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Summary

The Xq26-q27 region of the X chromosome is interesting, as an unusually large number of genes and anony-
mous RFLP probes have been mapped in this area. A number of studies have used classical linkage analysis
in families to map this region. Here, we use mutant human T-lymphocyte clones known to be deleted for all
or part of the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene, to order anonymous probes
known to map to Xq26. Fifty-seven T-cell clones were studied, including 44 derived from in vivo mutation
and 13 from in vitro irradiated T-lymphocyte cultures. Twenty anonymous probes (DXS10, DXS11,
DXS19, DXS37, DXS42, DXS51, DXS53, DXS59, DXS79, DXS86, DXS92, DXS99, DXS100d, DXS102,
DXS107, DXS144, DXS172, DXS174, DXS177, and DNF1) were tested for codeletion with the hprt gene

by Southern blotting methods. Five of these probes (DXS10, DXS53, DXS79, DXS86 and DXS177) showed
codeletion with hprt in some mutants. The mutants established the following unambiguous ordering of the
probes relative to the hprt gene: DXS53-DXS79-5hprt3-DXS86-DXS1O-DXS177. The centromere appears

to map proximal to DXS53. These mappings order several closely linked but previously unordered probes.
In addition, these studies indicate that rather large deletions of the functionally haploid X chromosome can

occur while still retaining T-cell viability.

Introduction

The q26-27 region of the human X chromosome con-
tains a number of genes, including the hypoxanthine-
guanine phosphoribosyltransferase (hprt) gene (Pai et
al. 1980), X-linked lymphoproliferative syndrome
(LYP) (Skare et al. 1989a, 1989b; Sylla et al. 1989),
Lowe syndrome (OCRL) (Silver et al. 1987; Wadelius
et al. 1989), X-linked idiopathic hypoparathyroidism
(Thakker et al. 1989), Borjeson-Forssman-Lehmann
syndrome (Turner et al. 1989), albinism-deafness syn-
drome (Shiloh et al. 1990), the coagulation factor IX
(F9) (Camerino et al. 1984) gene, and the fragile X
syndrome (FRAXA) (Giraud et al. 1976; Harvey et al.
1977), as well as a large number of anonymous RFLP
probes (Mandel et al. 1989). A number of investiga-
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tors have studied this region by using classical recom-
bination studies of families with LYP, OCRL, F9 de-
ficiency or FRAXA (Drayna and White 1985; Mandel
et al. 1986; Murphy et al. 1987; Oberle et al. 1987;
Arveiler et al. 1988; Brown et al. 1988; Mulley et al.
1988; Skare et al. 1989a, 1989b; Sylla et al. 1989;
Wadelius et al. 1989; Reilly et al. 1990). The distance
from LYP (Xq25-26) to F9 (q26.3-q27.1) appears to
be of the order of 1.5-2.0 cM, with FRAXA (Xq27.3)
about 2 cM telomeric to F9 (Davies et al. 1987). A
number of anonymous probes have been placed in this
region by the different investigators. Unfortunately,
however, each investigator has used a different set of
probes, and, in addition, most of these studies have
used a small number of affected families, and thus the
confidence limits on the recombination frequencies are
large and the relative lods (when given) for alternate
three-point orderings are not greatly different. Thus,
it is difficult to work out a consistent, unambiguous
map of the region.
Our laboratory has developed an hprt clonal assay
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to detect and measure mutations occurring in the hprt
gene of human T-lymphocytes (Albertini et al. 1982;
O'Neill et al. 1987, 1989). hprt mutant lymphocytes
are selected by their ability to grow in the purine ana-
logue 6-thioguanine, which kills the wild-type hprt+
cells. Mutations occurring in vivo in lymphocytes ei-
ther spontaneously or after exposure to mutagens can
be detected (Morley et al. 1983; Albertini et al. 1988;
Dempsey et al. 1985; Seifert et al. 1987; Cole et al.
1988; Hakoda et al. 1988; Messing et al. 1989; Tates
et al. 1989; Nicklas et al. 1990). Background mutant
frequencies in normal young adults are of the order of
5 x 10-6 (Morley et al. 1983; O'Neill et al. 1987,
1989; Messing et al. 1989; Tates et al. 1989) and
rise up to 100-fold after mutagen exposures such as
environmental exposures (Seifert et al. 1987; Cole et
al. 1988; Hakoda et al. 1988) or cancer chemo- or
radiotherapies (Dempsey et al. 1985; Messing et al.
1989; Nicklas et al. 1990). Newborns have an ap-
proximately 10-fold lower mutant frequency (Tat-
sumi et al. 1985; Henderson et al. 1986; Lippert et al.
1990; McGinniss et al. 1990). An in vitro hprt clonal
assay in T-lymphocytes has also been developed
(O'Neill et al. 1990b) to allow the determination of
the mutagenicity of various compounds and spectra of
the mutations induced.
The hprt mutants generated in both in vivo and in

vitro assays can be grown to sufficient numbers for
molecular analysis including hprt Southern blotting
and sequencing. About 15% of spontaneous hprt mu-
tants in normal adults have gross changes (mostly dele-
tions) in their hprt gene on Southern blots (Turner et
al. 1985; Bradley et al. 1987; Nicklas et al. 1987,
1989; Hakoda et al. 1989). These frequencies are
much higher in in vivo-irradiated (33%) or in vitro-
irradiated (67%) T-lymphocytes, as would be ex-
pected (Nicklas et al. 1990; O'Neill et al. 1990a).
Newborns also have higher percentages (66%-85%)
of gross alterations, which predominantly involve ex-
ons 2 and 3 (McGinniss et al. 1989; Lippert et al.
1990). Here we use 57 hprt mutant T-lymphocyte
clones containing partial or total deletions of their hprt
gene and 20 anonymous X-linked probes to perform
classical deletion mapping of the q26 region of the X
chromosome.

Material and Methods

Mutant T-Lymphocyte Clones

The hprt mutant lymphocytes were isolated by use
of an hprt clonal assay (Albertini et al. 1982; O'Neill

et al. 1987, 1989). Forty-four of the mutants were
isolated from fresh blood samples and were the result
of in vivo mutations. In brief, peripheral blood or,
in the case of newborns, umbilical cord blood was
collected in heparin (sodium heparin; 143 units/ 10 ml
whole blood) blood-collection tubes. The lympho-
cytes were then separated on Ficoll-Hypaque, and mi-
togenic stimulation was initiated with 1 ig phytohem-
agglutinin/ml in 15-20-ml cultures (1 x 106 cells/ml)
in 25-cm2 tissue culture flasks. All experiments used
RPMI 1640 medium containing 20% nutrient me-
dium HL-1, 5% prescreened defined supplemented
bovine calf serum in a humidified atmosphere of 5%
C02/95% air at 370C, and T-cell growth factor
(TCGF). Irradiated (8,000 rads) mycoplasma-free
hprt- derivatives ofWIL-2 lymphoblastoid cells desig-
nated TK6 were used as accessory feeder cells. After
36-40 h, the cells were centrifuged and washed, and
the cell number was determined by use of a hemocy-
tometer. The cells were then seeded in 96-well culture
plates at 1-10 cells/well in nonselection medium and
at 2 x 104 cells/well in 10 gM 6-thioguanine selection
medium. Each well also contained 0.5-1 x 104 irradi-
ated TK6 cells. After 7-14 d of culture, colony growth
was determined by use of an inverted phase-contrast
microscope. hprt mutant clones (those growing in
6-thioguanine) were isolated and propagated in vitro
for molecular analysis.
Mutants were isolated from the blood of several

groups of male individuals. Eight of the mutants were
isolated from three normal young adults. Three mu-
tants were isolated from two newborns (umbilical
cord blood samples). Six mutants were derived from
four elderly individuals. Twenty mutants were derived
from seven individuals who received 13"1 anti-ferritin
radioimmunotherapy for hepatoma, and seven mu-
tants were from three patients receiving cis-platinum
therapy for testicular cancer.

Thirteen of the mutant lymphocyte clones were de-
rived from in vitro y-irradiated lymphocyte cultures
plated for 6-thioguanine selection after 8 d phenotypic
expression (O'Neill et al. 1990b). In brief, the mono-
nuclear cell fraction isolated as above from fresh blood
was suspended at 2 x 106 cells/ml in RPMI 1640
and was exposed to 300 rads irradiation from a 137Cs
source (Gammacell 1000 B; Nordion International).
Then an equal volume of medium RPMI 1640 con-
taining 40% HL-1 and 10% FBS was added, the cells
were aliquoted at 20 ml/25-cm2 flask, and phytohe-
magglutinin was added at 1 gg/ml. After 36-40 h incu-
bation (designated as day 2), the cell number was de-
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termined and the cells were plated in mass culture at
1 x 105 cells/ml in growth medium containing 2.5 x
105 irradiated feeder cells/cm2 and optimal amounts
of TCGF and were incubated for 3 d. On day 5, cells
were subcultured as above. On day 8, the cells were

plated for cloning efficiency (1 and 2 cells/well) and
mutant selection (1 x 104 cells/well). Clones were

isolated and propagated as above. Thirteen mutant
clones from two individuals were studied.
The clones used in this study were chosen because

they contained an hprt deletion extending 5' and/or
3' of the hprt gene as detected by Southern blotting
with a 947-bp DNA probe containing the entire hprt
coding sequence (Brennard et al. 1983). All the mutant
clones came from male individuals and therefore had

Table I

only 1 X chromosome. The list of mutant clones used
in this study is shown in table 1.

DNA Probes

The list of 20 anonymous probes used in this study
is shown in table 2. Probes were chosen that mapped
to Xq25-q27 according to Human Gene Mapping 9
(Davies et al. 1987) and/or Human Gene Mapping 10
(Mandel et al. 1989).

Southern Blot Analysis

DNA was isolated from the mutant lymphocytes as

described by Nicklas et al. (1987). In brief, 15-20 x

106 frozen cells were washed in 0.5 ml TjoEj (10 mM
Tris-HCl, 1 mM EDTA, pH 8.0) and then were resus-

Table I (continued)

Description of hprt Deletion T-Lymphocyte
Clones Used

Source and
Individual Experiment Clone hprt Gene Change

In vivo normal young adults:
1..... M16 BlOH11 Total gene deletion
1..... MF52 A1OH6 Exon 1 deletion
2..... LS35 ASB4 Total gene deletion
2..... LS1 A5H11 Total gene deletion
2..... MF33 A4F9 exons 5-9 deleted
3..... JB6 A9E8 Total gene deletion
3..... JB6 A5G4 Total gene deletion
3..... MF38A A12G4 Exons 4-9 deleted

In vivo cis-platinum-treated adults:
4..... MF336B B5AS Total gene deletion
5..... MF272 M20 Total gene deletion
5..... MF272 M31 Total gene deletion
6..... MF266 ASE2 Exons 1-3 deleted
6..... MF274B M31 Exons 1-3 deleted
6..... MF274B M32 Total gene deletion
6..... MF274B Ml Exons 1 and 2 deleted

In vitro-irradiated cells:
2..... LS148 G1 Total gene deletion
2..... LS148 Y8 Exons 1-3 deleted
2..... LS148 03 Total gene deletion
2..... LS148 V6 Total gene deletion
2..... LS148 ID6 Total gene deletion
2..... LS38 E5F9 Exons 4-9 deleted
2..... LS155 El Total gene deletion
7..... LS323 M24 Exon 1 deleted
7..... LS323 M46 Total gene deletion
7..... LS323 M158 Exons 1 and 2 deleted
7..... LS345 M13 Total gene deletion
7..... LS345 M23 Exon 1 deleted
7..... LS345 M9 Total gene deletion

(continued)

Source and
Individual Experiment Clone hprt Gene Change

In vivo newborn:
8 ........... SS108 A1SE5 Exons 4-9 deleted
8 ........... SS108 A13H6 Exons 4-9 deleted
9 ........... LS346 M16 Exons 1-3 deleted

In vivo elderly adults:
10..... MF241 A4D3 Total gene deletion
10..... MF241 A8E2 Exons (5?)-9 deleted
10..... MF241 A1OC2 Exons 3-9 deleted
11 ..... MF118 A4A10 Exons 4-9 deleted
12..... MF130A A7D2 Total gene deletion
13 ..... MF130B B6A2 Total gene deletion

In vivo-irradiated adults:
14..... MF268 A4A1 1 Total gene deletion
14..... MF268 A4E4 Total gene deletion
14..... MF268 ASA4 Total gene deletion
14..... MF268 ASA9 Total gene deletion
14..... MF268 A8H8 Total gene deletion
14..... MF268 A9G3 Total gene deletion
14..... MF268 A9G1 1 Total gene deletion
14..... MF268 Al1D4 Total gene deletion
14..... MF268 AllE12 Total gene deletion
15 ..... MF126 C6G10 Exons 5-9 deleted
16..... MF123 A6B6 Total gene deletion
16..... MF123 A6C11 Exons 1 and 2 deleted
16..... MF123 A7F5 Total gene deletion
16..... MF123 A6G4 Exons 5-9 deleted
16..... MF123 A6G11 Total gene deletion
16 ..... MF123 A7C9 Total gene deletion
17..... LS215 A5C4 Total gene deletion
18 ..... MF120 A5A1 1 Total gene deletion
19..... MF121A A3A10 Total gene deletion
20..... MF312 M2 Exon 1 deleted
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Table 2

hprt Linked Probes Used

FRAGMENT SIZE(S)

INSERT SIZE (kb)
DX No. PROBE VECTOR (enzyme)(kb) PstI HindIII DONOR REFERENCE

DXS10..... 36B-2 puc9 2.0 (HindIII) 13.0 2.18 ATCC Silver et al. 1987
DXS11 ..... p22-33 pBR322 1.8 (HindIII) 11.0, 3.7 1.55 B. Sylla Nussbaum et al. 1985
DXS19 ..... pX46d puc8 1.8 (HindIII) 9.0 1.7 B. N. White Holden et al. 1984
DXS37 ..... 30RIb pAT153 6.28 (EcoRI) 17.0 9.8, 3.45 B. N. White Holden et al. 1984
DXS42 ..... p7F1 pucl9 1.8 (EcoRI) 6.2, 5.15 4.3 B. Sylla Reilly et al. 1988
DXS51 ..... pS2a pBR322 5.3 (EcoRI/HindIII) 13.0 3.45 ATCC Drayna and White 1985
DXS53 ..... St16 pBR329 5.9 (EcoRI) 2.5, 1.5, 1.23, 1.0 5.13 B. Sylla Oberle et al. 1986
DXS59 ..... L2.9 pBR322 1.99 (EcoRI) 4.8 7.0a, 1.3 E. Bakker Wieacker et al. 1984
DXS79 ..... 07-03 EMBL-3 2.3b (EcoRI) 5.0 6.2 ATCC Murphy et al. 1985
DXS86... ST1 pBR329 6.0 (EcoRI) 5.0, 1.35 7.8, 5.4a, 3.5' J.-L. Mandel Oberle et al. 1986, 1987
DXS92 ..... pXG-16 pAT153 3.3 (HindIII) 6.0 5.5 or 9.5 ATCC Davatelis et al. 1985
DXS99 ..... pX58dIIIc puc8 2.4 (HindIII) 5.6 2.2 B. N. White Mulligan et al. 1987
DXS100d ... pX45d puc8 2.5 (HindIII) 6.5 or 3.7 2.6 B. N. White Holden et al. 1984
DXS102 ..... cX38.1 pAT153 2.6 (EcoRI) 5.15 9.5, 2.4 ATCC Hofker et al. 1987
DXS107 ..... cpX234 puc12 0.15 (BamHI) .9 2.9 ATCC Hofker et al. 1986
DXS144 ..... C11 pEMBL8 1.0 (PstI) 2.65, 1.2 7.5a, 5.6, 3.3, J.-L. Mandel Oberle et al. 1987

1.48, 1.35
DXS172 ..... pX71c pAT153? 1.0 (EcoRI) 11 5.4 B. N. White Holden et al. 1984
DXS174 ..... pX82d pAT153? 1.45 (EcoRI) 1.7 5.7 B. N. White Holden et al. 1984
DXS177 ..... plambda2.7 Xgtwes 7 (EcoRI) 8.sa, 6.35, 3.7, 13.5,9.4,5.3, ATCC Cooke et al. 1983,

2.4, 1.75, 1.5, 4.65a, Davies et al. 1987
7.0c, 2.1c, 1.38c 2.95a, 8.2c

DNF1 .... pAX-6 pAT153 1.44 (Pstl) 6.3, 3.4, 2.75, 2.1 6.8, 4.3a, 1.2 ATCC Balazs et al. 1984

a Faint fragment.
b Total insert size is 18 kb; 2.3-kb EcoRI subfragment was used for the hybridization probe.
' Cross-hybridizing fragment (presumably not in Xq26, as they were not codeleted with hprt).

pended in 2.5 ml TENS (25 mM Tris-HCl, pH 8.0,
100 mM NaCl, 10 mM EDTA, 0.6% SDS). The cell
suspension was then heated to 65C for 15 min, fol-
lowed by an overnight incubation at 370C with pro-
teinase K (1.5 mg). The next day, 1.0 mg proteinase
K was added to each sample, which then was incu-
bated for 2 h at 371C. The solution was then phenol
extracted twice and chloroform/isoamyl alcohol ex-
tracted three times. After ethanol precipitation, the
DNA pellet was resuspended in TjoEj and digested
with restriction enzymes (HindIII or PstI). After frac-
tionation of the DNA fragments on a 0.7% agarose
gel, the DNA was transferred to nitrocellulose paper
(Schleicher & Schuell) as described previously (Nicklas
et al. 1987).

Prehybridization was in 50% formamide, S x SSC
(3 M NaCl, 0.3 M sodium citrate, pH 7.0), 10 x
Denhardt's, 50 mM Tris-HCl, pH 7.5, and 500 mg
sheared and denatured herring sperm DNA/ml for
4-6 h at 420C. Hybridization was performed over-

night at 421C in a solution of 50O formamide, S x
SSC, 1 x Denhardt's, 20 mM Tris-HCl, pH 7.5, 10%
dextran sulfate, 250 mg sheared and denatured her-
ring sperm DNA/ml, and 1-1.5 x 106 cpm of oligo-
nucleotide-labeled probe/ml (Feinberg and Vogel-
stein 1984). Autoradiography of the nitrocellulose
was performed at - 80'C for 1-3 d by using Kodak
XAR-S film and Dupont Lighming Plus screens (Nicklas
et al. 1990). Blots were washed free of probe (two
washes, each at 701C for 1s min in distilled water)
and were placed in prehybridization solution for re-
probing. The same four nitrocellulose filters were used
for all 20 probings.

Results

A total of 57 hprt mutant T-cell clones were used
in this study (table 1). Mutant clones arising in vivo
in normal young adults, elderly adults, and newborns
and in irradiation-exposed or cis-platinum-exposed
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Table 3

Extent of Deletion in 57 hprt Deletion Mutants

Clone (typea) DXS53 DXS79 5'hprt 3'hprt DXS86 DXS10 DXS177

MF130 B6A2 (E).........
LS148 Gl (V).............
MF123 A6Gll (R) .....

MF268 AllE12 (R)....
LS155 El (V).............
LS148 V6 (V) ............

MF268 AllD4 (R) .....

LS345 M9 (V) ...........

MF121A A3AlO (R) ...

MF123 A7C9 (R) .......

MF268 A8H8 (R) .......

MF268 A9G3 (R) .......

MF268 A4E4 (R) .......

MF268 ASA4 (R) .......

LS323 M46 (V) ..........

MF274 M32 (C) ........

LS148 03 (V) ............

MF120 ASAll (R) .....

LS148 ID6 (V) ...........

LS345 M13 (V) ..........

MF241 A4D3 (E) .......

MF272 M31 (C) ........

JB6 A9E8 (A) ............

MF130 A7D2 (E) .......

MF123 A6B6 (R) .......

MF123 A7F5 (R) ........

LS35 ASB4 (A) ..........

LS1 ASHll (A) ..........

MF336 BSAS (C) .......

MF272 M20 (C) ........

(continued)

individuals were studied, as were mutants from in
vitro-irradiated T-lymphocyte cultures. These clones
arose in 20 different male individuals. (One individual
[individual 2] provided cells for both in vivo and in
vitro studies.) These particular mutant clones were
chosen because they had hprt deletions which ex-
tended either 5' (e.g., an exon 1 deletion; 11 mutants),
3' (e.g., an exon 4-9 deletion; 10 mutants) or both 5'
and 3' (i.e., total hprt gene deletions; 36 mutants) of
the hprt gene. Thus, combined, these mutants con-
tained 47 breakpoints occurring 5' of the hprt gene
and 46 breakpoints occurring 3' of the hprt gene.
DNA from each of the 57 clones was digested with

Pstl or HindIII and was transferred to nitrocellulose
for probing with the 20 anonymous probes listed in
table 2. Presence of the expected fragment(s) on the
Southern blot indicated that that probe was not code-
leted with hprt, while absence of the fragment(s) indi-
cated codeletion (fig. 1). All of these clones (with

the exception of SS108 A1SE5 and SS108 A13H6)
represent independent mutations either because they
are from different individuals, had different deletions
on Southern blots, had different TCR gene re-
arrangements, or were shown here to have different
deletions of the flanking probes. Mutants SS108
A15E5 and SS108 A13H6 were from the same new-
born, and, although they had different T-cell receptor
rearrangements (not a definitive test of independence
for mutant clones from newborns because of a high
rate of prethymic mutation), they showed identical
Southern blot changes, including an identical new
fragment. Here, they also showed identical deletion of
the flanking probes and are thus assumed to be sibling
mutants (progeny of one original mutant cell).

Five of the 20 probes were deleted in some of the
mutants. The use of these mutant clones, which con-
tained deletions of differing lengths, allowed the un-
ambiguous ordering of these five probes relative to
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Table 3 (continued)

Clone (typea)

MF268 A9G11 (R).
LS215 ASC4 (R) ........
MF268 ASA9 (R).......
M16 BlOH11 (A).......
JB6 ASG4 (A)............
MF268 A4A11 (R).
LS323 M24 (V)..........
MF123 A6C11 (R).
MF52 A1OH6 (A).......
MF274 M31 (C) ........
LS345 M23 (V)..........
MF312 M2 (R)..........
MF274 M1 (C)..........
LS323 M158 (V)........
MF266 ASE2 (C) .......
LS148 Y8 (V)............
LS346 M16 (N) .........
SS108 A1SE5 (N).......
SS108 A13H6 (N).
LS38 E5F9 (V)...........
MF126 C6G1O (R).
MF38A A12G4 (A).
MF33 A4F9 (A).........
MF118 A4A1O (E)......
MF123 A6G4 (R).......
MF241 A8E2 (E) .......
MF241 A1OC2 (E)......

DXS53 DXS79 5'hprt 3'hprt DXS86 DXS10 DXS177

a Mutant origin is as follows: E = in vivo elderly adult; V = in vitro-irradiated cells; R = in vivo-
irradiated adult; C = in vivo cis-platinum-treated adult; A = in vivo normal young adult; N = in vivo
newborn.

hprt and to each other (table 3). Both the resulting map
of the hprt gene region and the number of breakpoints
lying in each part of the region are shown in figure 2.

Discussion

The Xq26-q27 region has been intensely studied. In
addition to the mapping studies of OCRL, LYP, F9,
and FRAXA families (Drayna and White 1985; Man-
del et al. 1986; Murphy et al. 1987; Oberle et al.
1987; Arveiler et al. 1988; Brown et al. 1988; Mulley
et al. 1988; Skare et al. 1989a, 1989b; Sylla et al.
1989; Wadelius et al. 1989; Reilly et al. 1990), indi-
viduals with breakpoints in the region have been stud-
ied (Suthers et al. 1989; Reilly et al. 1990). Physical
mapping studies using somatic cell (pushme-pullyu)
hybrids are also underway (Brown et al. 1989). A
number of investigators have begun pulsed-field maps
and/or chromosome-walking or chromosome-jump-

ing studies (Anson et al. 1988; Nguyen et al. 1988,
1989; Patterson et al. 1988; Reilly et al. 1990). In
addition, several groups have begun using yeast artifi-
cial chromosomes (YACS) to clone the Xq24-q28 (Lit-
tle et al. 1989; Wada et al. 1990), Xq27-qter (Poustka
et al. 1989), or Xq28 region (Kenwrick and Gitschier
1989; Feil et al. 1990). Also, one research group is

# OF BREAKPOINTS

29 2 6

DXS53 DXS79 exon 1 exon 9
HPRT

DXS86 DXSIO DXS177

PROBES

Figure 2 Map of hprt gene region. The number of
breakpoints mapping between each of the loci is shown above the
map.

I I I I I
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creating band-specific libraries of Xq27 by dissection,
PCR, and cloning (Ludecke et al. 1990). However, a
definitive ordered mapping of the probes near hprt has
not been determined.
Our studies have allowed the unambiguous order-

ing of five hprt-linked probes relative to the hprt gene.
These results confirm most other data in the literature
but conflict with some studies. The initial study of
DXS10 placed it very near hprt (Boggs and Nussbaum
1984), although later studies have placed it as much
as 12 cM away (Brown et al. 1988). Our studies con-
firm its close linkage to hprt. DXS10 and DXS79 have
previously been very closely linked (Murphy et al.
1983), although F9 was also very closely linked in the
same study. Reilly et al. (1990) studied a woman with
Lowe syndrome caused by a breakpoint in the gene.
DXS10, DXS86, DXS177, and hprt were all distal
to the breakpoint. They also report that DXS10 and
DXS86 share a 460-kb BssHII fragment and that these
two markers show no recombination. This close link-
age is in very good agreement with our results, as
we obtained only two breakpoints mapping between
these probes.
The main conflicts with our results occur in the

work of Brown et al. (1988), who reported a large
mapping study of 405 individuals from FRAXA fami-
lies. Their map places DXS100 just distal to hprt and
DXS10 12 cM more distal. This placement ofDXS1 00
is in conflict with a number of other groups' results,
which place it proximal to hprt (Oberle et al. 1987;
Skare et al. 1989b; Reilly et al. 1990), although an-
other group has placed it distal (Mulligan et al. 1985).
The evidence of Reilly et al. (1990) is most compelling,
as they mapped DXS100 proximal to a breakpoint
in a translocation carrier while hprt mapped distal.
Brown et al.'s placements of DXS100 and DXS10 are
clearly in error, as we have DXS10 codeleted and thus
closely linked to hprt while DXS100 was never code-
leted with hprt and thus is not as closely linked.
Adding our data to that of the literature allows the

placement of some of the other RFLP probes and dis-
ease genes proximal or distal to hprt. DXS37 and
DXS19 map proximally to hprt (Brown et al. 1988;
Skare et al. 1989b), with DXS19 probably more prox-
imal (Brown et al. 1988; Skare et al. 1989b), although
previously their order had been thought to be the re-
verse (Mulligan et al. 1985). DXS1 1 also maps proxi-
mal to hprt (Drayna and White 1985; Sylla et al. 1989;
Wadelius et al. 1989), as does DXS42 (Lesko and
Nussbaum 1986), although Drayna and White (1985)
originally had the latter distal to hprt. Skare et al.

(1989a, 1989b) obtain the order proximal-DXS37-
DXS42-LYP-distal in mapping studies of LYP fami-
lies. OCRL has also been mapped very close to DXS42
and to DXS86 (Wadelius et al. 1989). Reilly et al.
(1990) have shown that DXS10 and DXS42 flank
OCRL. DXS144 appears to map distal to DXS86, as
DXS86 was mapped between DXS100 and DXS144
(Oberle et al. 1987). DXS144 was also mapped be-
tween DXS100 and DXS51 (Arveiler et al. 1988).
DXS102 was mapped distal to DXS51 but proximal
to F9 (Arveiler et al. 1988) and apparently maps just
300 kb from F9 (Nguyen et al. 1989). DXS99 has been
placed very close to F9 (Mulligan et al. 1987) but
proximal to DXS51 (Brown et al. 1988).
The question arises as to the relative orientation of

DXS177-DXS10-DXS86-hprt-DXS79-DXS53 with
regard to the centromere. There is evidence for both
orientations. Supporting a mapping of the centromere
proximal to DXS177, Sylla et al. (1989) place DXS86
closer to LYP (and DXS37) than to hprt, on the basis
of recombination frequencies, while Murphy and
Ruddle (1985) reported the order centromere-hprt-
DXS79, on the basis of studies in chromosome-
mediated gene-transfer lines, and Turner et al. (1989)
state that DXS10 is proximal to DXS86. (The latter
placement, however, has been retracted; J. C. Mulley,
personal communication). Supporting a mapping of
the centromere proximal to DXS53, Brown et al.
(1988) placed DXS10 distal to hprt, Wadelius et al.
(1989) placed DXS86 closer to OCRL (and DXS42)
than to DXS10, Oberle et al. (1986) mapped DXS53
proximal to DXS86 by using a panel of somatic cell
hybrids, and Reilly et al. (1990) mapped hprt proxi-
mal to DXS10, DXS86 by recombination frequencies.
This order is only 15 times more likely than that which
maps hprt distal, but it is supported by a recombinant
in which OCRL crossed over with DXS86 but not with
hprt (R. L. Nussbaum, personal communication).

Thus, although there are conflicting data, the pre-
ponderance of the information available gives the
order centromere-DXS53-DXS79-5'hprt3'-DXS86-
DXS10-DXS177-telomere. The major pieces of evi-
dence supporting this orientation are the somatic cell
hybrids of Oberle et al. (1986) and the recombinant
individual of Nussbaum.
Although the exact amount of DNA deleted in the

mutants cannot be determined as yet, many mutants
must have lost more than 460 kb (the size of the
DXS10-DXS86 BssHII fragment [Reilly et al. 1990]).
This 460 kb is 10 times the size of the hprt gene itself.
Since the DXS10-DXS86 distance appears to be only
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a small part of the map in figure 2, it may be that
some of these deletions are much larger. One mutant
(MF130 B6A2) has deleted hprt and all five linked
markers. The question of what is the largest possible
deletion is of interest because viable X chromosome
deletions are expected, in general, to be smaller than
viable autosomal deletions, since, for X chromosome
deletions, there is no remaining functional allele on
the other homologous chromosome. Thus, the limita-
tion on the deletion size of the hprt mutants used here
is provided by the presence of flanking T-cell vital
genes. Further study of the breakpoints of the largest
deletions should map these linked vital genes.
These studies map five anonymous probes around

the hprt gene. Some of these results contradict those
of published genetic linkage maps based on family
studies; however, other reports of physical maps con-
tradicting linkage maps exist (Higgins et al. 1990).
Studies are in progress to map additional new probes
and to use additional new hprt deletion mutants.
Pulsed-field gel analysis with the DXS10, DXS86,
DXS177, DXSS3, DXS79, and hprt probes is under-
way to determine the exact distances between these
loci. This information will be used to determine exact
deletion size in the hprt mutants.
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