrast, muscle, being a sta-
ble tissue, tends to retain all mtDNA mutations.
Hence, additional analyses to address these issues ne-
cessitates muscle biopsy. We divide the skeletal muscle
into three portions: one for histochemistry and elec-
tron microscopy, one for OXPHOS enzymology, and
one for mtDNA analysis. In order to perform
OXPHOS enzymology, mitochondria are immedi-
ately isolated from fresh muscle to reduce artifacts
associated with sample handling and freezing (Zheng
etal. 1991). Each respiratory complex is then assayed
by our optimized procedures and compared with a
group of controls. This has proved to be a highly sensi-
tive approach for establishing whether a patient’s clini-
cal manifestations represent an OXPHOS disease.
Further analyses of muscle mtDNA can then be con-
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ducted to identify causal mutations. The development
of this integrated clinical and laboratory protocol has
greatly enhanced our ability to diagnose, counsel, and
treat patients with OXPHOS disorders, which are in-
creasingly being recognized as a common cause of
chronic, degenerative diseases.
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