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Listeria monocytogenes transported glucose by a high-affinity phosphoenolpyruvate-dependent phosphotrans-
ferase system and a low-affinity proton motive force-mediated system. The low-affinity system (Km 5 2.9 mM)
was inhibited by 2-deoxyglucose and 6-deoxyglucose, whereas the high-affinity system (Km 5 0.11 mM) was
inhibited by 2-deoxyglucose and mannose but not 6-deoxyglucose. Cells and vesicles artificially energized with
valinomycin transported glucose or 2-deoxyglucose at rates greater than those of de-energized cells, indicating
that a membrane potential could drive uptake by the low-affinity system.

Despite the role of Listeria monocytogenes in causing food-
borne disease and product recalls (5), only recently has there
been much interest in studying the transport processes used by
L. monocytogenes to accumulate carbohydrates and other es-
sential nutrients. Recently, it was reported that transport of
essential di- and tripeptides by L. monocytogenes occurs via a
proton motive force (PMF)-dependent system (20), whereas
uptake of the osmolyte carnitine is driven directly by ATP (21).
Another study demonstrated the existence of a fructose-spe-
cific phosphoenolpyruvate (PEP)-dependent phosphotransfer-
ase system (PTS)-mediated transport system in L. monocyto-
genes (10). How L. monocytogenes transports sugars is
particularly important because this facultative, nonrespiring
organism depends on carbohydrates for its primary energy
source (15). Glucose is reported to be its preferred carbohy-
drate (12). An early report (22) implicated a role for a high-
velocity glucose uptake system during growth of L. monocyto-
genes at a low temperature (108C), a characteristic that may
contribute to its success as a food-borne pathogen.
Recently, evidence for two glucose transport systems in L.

monocytogenes Scott A, a PEP-PTS and a non-PTS that ap-
peared to be fueled by the PMF, was provided (2). Interest-
ingly, both systems were inhibited by the bacteriocin pediocin
JD (2). In this study, we have measured glucose uptake in cells
and vesicles. The data support the hypothesis that two glucose
transport systems are present in L. monocytogenes Scott A, a
low-affinity PMF-driven system and a high-affinity PTS.

MATERIALS AND METHODS

Organism and growth conditions. L. monocytogenes Scott A was grown and
maintained in tryptic soy broth containing 0.5% yeast extract (Difco Laborato-
ries, Detroit, Mich.), as described previously (1).
Sugar uptake assays. Log-phase cells were harvested by centrifugation

(10,000 3 g for 10 min) and washed twice with 50 mM sodium phosphate buffer
(pH 6.5). For kinetic and initial rate experiments, cells were resuspended in
phosphate buffer and 50 ml (0.05 mg of cell protein) was added to triplicate
reaction mixtures containing [14C]glucose (Sigma Radiochemicals, St. Louis,
Mo.), at concentrations ranging from 0.05 to 20 mM. After 5 s of incubation at
218C, a phosphate solution containing 5 ml of ice-cold 0.5 M glucose was added
and the entire mixture was filtered through 0.45-mm-pore-size polyethersulfone
filter membranes (Gelman Sciences, Ann Arbor, Mich.). The filters were washed

twice with 5 ml of the buffer-glucose quench solution and transferred to scintil-
lation vials containing 4 ml of Ultima Gold scintillation cocktail (Packard In-
strument Co., Meriden, Conn.), and the radioactivity was determined by liquid
scintillation counting (model 3801; Beckman Instruments, Fullerton, Calif.). All
counts were corrected for nonspecific binding. Kinetic plots were obtained from
the average of three independent determinations. For most concentrations, rates
were linear for 0.5 min (data not shown).
Other glucose and 2-deoxyglucose uptake experiments were performed using

log-phase cells, which were harvested and resuspended in 100 mM sodium or
potassium phosphate buffer (pH 6.5) to approximately 0.5 mg of protein/ml.
Reactions were started by addition of [14C]glucose or [3H]2-deoxyglucose (Sigma
Radiochemicals) at 0.5 or 15 mM. The mixtures were incubated at 218C, and
50-ml samples were removed at intervals, rapidly filtered under a vacuum, and
washed with 4 ml of cold buffer. Radioactivity was determined as described
above.
Vesicle formation, electron microscopy, and sugar uptake.Membrane vesicles

were prepared from 1 liter of log-phase cells by the osmotic lysis procedures of
Russell et al. (14) and Otto et al. (11). Briefly, cells were centrifuged, resus-
pended in 30 ml of 20 mM sodium maleate buffer (pH 6.5) containing 3 3 106

U of lysozyme and 2 3 103 U of mutanolysin, and incubated for 1.5 h at 378C.
Protoplasts were harvested by centrifugation (27,000 3 g for 20 min) and resus-
pended in 1 liter of 50 mM potassium phosphate buffer (pH 7) containing 10 mM
MgCl2, DNase, and RNase. After 20 min at 378C, 15 mM EDTA was added and
the mixture was incubated for 10 min. The membranes and debris were harvested
by centrifugation at 23,0003 g and then resuspended in 50 mM phosphate buffer
(pH 7) and recentrifuged at 750 3 g to remove cell debris. The supernatant was
centrifuged at 48,000 3 g for 30 min, and the pelleted membrane vesicles were
resuspended in buffer, frozen in liquid nitrogen, and stored at 2708C. Vesicles,
protoplasts, and whole-cell preparations were fixed in 2% glutaraldehyde (0.1%
sodium cacodylate, pH 7.4) for 1 h at 48C. They were then minced into small
fragments and returned to the fixative for an additional hour. After being rinsed
in buffer, the specimens were fixed in 1% osmium tetroxide for 1 h at 48C, then
rinsed in buffer, dehydrated in a graded ethanol series, and embedded in an
Epon-aradite mixture. The sections were stained with uranyl acetate and lead
citrate and observed with a Philips 201c transmission electron microscope.
For sugar uptake experiments, membrane vesicles were thawed, centrifuged at

30,000 3 g, and resuspended in 0.5 M potassium phosphate–10 mM MgCl2
buffer, pH 7. After 10 min at 488C, the vesicles were centrifuged as described
above and resuspended in 600 ml of 11.4 mM sodium maleate buffer (pH 6.5)
containing 11.4 mM MgCl2 and 400 mM lactose to give a vesicle concentration
of approximately 1.2 mg of protein/ml. To start the reaction, 15 mM [14C]glucose
(5 mCi/mmol) was added, and 50-ml samples were removed and filtered through
0.22-mm-pore-size filters. The filters were washed with cold quench buffer and
dried, and radioactivity was determined as described above. Intravesicle volumes
(4.3 mg of vesicular water/mg of protein) and membrane potentials were deter-
mined as described previously for whole cells (1, 7).
Other procedures. Protein concentrations in cell and vesicle preparations were

determined by the method of Lowry et al. (8). All chemicals, except where noted
otherwise, were obtained from Sigma.

RESULTS AND DISCUSSION

Kinetics of glucose transport. It was previously shown that
when the PMF in L. monocytogenes Scott A was reduced by the
addition of ionophores or uncouplers, uptake of glucose was
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also inhibited but not eliminated entirely (2). That some glu-
cose uptake still occurred, even when the PMF was completely
dissipated, however, suggested that an alternative glucose
transport system was functional. Furthermore, glucose was
phosphorylated by L. monocytogenes Scott A cell extracts when
PEP was added to the reaction mixture, indicating that this
second transport system was a PEP-dependent PTS. We spec-
ulated that if L. monocytogenes uses two different systems for
transporting glucose, these systems might be kinetically dis-
tinct. Indeed, when uptake rates at various glucose concentra-
tions were determined, biphasic kinetics were observed, sup-
porting the hypothesis that two systems were present (Fig. 1).
One system was a high-affinity system, having an apparent Km
of 0.11 6 0.09 mM (mean 6 standard deviation; n 5 3), and
the other system was a low-affinity system, having a Km of 2.96
1.05 mM (n 5 3). The maximum velocities of the high- and
low-affinity systems (means 6 standard deviations) were
50.1 6 4 and 368.12 6 15 nmol of glucose per min per mg of
cell protein, respectively. The kinetics of these transport sys-
tems were not affected by the amount of glucose in the original
growth medium (limiting versus excess glucose) or by the
growth phase at which cells were harvested (data not shown).
Competition assays. Substrate competition experiments re-

vealed other differences between the low- and high-affinity
systems (Table 1). Uptake by the high- and low-affinity systems
was determined by using 0.5 or 15 mM glucose, respectively.
Although uptake by both systems would be expected to occur
when glucose was present at the higher concentration (15
mM), some competing sugars did interfere with glucose uptake
at either or both concentrations. Sugars such as galactose and
arabinose did not interfere at all with glucose uptake when the
latter was present at either the low (0.5 mM) or the high (15.0
mM) substrate concentration, whereas 2-deoxyglucose inhib-
ited both systems. Of particular interest was the observation
that 6-deoxyglucose inhibited the low-affinity system but had
no effect on the high-affinity system, even when present at 100
times the glucose concentration. Because 6-deoxyglucose can-
not be phosphorylated at the carbon-6 position, it cannot be

transported by the PTS. Thus, the inability of 6-deoxyglucose
to inhibit the high-affinity system in our assay supports the
hypothesis that this system is a PTS. In contrast, 6-deoxyglu-
cose inhibited glucose uptake by the low-affinity system by
about 50%. Mannose, which is accumulated by a glucose or
glucose-mannose PTS in other gram-positive bacteria, includ-
ing Lactococcus lactis subsp. lactis (18) and Clostridium perfrin-
gens (6), also inhibited the glucose high-affinity system in L.
monocytogenes Scott A.
Based on the above results and the previous observation that

glucose transport was inhibited by uncouplers and other agents
that dissipate the PMF (2), we now argue that the PMF me-
diates uptake by the low-affinity glucose transporter in L.
monocytogenes Scott A. We confirmed this hypothesis by mea-
suring glucose and 2-deoxyglucose uptake in artificially ener-
gized cells and membrane vesicles (Fig. 2). In these experi-
ments, energy to drive uptake was provided by generation of an
artificial membrane potential (Dc). A Dc in whole cells was

FIG. 1. Kinetics of glucose uptake by L. monocytogenes Scott A. Cells were incubated for 5 s with various concentrations of [14C]glucose, filtered (in triplicate), and
washed with ice-cold buffer containing 500 mM unlabeled glucose. An Eadie-Hofstee plot (inset) showed biphasic kinetics.

TABLE 1. Effects of competing sugars on high- and low-affinity
glucose uptake systems in L. monocytogenes Scott A

Sugar added at 20
times excess

% Inhibitiona

0.5 mM
glucose

15 mM
glucose

None 0 0
Glucose 58 58
2-Deoxyglucose 52 50
6-Deoxyglucose 2 47
3-O-methylglucose 18 31
Fructose 39 42
Galactose 0 18
Mannose 50 23
Arabinose 0 0
Xylose 12 24

a Control glucose uptake rates at 0.5 and 15 mM glucose were 30 and 270 nmol
per min per mg of protein, respectively.
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generated by treating de-energized, potassium-loaded cells
with valinomycin, as described previously (11). Either 0.5 or 15
mM 2-deoxyglucose was added, and uptake was measured.
2-Deoxyglucose was used as the substrate rather than glucose
to ensure that no energy could be derived via metabolism.
When incubated in the presence of 0.5 mM 2-deoxyglucose,
little uptake occurred in either de-energized or valinomycin-
energized cells. Because the de-energized cells use the high-
affinity PTS in the presence of 0.5 mM 2-deoxyglucose, ener-
gization by valinomycin treatment would not be expected to
stimulate uptake under these conditions. Only when the vali-
nomycin-treated cells were incubated in the presence of 15
mM 2-deoxyglucose did uptake occur, indicating that the low-
affinity system was mediated by a PMF (or by the Dc). Fur-
thermore, when cells were exposed to the uncoupler carbonyl
cyanide m-chlorophenylhydrazone following valinomycin
treatment, transport by the low-affinity systems was abolished
(data not shown).
Similar results were obtained with membrane vesicles (Fig. 3

and 4). Although the vesicles appeared to contain significant
cytoplasmic material, no lactate dehydrogenase activity was
detected in French press-lysed vesicle preparations (data not
shown). The vesicles had a low membrane potential (mean 6
standard deviation, 39.9 6 3.6 mV; n 5 4), which increased to
49.6 6 3.8 mV (n 5 4) after valinomycin treatment. When
glucose was added, transient uptake occurred. The intravesicu-
lar uptake of glucose was not maintained, however, as the free
sugar apparently effluxed as the membrane potential dissi-
pated.
Multiple glucose uptake systems in other gram-positive bac-

teria that have affinities within the range of those reported
above have been described (4, 13, 16, 17). Streptococcus mutans
transports glucose via a high-affinity PTS (Ks 5 6.8 to 8.0 mM)
and a low-affinity non-PTS (Ks 5 57 to 125 mM); the latter is
now thought to be an ATP-dependent, multiple-sugar metab-
olism transport system (3, 4). Two glucose transport systems
are also present in Bacillus licheniformis NCIB 6349 (16). One
uptake system, thought to be the dominant system, was driven
by a PTS. The other, although not well-defined, has properties
consistent with either an ATP- or a PMF-driven system. Re-

cently, it was suggested that a non-PTS glucose uptake system
in the related strain HWL10 may be regulated by the glucose
PTS (17). In the ruminal bacterium Streptococcus bovis, a high-
affinity glucose PTS and a low-affinity facilitated carrier are
thought to confer optimal rates of carbon uptake in environ-
ments rich in glucose (e.g., the rumen), as well as under con-
ditions in which sugar concentrations are low (9, 13). Similar
advantages for the presence of high- and low-affinity glucose
transport systems may also exist for L. monocytogenes. This
organism is well adapted to growth in a variety of carbohy-

FIG. 2. 2-Deoxyglucose uptake by cells in response to valinomycin-induced
potassium efflux. Cells were incubated in the presence of 100 mM potassium
phosphate for 2 h, harvested by centrifugation, and resuspended in 50 mM
sodium phosphate buffer containing either 0.5 (h) or 15 (E) mM [3H]2-deoxy-
glucose. After 15 min, 15 mM valinomycin was added (closed symbols).

FIG. 3. Electron micrographs of a whole cell (A), protoplasts (B), and ves-
icles (C). Magnifications, 360,000 for whole cells and 390,000 for protoplasts
and vesicles. Size markers were 0.5 (A) and 0.1 (B and C) mm.
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drate-rich foods, as well as in foods that contain relatively little
carbohydrate, such as meat, fish, cheese, and vegetables (5). As
an intracellular parasite, L. monocytogenes also grows well
within the cytoplasm of host tissue cells, where varying glucose
concentrations might also be expected (19). Thus, when glu-
cose concentrations are high, both the PMF-mediated system
and the PTS are functional, but when the glucose levels are
low, only the latter system would be active. In separate exper-
iments, we have observed that the mRNAs coding for HPr and
enzyme I genes of the PTS were transcribed when glucose
concentrations were high (2a), suggesting that expression of
these nonspecific PTS proteins by L. monocytogenes Scott A is
constitutive.
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FIG. 4. Glucose uptake by membrane vesicles in response to valinomycin-
induced potassium efflux. Vesicles were incubated in the presence of 500 mM
potassium phosphate for 10 min, harvested by centrifugation, and resuspended in
sodium maleate buffer containing 10 mM valinomycin and 15 mM [2-14C]deoxy-
glucose (F). Valinomycin was not added to control cells (E). Values are means6
standard deviations (n 5 3).
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