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Summary

Correlations in age at onset between relatives affect risk to relatives of a given age. Either an increase or a

decrease in risk may be observed for a relative of a proband, according to whether there is a causal rela-
tionship between liability to disease and age at onset. Likelihood formulas are given for pairs of relatives
under a number of different sampling schemes, and it is shown how data collected from relatives enable
maximum-likelihood estimation of parameters of a linear model relating disease liability and age at onset.
A genotype-environment extension of this model was fitted to data on age at onset for schizophrenia that
were obtained from the National Academy of Sciences-National Research Council Twin Registry. Age at
onset is correlated between twins, but this correlation appears to be associated with factors that are sepa-

rate from those which affect liability to disease. However, even this relatively large sample of twins is too
small to draw firm conclusions about any causal relationship between disease liability and onset.

Introduction

Age at onset is variable for many physical and mental
diseases, including hypercholesterolemia and heart dis-
ease (Heilberg and Slack 1977; Rissanen 1979), neu-
rodegenerative disease (Ridley et al. 1986), breast can-
cer (Anderson 1972), schizophrenia (Kendler et al.
1987), Alzheimer disease (Sturt 1986), Huntington cho-
rea (Pericak-Vance et al. 1983), and major depression
(Price et al. 1987). Information about age at onset is
often gathered from samples of patients and used to
assess the risk to relatives. Weinberg (1925) appears to
be the first to have addressed the problem, and subse-
quently Stromgren (1935, 1938) proposed two differ-
ent methods of adjusting morbidity risks. These meth-
ods were summarized by Larsson and Sjogren (1954),
and, more recently, a maximum-likelihood approach
was described by Risch (1983). The early methods rely
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on a weighting procedure to adjust estimates of risk
in relatives according to a function of the elapsed period
of risk. Risch allows for the simultaneous estimation
of an age-at-onset function. However, none of the
methods addresses the possibility that age at onset may
be an index of liability to disease.

In the present article, we show that a correlation be-
tween liability to disease and age at onset can lead to
quite different morbidity risks for relatives of an affected
individual with a given age at onset. We describe a model
that allows for age-at-onset correlation to be caused
by (1) resemblance in liability, which determines, in part,
age at onset, and (2) resemblance for factors that affect
age at onset but that are independent of disease liabil-
ity. Maximum-likelihood estimation of the parameters
of this model is possible using data collected from pairs
of relatives under a variety of ascertainment schemes.
The model is extended to partition genetic and envi-
ronmental sources of variance and is applied to data
on schizophrenia from the National Academy of Sciences-
National Research Council (NAS-NRC) Twin Regis-
try. The approach is suitable for any potential index
of liability that can be measured only in affected indi-
viduals, such as response to treatment or certain psy-
chological or physiological tests.
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Model for Liability and Age at Onset

For simplicity, we assume a normal distribution of
liability to disease, with an abrupt threshold t. Individ-
uals with liability values above this threshold will be-
come affected if they complete the age of risk. This is
the model described by Pearson (1900) and more re-
cently by Wright (1934) and Falconer (1965); it is cur-
rently popular in both psychiatric genetics (e.g., see
Cloninger et al. 1978; McGue et al. 1983) and be-
havioral genetics (e.g., see Neale et al. 1986; Heath et
al. 1985, and in press; Neale 1988). We allow the lia-
bility to disease to correlate between relatives. Our nor-
mality assumption is one of convenience rather than
necessity; alternative forms for the liability distribu-
tion, such as may be obtained from a major-locus model
or a mixed model (Elston and Stewart 1971) may be
selected. In principle, the moments of the distribution
of age at onset provide information to discriminate be-
tween these models, but it seems likely that statistical
power for this comparison is very low (e.g., see Eaves
1983).
The same normality assumption is made with respect

to variation on a scale of age at onset. Theoretically,
all individuals have an age-at-onset value, but this can
be observed only in persons above the threshold of lia-
bility. We assume a simple linear model of the relation-
ship between liability to disease and age at onset. Two
other causes of age at onset are specified: a component
C which is shared by family members (owing to genetic
and environmental covariation) and a residual random
environment or error component (Di). Both causes are
independent of liability to disease. A path diagram of
this model of familial resemblance is shown in figure
1. Although the exogenous variables Li, L2, C, Di,
and D2 are assumed to be normally distributed, trun-
cation of the liability variables will cause nonnormal-
ity of the observed ages at onset in the presence of a
nonzero value of the path b from liability to age at on-
set. In general, this nonnormality will be minor unless
the value of b is very large (say, >.9). Nevertheless, the
effects of truncation on the correlation between vari-
ables may be substantial (e.g., see Fisher 1931; Aitken
1934; Curnow 1972; Johnson and Kotz 1972; Smith
and Mendell 1974; Curnow and Smith 1975; Bucher
and Schrott 1982; Martin and Wilson 1982; Neale et
al. 1989).

Recently, there have been several efforts to develop
methods for the analysis of data from truncated sam-
ples. Boehnke and Lange (1984) specify a likelihood
function conditional on the proband's actual pheno-

Figure I Causal model of familial resemblance for liability
(Li) and age at onset (Ai). C = genetic and common environmental
age-at-onset factors that are independent of disease liability; Di =
residual variation on age at onset, including measurement error.

typic value, to permit the analysis of data collected from
"enriched" samples in which probands are diagnosed
if their position on a continuous scale exceeds a thresh-
old. Rao et al. (1988) employ a constraint on the mean
of probands to obtain parameter estimates with smaller
standard errors under the same "direct" truncation
model. Rao and Wette (1987) compare direct trunca-
tion with "indirect" truncation, which is made through
a correlated phenotype, and with "latent truncation;'
which is made through a latent variable, e.g., liability
to disease. In the present article, latent truncation is
assumed; our treatment necessarily differs, since age
at onset of disease cannot be observed in unaffected
individuals.

Likelihood Formulas

Initially, we consider age at onset and liability to dis-
ease to be independent of the age structure of the popu-
lation. Dependency may occur if there is either increased
mortality associated with liability to disease or (in the
case of parents and offspring) reduced reproductive
fitness following disease onset (Heimbuch et al. 1980).

Samples Without Relatives

To clarify the treatment for pairs of relatives, we
confine our initial discussion to samples drawn from
the population, without regard to family structure. The
formulation is described in general terms for the fol-
lowing three basic schemes of ascertainment: (1) ran-
dom sampling of subjects of a given age, (2) random
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sampling irrespective of age, and (3) sampling within
a particular age band.
We define terms as follows: q = liability; r = age-at-

onset value; s = current age; t = threshold on liability
distribution above which individuals will become
affected; +(x) = multinormal density function; and W(z)
= the age distribution in the population. The age-at-
onset value is a latent variable in this treatment; indi-
viduals may have a predisposition to early age of onset
but may not show such onset because they are below
the liability threshold.
The relationship between age at onset and disease

liability of an individual may be considered as a two-
way contingency table. A graphical representation of
this table is shown in figure 2, for a correlation of -.8
between age at onset and liability. Five distinct regions,
Rl-RS, are shown. Only those individuals in region
R4 are affected, having both liability above threshold
and onset prior to current age. Those in region R2 have
sufficient disease liability but have not yet reached age

at onset, while those in regions R1 and R3 (cutaway
portion of fig. 2) are below threshold. The plane RS
gives the proportion of individuals above threshold for
a particular value of the age-at-onset distribution (r),
in this case the current age (s). We note that for com-
putational purposes the region R1 may be integrated
with either R2 or R3, thus saving considerable com-
puter time.

Subjects with a particular age.- If a sample is drawn such
that all subjects have the same age, s, the likelihood
of observing an affected individual may be written as
a two-dimensional integral:

L(+Is) = itjs4(q,r)drdq, (1)

which, to simplify notation, we write as

L(+ Is) = XR40(X)dX (2)

where x + (q,r), i.e., liability and age at onset, s is

R2

RI

R4

NK

Future
t

R3

Current Age
(s)

Liability to disease
(q)

Past

Figure 2 Bivariate normal distribution with .8 correlation between disease liability (q) and age at onset (r). Four regions (R1-R4)
are defined according to whether an individual is above or below liability threshold and according to whether age at onset is before or

after current age. The plane RS defines the probability than an individual is above threshold for a particular value of r, in this case where r = s.

Age of
Onset

(r)
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current age, and R4 is the region shown in figure 2.
In the same notation, the likelihood for unaffected in-
dividuals is

3
L(- Is) = Z

i=l~oX~X (3)

and z = (s), the dummy age variable. If the sample
consists entirely of individuals past the age at risk (s
> u), we have

LR(+,r) = RSO(X-,y) dx if s > u, (8)

being the sum of the three two-dimensional integrals
described by regions R1, R2, and R3 shown in figure 2.
To describe the likelihood for an individual aged s

with a particular age at onset, r, we define RS as the
area where liability is above threshold and age at onset
is r. This region is shown in figure 2 for the case r =
s. The likelihood is therefore

L(+,rs) = RO(X y) dx, (4)

where x = (q) and y = (r); we note that the bivariate
normal density of (x, y) is integrated over liability
x but not over the observed age at onset, y.

Random sampling.-Many samples do not consist of
subjects of a particular age, so we now consider ran-
dom sampling from a population in which the age dis-
tribution is given by Ot(z). If the age distribution and
liability are independent, the likelihood under random
sampling (LR) that an individual is affected (q > t) is

where x = (q) and y = (r) as in equation (7). Hence,
the likelihood in this case is expressed as a one-di-
mensional integral.

Sampling in a particular age band.-Suppose ascertain-
ment is through affected individuals in an age band
(vI, v2). The proportion of individuals in the popula-
tion that will be ascertained (i.e., the ascertainment cor-
rection) is

P =R4 x)o(z)dzdx, (9)

where x = (q,r), liability and age of onset; z = (s),
the dummy age variable; and R4 is affected persons
as defined in figure 2. Under this banded sampling, the
likelihood (LB) of observing, in an ascertained in-
dividual, a particular age at onset that is less than the
current age (r < s) is

LB(+ ,r) = p ,RSiTV i)+(z) dxdx, (10)
LR(+,S) = so O(X)O(Z) dzdx, (5)

where x = (q,r), the liability and age-at-onset variables,
z = (s), a dummy age variable, and R4 is the region
corresponding to those individuals above liability thresh-
old with age at onset less than current age, as shown
in figure 2.

In practice, it is often possible to establish an age,
u, above which the probability of onset is effectively
zero. If a sample consists entirely of individuals with
age greater than u, the likelihood simplifies to the one-
dimensional integral

LR(+,S) = R54(X)dx if s > u (6)

where x = (q), the liability. The likelihood of observ-
ing an unaffected individual, LR(-,S), is simply
1 -LR(+,S).
To observe an individual with a particular age at on-

set, r, they must have age >r, with onset y = r and
liability q > t, so the likelihood is

LR(+,r) = SRS00(x,y)A(z) dzdx J (7)

where x = (q), the liability; y = (r), the age at onset;

where x = (q,r), liability and age at onset; and R5 is
the proportion of individuals above threshold, as defined
in figure 2. The likelihood of observing an individual
of a particular age, s, with a particular age at onset, r, is

LB(+,r.s) = 1 !iRS(x,y)6(z) dx, (11)

where x = (q,r), liability and age at onset; and R5
is the proportion of individuals above threshold, as
defined in figure 2. The case of ascertainment without
regard to age may be obtained by setting vi = -oo
and V2 = Co-

If age at onset and liability are not independent of
the age distribution (owing to the effects of mortality
or fertility), then we may substitute i(zlx,y) for ,6(z)
throughout the above expressions. However, the
specification of O(zlx,y) may not be simple.

Pairs of Relatives

Regardless of sampling scheme, data from unrelated
individuals do not provide the information to estimate
the parameters of the model in figure 1. Therefore we
generalize the likelihood formulations given above to
pairs of relatives. Four basic schemes of sampling are
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considered: (1) random samples of individuals of a given
age, (2) affected individuals and their relatives at a given
age, (3) affected individuals and their relatives in an
age band, and (4) pairs past the age of risk. The com-
plexity of the likelihood expressions-and the conse-
quent feasibility of analysis -differs considerably un-
der these sampling strategies.

Samples ofa given age.- Suppose that pairs of relatives
are obtained as a result of population screening at a
particular age, s. The likelihood of concordant pairs
with ages at onset rl and r2 is the two-dimensional in-
tegral

L(+,+,rr2i S) = RiRSR(x)dx , (12)

where x = (ql,q2), the liabilities; and y = (rlr2),
the ages at onset. This likelihood is the bivariate exten-
sion of equation (4) above; it varies according to the
covariance between relatives. For discordant pairs, the
likelihood is

L(+,-,rlis) = E iR5iRI (x,y)dx,
i = I

random sample may prove inefficient, as most data col-
lection will be from concordant unaffected pairs. These
pairs will be relatively uninformative if, like age at on-
set, the index can only be measured in affected individ-
uals. Nevertheless, the random sample has the advan-
tage that the population threshold may be estimated
from the data, rather than supplied as a fixed parameter.

Sampling affected relatives in an age band.-The ascer-
tainment correction is more complex ifwe consider sam-
pling within a particular age band (vI ,v2). This situa-
tion is shown graphically in figure 3. If we require both
relatives to be within the age band, then only area Q1
is sampled. We write the two-dimensional integral that
describes this area as

XQl 1(sjds, (15)

where s = (Si,S2), the dummy age variables. If pairs
are ascertained if at least one member of the pair is
affected, and if both members are in the age range, we
have the correction

(13)

where x = (q1,q2), the liabilities; and y = (rl), the age
at onset of the affected relative. The likelihood for pairs
concordant for being normal is

L(-7-,Is i 1_ 1 {IRi !,RI(x)dx1A (14)

where x = (q1,q2,rl,r2). The nine terms in this ex-
pression reduce to four when R1 and R2 are considered
jointly. The four terms correspond to the following
cases: (1) both relatives are below threshold; (2) relative
1 is above threshold but has not reached his age at on-
set, and relative 2 is below threshold; (3) relative 2 is
above threshold but has not reached his age at onset,
and relative 1 is below threshold; and (4) neither rela-
tive has reached age at onset, though both are above
threshold. The likelihood for concordant normal pairs
of a given age is invariant over pairs. Hence, computa-
tion of the four-dimensional integrals (eq. [14]) is re-
quired only once for any set of parameter values.

Ascertainment through affected relatives.-If pairs of
affected relatives are ascertained because at least one
member of each pair is sick, the four-dimensional in-
tegrals for concordant normal pairs seem to be avoided.
However, it is necessary to introduce a correction for
ascertainment that involves precisely the same four-
dimensional integral, equal to 1 - L(-,-,Is). For dis-
orders with a low cumulative lifetime incidence, a

P2 = iQ1,O(s) ds -
333s x

i-1 j=_RiRj dsd

(16)

where x = (ql,q2,rl,r2), liabilities and ages at on-
set; and s= (SI ,s2), the dummy age variables. The
likelihood for concordant pairs is

L(+,+ arl r2,slS2) = p XR4iR4+(xyN(s) dx
(17)

V2

Age of
Sibling 2 Q3

VI

0
VI V2

Age of
Sibling I

Figure 3 Diagram showing regions Q1-Q5, which describe
area in which either one (Q2-Q5) or both (Q1) siblings lie within
a sampling age band (v1, V2).
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where x = (ql ,q2), the liabilities; y = (rl,r2), the ages
at onset; and s = (SIs2), the observed current ages.
For discordant pairs, we have

L(+ ) 5 ~~~1i O(x )O(s) dxL(+,-, rl,r2,Sl S2) = R4 R4(i )Psd
j= JP2 ~~~~(18)

where x = (ql,q2,r2), the liabilities and age of onset
in the normal relative; y = (ri), the observed age at
onset in the affected relative; and s = (Si,S2), the cur-
rent ages. Hence, although the maximum number of
dimensions of integration is three for any pair of obser-
vations in the data, the ascertainment correction in-
volves four six-dimensional integrals, computation of
which would be prohibitive with current computer re-
sources and software.
Even more complex is the case where pairs are ascer-

tained if one affected member is in the age range but
the relative is ascertained irrespective of age. In this case,
the ascertainment correction consists of the set of pairs
that could be sampled by meeting the age criteria, but
not concordant for normal status:

5

3 k= 1(

i-1j ck(x)4(s) dsdx (19)
i=1 j= i j k

where x and s are as defined in equation (16). The likeli-
hoods for concordant and discordant pairs are the same
as in equations (17) and (18) above, but with denomi-
nator Pi.

Samples of pairs past the age of risk.-In practice, given
that we are not prepared to assume that disease liabil-
ity and age at onset are independent, we may be limited
to the use of data that have been collected from individ-
uals who have passed the age of risk. The likelihood
for concordant pairs reduces from the general case, de-
scribed above, to

L(+,+,r, r2) = _RSJR5O(xy) dx (20)
1 -RJR60(x) dx

where x = (ql,q2), y = (rlr2), and R6 is the region
below liability threshold for a given age-at-onset value
(IRS + |R6 = 1). The likelihood for discordant pairs is

~5R~~y) dx
L(+,-,ri) = _R5JR6__(X___ (21)

1 - )R6!R6(x)dx

where x = (ql,q2) and y = (ri). This formulation is
subject to bias if mortality and either liability or age
at onset are not independent.

Calculation of Risk to Relatives

Suppose a subject of known age presents for genetic
counseling with an affected sibling, whose age at onset
is known. We wish to calculate the probability that this
counselee will become affected, given that he or she
is currently of normal status. The counselee could be
a member of one of two mutually exclusive classes: (1)
above the threshold but has not reached age at onset
(region R2 in fig. 2) or (2) below the threshold and will
never contract the disease (regions R1 and R3 in fig. 2).

Let subscripts 1 and 2 refer, respectively, to the affected
and normal individuals in our pair of relatives. The
probability that both siblings are above the threshold
and that sibling 1 has onset ri is given by

Prob2 = iRJR4O(X'D) d (22)

where x = (ql,q2,r2), the liabilities and age at onset
in the counselee; and y = (ri), the observed age at on-
set in the relative. Similarly, the probability that sibling
2 is below the threshold is

Probi = E R dx.
i= 1IR~o~Yd (23)

The risk to the individual being counseled is thus

Prob2

Probi + Prob2
(24)

Differences in risk across the lifespan result from
changes in the probability that the individual is above
threshold, given that he or she is currently not affected.
Curnow (1974) provides tables of relative risk for sev-
eral different parameter values for the model shown in
figure 1. However, he addresses the measurement of in-
dices in general; our treatment differs because we make
use of the additional information that the counselee
is healthy at his or her present age.
The conditional risks were calculated using a FOR-

TRAN program which uses subroutines DO1BBF and
DO1FBF from the Numerical Algorithms Group (NAG)
library (NAG 1988). Calculation of integrals with limits
- ao and ao was performed using Gauss-Hermite quad-
rature, and Gauss-Laguerre quadrature was employed
for integrals with finite lower limits. Thirty-two ab-
scissas were used for each dimension of integration.
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Table I

Risk to a Healthy Individual for a Disorder with 1% Cumulative Lifetime Incidence and
Familial Resemblance for Liability, Given His or Her Current Age and the Age at
Onset in His or Her Relative

a = .7;b = 0;c =0 a = .7;b = 0;c = .448 a = .7;b = -.8;c = 0
Relative's Age at Onset Relative's Age at Onset Relative's Age at Onset

AGEOF__

COUNSELEE -2.0 -1.0 .0 1.0 2.0 -2.0 -1.0 .0 1.0 2.0 -2.0 -1.0 .0 1.0 2.0

-2.0. .26 .26 .26 .26 .26 .24 .26 .26 .27 .27 .37 .29 .25 .22 .21
-1.0. .23 .23 .23 .23 .23 .17 .21 .24 .26 .26 .32 .25 .22 .20 .18
.0 ...... .15 .15 .15 .15 .15 .05 .10 .15 .20 .23 .20 .16 .14 .12 .11
1.0 ...... .05 .05 .05 .05 .05 .01 .02 .05 .09 .14 .07 .05 .04 .04 .04
2.0 ...... .01 .01 .01 .01 .01 .00 .00 .01 .01 .04 .01 .01 .01 .01 .00

NOTE. -Ages are standardized to that age-at-onset distribution. Model parameters (see fig. 1) cor-
respond to three simple models: (1) correlation in liability to disease alone; (2) correlation between dis-
ease liabilities, and correlation between ages at onset; and (3) correlation in liability to disease that is
a cause of age at onset. In both cases (2) and (3), model parameters yield a correlation of .448 between
ages at onset in relatives.

To illustrate the effects that different sources of
familial resemblance for age at onset have on the risk
to relatives, we selected three sets of parameter values
for the model shown in figure 1. All models were ap-
plied using a 1% cumulative lifetime incidence of the
disorder in the population, with a correlation in dis-
ease liability of .7 between relatives. This correlation
is high for siblings but is not uncommon for mono-
zygotic (MZ) twin resemblance. The high value serves
to emphasize the pattern of risks which would be ob-
served for smaller correlations. Table 1 shows risk figures
for five different standardized ages at onset in the rela-
tive and five different current ages of the counselee, for
each ofthree special submodels. The first model specifies
(1) no causal relationship between liability and age at
onset and (2) no residual familial resemblance for age
at onset. Here, the relative risks to the counselee de-
pend only on the counselee's own age and are unaffected
by the age at onset in the relative. This simple picture
is implicit in many of the current approaches to age
correction of risk.
The second set of parameter values specifies correla-

tion in age at onset to be produced entirely by factors
independent of liability. Under this model, we observe
a general pattern of increasing risk with increasing age
at onset in the relative. When the relative has early age
at onset, the risk to the counselee drops more sharply
than for the case when age at onset is not correlated
between relatives. However, when the relative has late
onset, the reverse is true, with the risk declining more
slowly as the counselee ages. These consequences fol-

low logically from the expectation that relatives will
have similar ages at onset, but age at onset does not
provide any information about the counselee's liability
to disease.
Our third example is arranged to give the same corre-

lation in age at onset for pairs of relatives as the second
example, but the resemblance is entirely due to a strong
negative correlation between age at onset and disease
liability (b = -.8). Under this model the risk to the
counselee declines with increasing age at onset in the
relative. Compared with the first example, the risk to
the counselee is uniformly higher if the relative had an
early age at onset and is lower if the relative had a late
age at onset. This results from the information about
the position of the counselee on the liability scale, in-
formation that is derived from the measurement of the
correlated age at onset in the relative. Clearly, estima-
tion of the population correlation matrix between the
liability and age variables is essential for accurate predic-
tion of risk to relatives and for understanding of the
biology of the disease process.

Parameter Estimation

The estimation of parameters describing the relation-
ship of age at onset to liability to disease depends on
calculation of the likelihood of data collected from pairs
of relatives. Each pedigree will normally have a differ-
ent likelihood, so the computational demands increase
with sample size. During parameter estimation, the
likelihoods must be calculated for each set of parame-
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ter values used during the search. It is necessary to use

numerical methods to integrate the multinormal distri-
bution; the time taken to achieve a given level of ac-

curacy may be expected to increase by a factor of 16
for each additional dimension of integration. With hard-
ware such as a VAX 8650 and when general integra-
tion routines supplied byNAG are used, the estimation
of parameters for likelihoods involving two dimensions
is feasible for large sample sizes, taking approximately
3 h of CPU time for a sample size of 500. A maximum
of three dimensions seems feasible at present.

Parameter estimation for data collected from pairs
of relatives who have passed the age of risk is performed
in a FORTRAN program which uses both a combina-
tion of adaptive and Gaussian routines in the NAG li-
brary (DO1BBF, D01FBF, and DOlEAF) for quadrature
and a general routine for minimization subject to non-
linear parameter constraints (EO4UCF).

Simulation

To test the program and to obtain some sense of the
precision of parameter estimates, we employed Monte
Carlo methods. For each of a range ofparameter values,
data were simulated from a truncated multinormal dis-
tribution by using the procedure described elsewhere
by two of the authors of the present paper (Hewitt and
Neale, in press). Five hundred pairs of relatives were

simulated for a variety ofparameter values ofthe model.
Parameters a, b, and c were set at .0, .4, or .8, and
the population mean and variance were set at zero and
unity, respectively. For a disease frequency of 10%,
results of fitting the model to the simulated data are

shown in table 2. For less frequent cases, it would be
necessary to increase the sample size or to restrict simu-
lation to cases in which there is a substantial correla-
tion between relatives; otherwise the number of con-
cordant pairs would be too small to provide meaningful
results. Because the model is standardized, i.e., all vari-
ables have unit variance, no results are given for cases
in which both b and c were set at .8, as this yields a

variance greater than unity for the age-at-onset variable.
The simulation results are encouraging, but there are

some discrepant values. The same solutions were ob-
tained for a variety of starting values ofparameter esti-
mates, so local minima do not seem to be a problem.
The parameter c seems especially liable to error. The
information for this statistic is exclusively obtained from
the concordant pairs, and these are rare when the corre-

lation in liability is low. Sample sizes of500 pairs would
seem to be small for estimating the association between
an age at onset and liability to disease with a cumula-
tive lifetime incidence of 10%. However, the informa-
tion obtained in this way can be of considerable impor-
tance, and the properties of efficiency and asymptotic
absence of bias of maximum-likelihood estimators

Table 2

Estimates a, b, and c for Simulated Data of 500 Pairs of Relatives: Proband Selection
with Threshold of 1.282 (10% selection)

atrue

.0 .4 .8

btrue btrue btrue
Ctrue .0 .4 .8 .0 .4 .8 .0 .4 .8

.0:
a ...... -.70 .00 -.03 .39 .34 .40 .79 .80 .83
b ...... .02 .41 .80 -.01 .41 .81 -.03 .41 .80
c .00 .00 .00 .00 .00 .00 .00 .00 .00

.4:
a ....... -.05 -.03 -.01 .48 .42 .40 .80 .79 .78
b ...... -.01 .42 .80 -.01 .39 .80 .01 .40 .79
c ...... .00 .49 .54 .69 .00 .33 .48 .40 .50

.8:
a ...... .00 -.08 ... .41 .36 ... .80 .80 ...

b ...... .01 .38 ... -.02 .40 ... -.01 .41 ...

c ...... .00 .00 ... .91 .92 ... .83 .80 ...
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(Fisher 1922) indicate that the method presented here
is optimal for assessing the importance of indexes of
liability to disease.

Partitioning Familial Resemblance

In the previous section, the resemblance between rela-
tives is simply characterized as a correlation, for both
liability and the independent age-at-onset parameters.
When data are collected from genetically informative
groups, such as MZ and dizygotic (DZ) twins or
adopted and biological relatives, familial resemblance
may be partitioned into genetic and environmental com-
ponents. In this section, the model in figure 2 is ex-
tended for use with twin data.
Under a simple additive linear model for genetic and

environmental variation, we may write the structural
equation L = hLGL + eL EL + CLCL, where L is the
latent liability to disease, GL is the additive genetic
component of variation in liability, and EL and CL are
the individual unique and common environmental com-
ponents of variation, respectively. In data from twins
reared together, the effects of genetical dominance and
common environmental variance are confounded (Eaves
1970; Jinks and Fulker 1970). The sample sizes required
to detect dominant genetic variation in liability are large
even for variables measured on a continuous scale (Mar-
tin et al. 1978). We assume the effects of genetic domi-
nance to be zero in our model; if this assumption were
false, the proportion ofcommon environment variance
would be underestimated. Similarly, variation in age
at onset may be partitioned into genetic and environ-
mental components, together with the effect of liabil-
ity on age at onset, giving A = hAGA +eAEA + CACA
+ bL, where L is the latent liability to disease, and
GA, EA, and CA are, respectively, the additive genetic,
individual unique, and common environmental com-
ponents of variation in factors specific to age at onset.
This model is shown in figure 4 as a path diagram.

NAS-NRC Schizophrenia Data

Subjects and Methods
The NAS-NRC Twin Registry consists of 15,924 pairs

of Caucasian male twins born during the years 1917-
27, all of whom served in the U.S. armed forces. The
sample has been described in detail elsewhere (Jablon
et al. 1967; Kendler and Robinette 1983; Kendler et
al. 1987). Zygosity diagnosis was made on the basis
of questionnaire response in most cases and was found

a

a

Figure 4 Path model showing resemblance for liability (Li)
and age at onset (Ai) as a function of additive genetic (GLi and GAi),
shared environmental (CL and CA), and specific environmental (ELi
and EA) variation. The path coefficient a is not estimated; it is fixed
at 1.0 for MZ twins and at 0.5 for DZ twins.

to be approximately 94% accurate when compared with
blood typing. However, zygosity diagnosis remains un-
known in 15.3% of twin pairs. Assessment of psy-
chiatric illness was obtained from medical records of
active military service, claims for Veteran's Administra-
tion (VA) disability, medical care at any VA facility,
health questionnaires, and death certificates. Although
the diagnoses were made by a variety of American cli-
nicians from the 1940s to the 1970s, they were made
in clinical situations unrelated to any research hypoth-
eses. Unfortunately, the diagnosis cannot be regarded
as accurate, and the possibility of misclassification in
both directions exists. The possible effects of such mis-
classification on the parameter estimates will be dis-
cussed.
From records updated in 1981, 194 MZ and 277 DZ

twin pairs in which at least one twin had a diagnosis
of schizophrenia were found. With the exception of one
twin pair, any recorded diagnosis of schizophrenia was
accompanied by the date of first diagnosis, which is
the age at onset used in the present analysis. The young-
est twins in the registry would have been 54 years old
in 1981, and therefore the population may be assumed
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Table 3

Summary Statistics for Age at Onset in the
NAS-NRC Schizophrenic Twin Sample

MZ DZ

Concordant Discordant Concordant Discordant

N ........ 30 134 9 259
Mean ...... 29.72 34.42 34.06 32.97
SD ........ 9.20 10.88 10.06 10.26

to have passed through the age of risk for schizophre-
nia, thus avoiding the additional complication of cen-

soring of the data. However, owing to early death, ap-

proximately 5.5% of co-twins would not have fully
completed the age of risk for schizophrenia.

Model Fitting

Summary statistics for the NAS-NRC schizophrenia
data are shown in table 3. The superabundance of con-
cordantMZ pairs (22.4%, vs. 3.5% for DZ pairs) sug-

gests a substantial genetic component to familial resem-

blance for liability to disease. In the MZ twins, we see

a lower mean age at onset in concordant pairs, suggest-
ing a negative correlation between liability to disease
and age at onset. This pattern is not replicated in the
DZ twin pairs, but the sample size of concordant pairs
is very small for this zygosity. The reduced variance
of age at onset for concordant pairs is also consistent
with a relationship between liability to disease and age

at onset.
The model shown in figure 4 was fitted to the data

on affection status and age at onset. The population
cumulative lifetime incidence was set at 1.8%, the ob-
served frequency of schizophrenia in the NAS-NRC
Twin Registry. The figure is high and reflects the rela-
tively broad diagnostic criteria used in the present study.
Parameter estimates and log likelihoods for both the
full model and a number of submodels are shown in
table 4.
Model I is not constrained and indicates a substan-

tial additive genetic component to liability to schizo-
phrenia, as has been reported elsewhere (Kendler 1983).
There is also a moderate causal relationship between
liability to disease and age at onset, as well as some

additive genetic variation for specific age-at-onset fac-
tors which are independent of liability. Estimates of
common environmental influences are at their lower
bound of zero for both liability and the specific age-at-
onset factors.

Twice the difference in log likelihoods between sub-
models is approximately distributed as X2, with df
equal to the number equal to the number of parameters
fixed in the submodel. When additive genetic effects
on liability to disease are fixed at zero, a highly sig-
nificant difference of 26.21 is obtained. However, when
the causal relationship between age at onset and liabil-
ity is removed from the model, no significant deteriora-
tion in fit is observed. While there is significant familial
resemblance for age-at-onset factors (model IV), the
hypothesis that this resemblance is due to shared en-

vironmental factors cannot be rejected (model V). By
Akaike's (1987) information criterion the most par-

simonious model (model III) is one with additive genetic

Table 4

Parameter Estimates of Genetic and Environmental Sources of Variation for Liability to
and Age at Onset of Schizophrenia in the NAS/NRC Sample (NMZ = 164; NDZ = 268)

MODEL

PARAMETER I II III IV V

hL .................. .83 . . . .83 .83 .83
CL ..00 .71 .00 .00 .00
b .-.43 -.40 ... -.51 -.42

hA ..69 .70 .76 ... ...

CA ..00 .00 .00 . .58
.................. 45.0 44.1 33.2 47.83 47.1

. 11.3 11.2 10.4 11.8 11.7
-2 LogL .4,309.05 4,335.26 4,310.35 4,317.76 4,312.09
X2 Differencea........ ... 26.21 1.30 8.71 3.04

a Difference in function value of models II-V versus model I.
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and random environmental variation in both schizo-
phrenia liability and age at onset, with no causal rela-
tionship between them.

It is of interest to consider the estimates of the mean
of the age at onset of schizophrenia. When no causal
relationship between age at onset and liability is specified,
the estimate of mean age at onset is close to the ob-
served mean for all affected individuals (33.01). How-
ever, when liability to disease causes variability in age
at onset, the observed mean age at onset is no longer
a good estimate of the true population mean. Trunca-
tion on the liability dimension results in truncation on
the age-at-onset distribution when the two are cor-
related. Thus, for negative estimates of b, the estimate
of the mean is expected to exceed the observed sample
mean, and, for positive estimates of b, the estimated
mean is expected to be less than the observed sample
mean.

Discussion

The use of age at onset as an index for disease liabil-
ity has been explored. The mathematical treatment is
based on conventional likelihood methods for the anal-
ysis of indexes of liability to illness and is modified to
allow for the lack of observation of age at onset in
unaffected individuals. Results from simulation studies
are encouraging but suggest that sample sizes need to
be large, especially for less common phenotypes, in or-
der to estimate parameters of the model precisely. Per-
haps the most useful applications of these methods will
be with regard to common disorders such as alcohol
abuse, smoking, phobias, or depression. Age at onset
is one example of an index of disease liability that can
be measured only in affected individuals. The likeli-
hood expressions are general for any such index. Clearly,
the most informative indexes are those which may be
assessed in both affected and normal individuals. In-
dexes that can be measured only in normal individuals
will be more useful for disorders with a low cumulative
lifetime incidence, since concordant affected pairs will
be extremely rare.

Analysis of data collected under a number of ascer-
tainment methods would seem impossible with current
software and hardware. However, some improvement
in numerical integration may be obtained by using faster,
less general routines such as MULNOR (Schervish
1984) or the more recent QUAVNOR (Baigorri et al.,
submitted). Considerable improvement could be ob-
tained by using an approximation (e.g., see Rice et al.
1979), but the net effect of inaccuracies on the likeli-
hood surface is difficult to assess. Superior computer

architecture with more-efficient parallel processing, such
that nondependent subroutine calls within loops may
be processed in parallel, would help to make integra-
tion over a larger number of dimensions feasible.

Application to Schizophrenia Data

A simple model of familial resemblance, allowing for
additive genetic and for both common and specific en-
vironmental variation in liability to disease and age at
onset, as well as for a causal relationship between lia-
bility to disease and age at onset, was fitted to the NAS-
NRC twin data. Results indicate a large additive genetic
component to liability to disease. Although the param-
eter estimate of the relationship between disease liabil-
ity and age at onset is quite large, it is nonsignificant
by likelihood ratio test. There is evidence for indepen-
dent factors influencing age at onset that correlate be-
tween relatives. This latter finding is important for two
reasons. First, there are implications for the prediction
of risk to relatives according to the age at onset in the
proband. Under the best-fitting model, these risks have
a very similar pattern to those shown in the table (model
2). Second, there is the possibility that treatments that
postpone onset of the disease may be devised. Postpone-
ment beyond the lifespan ofthe individual would effec-
tively prevent the disease.
While the results from fitting the model to the NAS-

NRC data are interesting, some caution with interpre-
tation is required. The possibility of inconsistent diag-
nosis has a number of implications. If truncation of
the phenotype is not occurring according to a fixed
threshold but follows some probability distribution ac-
cording to the position on the liability scale, then one
oftwo forms of selection may be operating. First, there
may be simply some error ofmeasurement with respect
to diagnosis, error that is not correlated between rela-
tives. This is "indirect soft selection" of the form de-
scribed by Martin and Wilson (1982). The consequences
of such selection are to attenuate correlations further,
and thus the estimates of familial resemblance for lia-
bility to disease and age at onset may be underestimated.
Second, soft selection may be of the direct form de-
scribed by Neale et al. (1989), in which the probability
of being diagnosed varies directly as a function of the
liability. Under this latter form, correlations between
disease liabilities of relatives, and the correlations with
other variables, are expected to be less attenuated than
those given by truncate selection. Thus, parameters es-
timated under a truncate selection model may be over-
estimated; for schizophrenia, there may be no substan-
tial familial aggregation for age-at-onset factors that
are independent of disease liability. To distinguish be-
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tween the two forms of selection, comparisons of fa-
milial correlations for indexes may be compared when
the criteria for diagnosis are varied, but the power to

discriminate may be low.
A second problem with the NAS-NRC data is that

not all the twins in the sample have passed the age of
risk. In 1981 the minimum age of living twins in the
registry was 54 and was likely to be beyond age at onset

for almost all twins, but some twins may have died be-
fore reaching age at onset (Kendler and Robinette 1983).
If age at onset and liability are not independent, then
we may expect that individuals lower on the liability
scale are being excluded at a higher rate than are those
with high liabilities. This selection would tend to bias
both against the establishment of a relationship between
liability and onset and against finding discordant pairs,
inflating the correlation for liability to disease. These
effects are expected to be small for the NAS-NRC data,
as the age-corrected concordance calculated by Kend-
ler and Robinette is only slightly different from the un-

corrected concordance. However, the relationship be-
tween age at onset and disease liability may have been
attenuated further if early-onset concordant pairs were
not ascertained.

Estimating the Population Threshold

The treatment given in the present paper assumes

that there is an estimate of the population threshold
for disease that is error free. Unfortunately, such esti-
mates are rarely if ever available in practice. Specifica-
tion of a fixed threshold reduces the error on parameters
of the model that covary with the threshold. Hence,
tests of significance of these other parameters will be
oversensitive. Two methods of estimating the popula-
tion threshold are available, i.e., sampling at random
and sampling groups of three or more relatives (Rice
and Reich 1985). Random sampling may prove in-
efficient when the cumulative lifetime incidence is low.
The source of the information in larger groups of

relatives is clear when we consider the pairs of relatives
of a proband. These pairs may be concordant affected,
discordant, or concordant normal, yielding information
about population frequency as well as about covari-
ance among relatives. Unfortunately, for each additional
relative in the pedigree, it is necessary to add a further
dimension of integration to compute the likelihood,
which introduces considerable computing difficulties.

Multivariate Extensions of the Model

One of the most tractable extensions to the model
is the addition of further indexes of liability. An in-

crease in the number of dimensions of the multinormal
function does not result in great increases in computer
time in this case, since integration is only needed for
the liability dimensions. Some indexes of disease, such
as age at onset or severity, may be measured only in
affected individuals, while others, such as biochemical
markers and physiological or psychological tests, may
be measured in both normal and affected persons. Yet
others may only reasonably be measured in normals,
as medication or disease status may make testing inap-
propriate. While additional computer time is required
to invert the covariance matrix and to estimate param-
eters of these distributions, these additions are relatively
minor for potentially major improvements in the un-
derstanding of liability to disease.

Alternative Models of Age at Onset and Liability

The model presented and applied in the present pa-
per is simple and testable, but it is not the only plausi-
ble model for onset and liability data. Within the general
paradigm of linear models under the multifactorial as-
sumption, several alternative relationships between dis-
ease liability and age at onset may be considered. First,
age at onset could be specified to cause variation in dis-
ease liability. In principle, with cross-sectional data from
twins reared together, this somewhat counterintuitive
model may be discriminated from the liability-causes-
age-at-onset model so long as the MZ and DZ twin
correlations do not have the same values for the liabil-
ity variable as they do for age at onset (Heath et al.
1989). The power to discriminate between these two
models may be low in many cases. Second, both causal
models may be compared against a general factor model.
Here, each of the latent variables (additive genotype
and both common and specific environment) could be
partitioned into three components, i.e., specific to dis-
ease liability, specific to age at onset, and general (caus-
ing variation in both phenotypes). Third, we may con-
sider submodels ofthe general factor model, for example
by allowing all the covariation between age at onset
and liability to be due to genetic factors alone.

For some variables, a shift of paradigm away from
linear modeling may be appropriate. Models of sur-
vival analysis that have been extended to allow correla-
tion between relatives for time to failure (onset), such
as that described by Meyer and Eaves (1988), may be
compared empirically for any set of data. Both ap-
proaches may be extended beyond a multifactorial treat-
ment of variation to allow for the effects ofmajor genes
or for a combination of these sources under a mixed
model.
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