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Brief Communication

A Note on Cannings and Thompson's Sequential
Sampling Scheme for Pedigrees

SUSAN E. HODGEIAND MICHAEL BOEHNKE2

SUMMARY

We consider sequential sampling of pedigrees for genetic analysis.
Cannings and Thompson (1977) gave simple, general guidelines for
valid sequential sampling schemes. We show that their formulation of
the likelihood contains an error, which is, however, easily corrected
so as to maintain the validity of the sequential scheme. We also point
out that although sequential and fixed-structure pedigree sampling do
have the same likelihoods (as Cannings and Thompson showed), and
therefore yield the same maximum likelihood point estimates of ge-
netic parameters, they do not necessarily yield the same significance
tests or confidence intervals.

INTRODUCTION

In genetic studies, the problem of how to sample extended pedigrees, as op-
posed to nuclear families, is extremely complex. Yet with the advent and wide-
spread use of computers, large pedigrees are being increasingly analyzed by
human geneticists because of the greater genetic information they provide.
Thus, the pedigree sampling problem is taking on increasing practical as well as
theoretical importance.

Received October 30, 1985; revised March 12, 1986.
This work was supported in part by grants AM-31813, AM-26844, CA-26803, HL-24489, and HD-

04612 from the National Institutes of Health and by Research Career Development Award AM-
01145 from the National Institutes of Health (S. E. H.).

1 Departments of Biomathematics and Psychiatry, UCLA School of Medicine, Los Angeles, CA
90024.

2 Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI
48109.
© 1986 by the American Society of Human Genetics. All rights reserved. 0002-9297/86/3902-0014$02.00

274



SEQUENTIAL SAMPLING

Two distinct sampling issues require attention when pedigree data are ana-
lyzed. First, pedigrees are often ascertained through probands. This ascertain-
ment should be taken into account in a genetic analysis. For nuclear families,
methods for correcting for ascertainment through probands are well established
[1]. Aspects of correcting for ascertainment in pedigrees have been considered
by Elston and Sobel [2], Hodge et al. [3], and Lalouel and Morton [4], among
others.

Second, pedigrees are often sampled sequentially; that is, rather than decid-
ing in advance that every sampled pedigree will include the siblings, parents,
and grandparents (for example) of a set of randomly selected probands, we
might instead choose to sample the first-degree relatives of a proband only if
the proband is affected, to sample the maternal grandparents of the proband
only if the proband and his or her mother are affected, and so forth. Such a
sequential approach is consistent with the idea that studying a potentially ge-
netic trait is best carried out in pedigree (branches) in which the trait is seg-
regating.

Cannings and Thompson [5] proposed ingenious and aesthetically appealing
methods to deal with both ascertainment and sequential sampling in pedigrees.
First, they showed that in cases of single ascertainment-that is, when 'a is
small and there is only one proband in the pedigree-one can correct for
ascertainment by simply conditioning on the phenotype of that single proband.
Boehnke and Greenberg [6] pointed out that this method does indeed work only
for single ascertainment.

Second, Cannings and Thompson [5] defined rules for sequential sampling
of extended pedigrees that are simple and quite general and that permit realis-
tic sampling schemes. These rules, as stated by Cannings and Thompson, are;
"(i) the choice of individuals to be examined next depends only on the pheno-
types already observed, . . . and (ii) all individuals whose types are examined
are included in the analysis" (p. 209). If a sequential sampling scheme meets
these criteria, then no correction for it in the analysis is required, according to
the authors. However, we believe that this aspect of their paper contains one
error and one possible source of confusion. The error occurs in their formula-
tion of the likelihood for the sequential sampling scheme. The possible source
of confusion could arise when forming confidence intervals or carrying out
significance tests on data collected sequentially. Neither the error nor the
source of confusion invalidates the sequential scheme itself, but they do show
that care must be taken to formulate the likelihood correctly and use it appro-
priately.

CORRECT FORMULATION OF THE LIKELIHOOD

In this part of our paper, we: (1) restate the notation and terminology used by
Cannings and Thompson [5], (2) show where Cannings and Thompson's likeli-
hood formulation is in error, (3) discuss the role of the auxiliary information
random variables YE and (4) discuss the implications of the error for sequential
sampling of pedigrees.
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1. Notation and Terminology

Let 0 denote the genetic model, that is, genetic assumptions plus parameters.
We consider only the "case of a random proband," that is, where the first
person examined in the pedigree is chosen at random from the population and
need not necessarily be affected with the trait of interest. However, the same
argument is valid when one considers sequential sampling beginning with pro-
bands of a specific phenotype. C1, C2, . . , represent classes (groups) of
individuals observed sequentially. The first class, C1, is assumed to consist of
only one individual, the "random proband." We assume that no additional
probands appear subsequently. X, denotes the (ordered set of) phenotype(s) of
the individual(s) in C,,. For ease of notation, let C(n) denote (C1, C2, * * * , Cn)
and X(n) denote (X1, X2, . . . , XJ). Then let g denote the rule used to choose the
next class of individuals to be sampled: C, = g[C(n - 1), X(n - 1)]. The
stopping rule is that if g[C(n - 1), X(n - 1)] is the empty set, then the sampling
procedure ends.

Cannings and Thompson introduce an additional set of auxiliary information
random variables, Y1, Y2, . . . , which are assumed to be independent of the
model 0. For example, Y, might reflect the practical availability of subsequent
pedigree members or costs of testing or diagnosis. The Yn are not essential to
our main argument; in fact, the conceptual outlines of the discussion will be
clearer without them. Thus, we shall omit the Y, here and return to them later.
Given this notation, the likelihood of the model is simply (proportional to)

the joint probability (probability density function in the continuous case) of all
the data given the model:

L(o) = Po [C(N), X(N)] , (1)

where N is defined as the first integer such that C(N + 1) is the empty set.
Equation (1) corresponds to the equation on line 12, p. 211, of Cannings and
Thompson [5] but without the auxiliary information random vector Y(N + 1).
They claim that equation (1) is equivalent to (that is, proportional to as a
function of 0) the product of conditional probabilities

N

P0(X(1)IC(l)) I17 Po[XnIX(n - 1), C(n)] , (2)
n =2

which, in turn, equals the conditional probability

Pe(XI, . . . , XNICl, . . . ,CN), that is, PO[X(N)IC(N)] .(3)

Equation (3) corresponds to the last equation in Cannings and Thompson's
section entitled "Case of a Random Proband," and equation (2) corresponds to
the equation just above it. Note that these arguments will apply for both dis-
crete and continuous traits.
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2. Error in Likelihood Formulation
We maintain that equation (1) is indeed proportional to equation (2) and thus

that equation (2) is a correct expression of the likelihood of the model, but that
equation (3), the final formulation in Cannings and Thompson's derivation, is
incorrect. For one thing, a conditional probability and a joint probability are
not, in general, equal, unless the event being conditioned on-here, C(N)-has
probability unity (or, equivalently, constant likelihood with respect to 0). Pre-
cisely in a sequential scheme this is not the case.
We now demonstrate formally where the error arises, then illustrate with a

simple example. To see why equation (2) does not equal equation (3), note that
by the definition of conditional probability,

Po[XnIX(n - 1), C(n)] = Po[X(n-_)IC(n)] (4)

Substituting equation (4) into equation (2) and writing out the product gives

P[X()IC()1] PO[X(2)IC(2)] Po[X(3)IC(3)] P0[X(N)IC(N)] (5)PO[X(l)IC(2)] PO[X(2)IC(3)] PO[X(N - l)IC(N)]

For equation (5) to equal equation (3) would require a telescoping product,
with each term P,0[X(n - l)IC(n)] in the denominator canceling against a term
P0(X(n - l)IC(n - 1)] in the numerator. However, in this sequential sam-
pling approach, C, = go[C(n - 1), X(n - 1)], so that C, may well depend on
Xn- 1, and these terms do not cancel; that is:

Po[X(n - l)IC(n)] #A PO[X(n - l)IC(n - 1)] . (6)

As an example, consider the following simple but instructive sampling
scheme: (1) Sample a random proband. (2) If the proband is affected, sample
his or her parents. (3) Stop. Here C1 is the random proband, C2 is either the
empty set or the parents of the proband, and C3 is the empty set. Consider a
trait that occurs at random in the population with frequency 0 < 0 < 1; that is,
the trait is not familial, there is no transmission, and all phenotypes are inde-
pendent. Then for n = 2,

to 0for i =affected

but

1 for i = affected, A = parents of proband,
or i = unaffected, A = empty set

P0[X(l) = iIC(2) = A] =
O for i = affected, A = empty set,

or i = unaffected, A = parents of proband

Thus, PH[X(1)|C(l)] = Po[X(1)IC(2)].
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This example illustrates what we pointed out above, namely, that the individ-
uals sampled at stage n, Cn, may depend on the previously collected pheno-
types Xn- 1; that is, after all, the whole point of a sequential sampling scheme.
The very fact that C2, in this example, consists of the parents, and is not the
null set, tells us that X1 must be affected. Nor is this demonstration of the
inequality (6) due merely to the simplicity of the example. We can imagine
more complex and realistic sampling schemes, for example, where one con-
tinues sampling first-degree relatives of whoever is affected among those
sampled so far. Then the fact that, say, the maternal grandparents of the pro-
band were sampled would necessarily imply that the proband and the pro-
band's mother must be affected.

3. The Role of the Yn
Let us return now to the Y,,, which represent auxiliary information. Some

care must be taken in defining them. It is not really sufficient to say, as Can-
nings and Thompson [5] do, that "we observe a random variable Yn which is
independent of the underlying model 0" (p. 210). One must also specify explic-
itly, as part of the assumptions of the sampling scheme, that the probability of
each Xn, conditioned on X(n - 1) and C(n - 1), is independent of Y(n); that is,

PO[XnlY(n), C(n), X(n - 1)] = Po[X,,C(n), X(n - 1)] . (7)

Otherwise, the final formulation of the likelihood, equation (2), is not correct as
it stands, and the terms inside the product sign must be replaced by terms
including Y(n), as on the left side of equation (7). For example, Yn could
indicate where geographically the candidates for C, live; this geographic loca-
tion could influence not only availability of family members for study but also
the nature or the frequency of the disease itself, as with multiple sclerosis [7].
Yet the probability of Y, itself would still be independent of 0, as required. Of
course, in this example, geographic location could have been included in the
original model 0, which would circumvent this difficulty. Our point is simply
that the requirement " Y, is independent of the model 0" is not mathematically
as restrictive as equation (7), and that equation (7) is what is needed to validate
equation (2).

4. Implications of the Error
We maintain that the sequential sampling scheme can still be valid, as long as

equation (2) is used, not equation (3) (and subject to the limits on interpretation
to be discussed in SEQUENTIAL VS. FIXED-STRUCTURE SAMPLING, below). More-
over, we surmise that most users (investigators, computer programmers, etc.)
probably have implemented the correct formulation, equation (2) not equation
(3), whether or not they are aware of this fact. We now justify these statements.
The reason this error does not invalidate the sequential sampling scheme is

that the error apparently arose out of ambiguities in the notation, not out of the
sequential sampling concept as such. Simply, equation (3) incorrectly collapses
the chain of conditional probabilities into a single conditional probability, by
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conditioning all the phenotypes on the whole pedigree structure, instead of
conditioning each stage of phenotypes on the structure sampled so far. This
latter conditioning process is what equation (2) correctly expresses.
Moreover, the formulation in equation (2) corresponds to what investigators

presumably actually do when they put together the likelihood of a pedigree,
whether sequentially or not. To illustrate, consider again the simple example
presented above. Consider the event (Cl = random proband, C2 = parents of
proband; Xl = affected, X2 = affected x unaffected). Following equation (2),
one finds first the probability Po(X1IC1), which is 0; then since the trait occurs at
random in the population, Pe[X2IX(l), C(2)] = 20(1 - 0), so the likelihood of
the model, equation (2), is 202(1 - 0). However, by equation (3), the incorrect
formulation, the conditional probability P0(X1,X2jC1,C2) would have to be con-
ditioned on the fact that the proband's parents were included and would be only
20(1 - 0). This differs from the correct probability, equation (2), by a factor of
0-due in this example to conditioning XI on Cl and C2. Again, the validity of
the counter-example does not rely on the simplicity of the sampling strategy.
We believe most investigators would almost "instinctively" calculate the

correct 202(1 - 0) for this example, not 20(1 - 0), even if they thought they
were implementing equation (3), as given by Cannings and Thompson. Thus,
we do not anticipate that computer programs implementing Cannings and
Thompson's sequential scheme will need to be corrected. However, clearly
this is something that users of the sequential sampling scheme will need to
check themselves.

SEQUENTIAL VS. FIXED-STRUCTURE SAMPLING

The possible source of confusion to which we alluded in the INTRODUCTION
arises when we turn from the likelihood and maximum likelihood point estima-
tion to the use of likelihood methods in significance tests and confidence inter-
vals.
Consider a given set of phenotypic observations on a pedigree. Whether that

pedigree was obtained under a sequential sampling scheme as discussed above,
or under a fixed-pedigree-structure scheme, the likelihood (2) [not equation (3),
as discussed above] will be identical. So will the maximum likelihood estimate
(MLE) of 0. If one wishes only to determine what the data reveal about the
genetic hypotheses and parameters-for example, if one is interested only in
the maximum likelihood parameter estimate-then one need not be concerned
with how the data were sampled.
However, error and confusion can arise if one proceeds to form classical

Neyman-Pearson confidence intervals about the estimate O or to carry out
significance tests on genetic hypotheses. Such calculations incorporate not
only the information yielded by the data themselves, and thus contained in the
likelihood (1) or (2), but also assumptions about the sampling space, that is,
about what could have happened had we repeated the same experiment a large
number of times. Clear exposition of this point can be found in Edwards [8].
For confidence intervals or significance levels, knowledge of how the pedigree
was sampled, whether by a sequential or fixed-structure scheme, is relevant.
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The width of a confidence interval and the significance level of a test will differ,
depending on the sampling scheme.
We do not need to belabor the point. It has been amply discussed in numer-

ous classical books on mathematical statistics and on the philosophy of
scientific inference (e.g., [8-11]); moreover, constructing simple examples to
illustrate the point is easy. Nor are we advocating either that one use only the
likelihood or that one also form confidence intervals and perform significance
tests. We merely want to remind the reader that the fact that two likelihoods
are equivalent does not imply that all other statistical applications are necessar-
ily identical.
We also want to make two further comments, one concerning significance

tests in finite samples and the other concerning the asymptotic behavior of
significance tests. By "finite" we mean that the number of pedigrees sampled,
which we denote m, is finite, whereas by asymptotic we mean as m approaches
infinity. Note that whether m is finite or infinite is a separate issue from how n,
the number of individuals or classes of individuals in the pedigree, is deter-
mined.

Significance Tests in Finite Samples
To determine these exactly for a sequential sampling scheme would be non-

trivial and would no doubt require extensive simulations. The elegant theory of
sequential sampling pioneered by Wald [12] and carried further by Ghosh [13]
and other writers would not be applicable in the exceedingly complex situations
presented by pedigrees. However, in fairness, exact finite-sample significance
levels have not been determined for fixed-structure sampling schemes, either,
in most situations. Rather, investigators generally take advantage of the asymp-
totic properties of the MLE and the likelihood-ratio (LR) statistic (see next
paragraph).

Asymptotic Significance Levels
Under fixed-structure sampling, and assuming that all the pedigrees are cho-

sen to be of the same structure, then the pedigree phenotype vectors are inde-
pendent and identically distributed (i.i.d.). It is well known that under mild
regularity conditions, the MLE is asymptotically normally distributed, and the
LR statistic is asymptotically distributed as chi-squared (e.g., [11]). As men-
tioned above, most investigators testing genetic hypotheses utilize this fact,
even though no one really knows how large a sample (m) is needed to be
considered "asymptotic." However, under a sequential sampling scheme, the
pedigrees are clearly not i.i.d., and it is not clear to us that these asymptotic
properties continue to hold. Even if they do, requisite sample sizes may not be
the same as under a fixed-structure scheme.

DISCUSSION

In conclusion, we have shown that the likelihood (3) given by Cannings and
Thompson [5] for a sequential sampling scheme is incorrect, but that an earlier
equation (2) in their derivation is correct. Fortunately, we believe that readers
and users will probably have used the correct formulation, although this sup-
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position remains to be confirmed. We have also pointed out that equivalence in
likelihoods under different sampling schemes does not necessarily imply equal
significance tests or confidence intervals. Specifically, significance tests de-
rived under the assumption of fixed-pedigree-structure sampling may not be
appropriate for pedigrees sampled sequentially. Thus, Cannings and Thomp-
son's claim that no correction in the analysis is required under a properly
defined sequential sampling scheme is correct only if understood in the right
context.

Finally, by no means do we wish to denigrate the value of sequential sam-
pling schemes of the type suggested by Cannings and Thompson [5]. For ex-
tended pedigrees, fixed-structure schemes are simply impractical for most stud-
ies, however tractable their statistical properties may be. Sequential schemes,
in contrast, are practical. Moreover, they coincide with the way that many
genetic studies are actually done. The two rules specified by [5] (see INTRODUC-
TION) are straightforward and easily implemented, and Cannings and Thompson
have done a service in stating them explicitly. By correcting the proof in [5] and
pointing out that their result extends to point estimates but not to confidence
intervals or significance tests, we hope to have clarified complicated but impor-
tant issues in the genetic analysis of complex pedigrees.
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