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Estimating the Power of a Proposed Linkage Study:
A Practical Computer Simulation Approach

MICHAEL BOEHNKE

SUMMARY

I describe a simulation method to estimate the power to detect linkage
given a set of pedigrees of known structure and for which family
history data may be available. This method can be applied to auto-
somal and X-linked dominant diseases; depending on the pedigrees
under consideration, it will often be applicable for autosomal and
X-linked recessive diseases. This power calculation can most use-
fully be undertaken after family history data are gathered, but prior
to examination and testing of pedigree members to obtain marker
information. Of key importance, the power calculation is straightfor-
ward to carry out and not too time-consuming; it is practical even on a
microcomputer. The result of the power calculation is an objective
answer to the question: Will my families be sufficient to demonstrate
linkage?

INTRODUCTION

There are two requirements to map a Mendelian disease by standard linkage
methods: a polymorphic genetic marker linked to the disease locus and a
sufficient set of informative pedigrees. Until recently, the human genetic map
was quite sparse, with relatively few useful markers covering only a small
portion of the genome. Thus, attention was focused on the existence of a linked
marker, and the prior probability of linkage was of primary concern [1, 2].
Given a spanning set of 150-200 markers spaced at 20-cM intervals through-

out the genome, any disease gene should be within at most 10 cM of a known
marker [3]. While many more markers will be required before such a spanning
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set is obtained [4, 5], the current explosive increase in the number of available
restriction fragment length polymorphisms (RFLPs) means that a spanning set
soon will exist. With the requirement for a linked marker satisfied, the avail-
ability of sufficiently many informative pedigrees will take on primary impor-
tance. Thus, it becomes critical to determine whether a given set of pedigrees
are likely to be sufficiently informative to map a genetic disease assuming a
linked marker exists.

Here, I describe a simulation approach to estimate the power to demonstrate
linkage given a set of pedigrees of known structure. This approach is most
usefully undertaken after family history data have been gathered, but before
families are actually seen, blood drawn, and lab work carried out. At the family
history stage, relatively little effort has been expended, but the pedigree struc-
ture and the disease phenotypes of some of the pedigree members are known.
The results of this simulation approach provide objective a priori evidence

regarding the statistical power of a proposed study to identify a linked marker.
In addition, they suggest which pedigrees are likely to be most informative.
Finally, carrying out the simulation at several true recombination fractions can
suggest an appropriate choice of marker spacing for a linkage study. If the
available pedigrees are shown to have a high probability of demonstrating
linkage given a spanning set of markers equally spaced at 20-cM intervals, such
a spacing would be suggested. If not, either more pedigrees or a more densely
spaced spanning set would be required. Carrying out the simulation for un-
linked loci can also provide an estimate of the distance from an unlinked
marker that is likely to be excluded and the probability of incorrectly conclud-
ing linkage to an unlinked marker.

METHODS

I begin this section by outlining a strategy to evaluate the linkage information
in a pedigree and a set of pedigrees; each step of the strategy is then discussed
in greater detail.

Brief Outline
A. For each of the available pedigrees and at each of several true recombina-

tion fractions Oj (for example, 0 = 0, .05, .10, .15, .20, and .50):
1. Simulation ofpedigrees. Simulate cosegregation of the disease locus and a

marker locus in N copies (for example, N = 1,000) of the pedigree assuming a
true recombination fraction Oj. Individuals of known disease phenotype are
assigned disease genotypes compatible with their disease phenotypes.

2. Calculation of lod scores. Calculate lod scores Z(ri; Oj) for the simulated
pedigrees at each of several test recombination fractions ri. The lod score
Z(r; 0) is the logarithm base 10 of the pedigree likelihood assuming a recombi-
nation fraction r (.00 S r - .50) divided by the pedigree likelihood assuming
free recombination (r = .50). The notational dependence of the lod score on 0
will be used here to indicate that 0 is the true recombination fraction under
which the pedigree data were simulated.

3. Linkage information criteria for each pedigree. For each test recombina-
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tion fraction ri, tabulate the lod scores Z(ri; Oj) and the approximate maximum
lod scores Z*(%j) = maxi Z(ri; Oj) for the N simulated pedigrees. From these lod
score distributions, estimate the linkage information criteria for the pedigree:
the probability of a maximum lod score greater than some constant c, and the
expected maximum lod score.

B. For the set of pedigrees:
4. Joint linkage information in a set ofpedigrees. Estimate the joint linkage

information provided by all the available pedigrees: the probability of a max-
imum summed lod score for the pedigrees greater than some constant c, or of a
maximum lod score for at least one pedigree greater than c, and the expected
maximum summed lod score.

1. Simulation of Pedigrees
For a simulation approach to this problem to be practical, the simula-

tion procedure must efficiently assign pedigree two-locus genotype vectors
g = (g1, g2, * . . , gp) to the p members of the pedigree. In addition, the
simulation procedure must avoid any systematic bias in the pedigree geno-
type vectors it assigns; that is, the probability the simulation assigns a
two-locus genotype vector g to a pedigree with disease phenotypes x =
(x1, x2, ..., xp) should be equal to P(glx), the conditional probability of g given x
(see below).
Once genotypes are simulated for each member of a pedigree, corresponding

disease and marker phenotypes are recorded in a pedigree file to be used in the
subsequent linkage analysis. Pedigree members who are expected to be avail-
able for sampling in the linkage study are assigned the disease and marker
phenotypes corresponding to their simulated genotypes. Pedigree members
who are deceased or for some other reason unlikely to be available are assigned
unknown marker phenotypes.
Disease phenotypes unknown. If disease phenotypes are unknown for all

pedigree members, the requirement for efficient, unbiased simulation of
genotype vectors is easy to satisfy for any Mendelian trait. In this case,

P(glx) = P(g) = 1 P(gk) 1 P(gilg1l, g12)' (1)
keO lD

where k runs over all originals ("O" indicates the set of originals) in the pedi-
gree, I runs over all descendants ("D" indicates the set of descendants), and l1
and 12 are the parents of 1. Equation (1) immediately suggests an approach to
simulate genotype vectors. First, genotypes are simulated for each pedigree
original according to the prior probabilities for the genotypes given gene fre-
quencies and the assumptions of Hardy-Weinberg and linkage equilibrium.
Second, genotypes are simulated for descendants based on the genotypes of the
parents according to transmission probabilities assuming Mendelian segrega-
tion and a recombination fraction 0 assumed equal in males and females.
Disease phenotypes known. When disease phenotypes are known for some

of the pedigree members, as will be true after family history data are gathered,
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simulating genotype vectors for the pedigree in an unbiased manner can be
much more difficult. Efficient simulation requires that the conditional probabil-
ity P(glx) again factor into terms each dependent on the genotypes of one or a
few pedigree members. In analogy to the phenotype-unknown case, if the
conditional probability can be expressed as

P(glx) = 11 P(gklXk) 1 P(gIg1l g12, xI) (2)
keO lED

unbiased simulation of genotype vectors can be carried out efficiently.
Sufficient (although not necessary) conditions for equation (2) to hold are: (a)
known disease phenotype (effectively) implies known disease genotype, and
(b) disease genotypes are known or can be inferred for the parents of all descen-
dants with known disease genotype (see APPENDIX A). These requirements
hold for an autosomal or X-linked dominant disease; depending on the pedi-
grees under consideration, they often hold for autosomal and X-linked reces-
sive diseases as well. The reason is that such diseases are rare, so that certain
disease genotypes are very unlikely and may reasonably be ignored.
As an example, consider two pedigrees in which a rare autosomal dominant

disease is segregating (fig. 1). For pedigree A, family history data provide
disease phenotypes for all pedigree members except I-1, 1-2, II-1, 11-2, and 11-3.
Since the disease is autosomal dominant, unaffecteds are homozygous normal
dd. Since the disease is rare, affected individuals are almost certainly heterozy-
gous Dd, 11-2 and 11-3 were almost certainly Dd, and 11-1 was almost certainly
dd. Finally, either I-I or 1-2 was affected; these events are equally likely.
Assign Dd to I-1 and dd to 1-2; the assumption of equal male and female
recombination fractions means that this choice will make no difference in the
results. For pedigree B, the same approach assigns Dd and dd to 1-1 and 1-2,
and Dd and dd to all other affecteds and unaffecteds, respectively. Thus, all
pedigree members can be assigned a disease genotype.

If disease penetrance is incomplete, the conditional probability P(glx) often
does not factor into a product of simple terms, since several disease genotypes
may be possible for some unaffected pedigree members. Nonetheless, if dis-
ease penetrance is complete or nearly so by a given age, the approach outlined
above may still be used. The simulation can be carried out first with the youn-
ger unaffecteds excluded and second with pedigrees and phenotypes as ob-
served, resulting in lower and upper bounds on the linkage information. This
approach allows us to again assume that known disease phenotype specifies
known disease genotype.

2. Calculation ofLod Scores
For each replicate pedigree and each true recombination fraction 0, lod

scores are calculated at several test recombination fractions ri, using one of the
available linkage analysis programs. These include LIPED [6, 7], PAP [8], and
LINKAGE [9]. If 0 = 0, the maximum lod score must occur at r = 0, and so only
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FIG. 1.-Two pedigrees in which an autosomal dominant disease is segregating

one test recombination fraction is required. If 0 < 0 < .50, the ri should include
values bracketing the true recombination fraction 0. For example, if 0 = .10,
one might consider r = .01, .05, .10, .15, and .20. If 0 = .50, a similar choice of
ri will suggest to what distance from an unlinked marker linkage might be
excluded. Just as efficient simulation of pedigrees is required for this power
calculation to be practical, so too is efficient lod score calculation essential.

3. Linkage Information Criteria

Information provided by a single linked marker. Having calculated the pedi-
gree lod scores, a variety of criteria can be used as the information for linkage
in a pedigree. Here, I consider two: the probability that the (approximate)
maximum pedigree lod score Z*(0) = maxi Z(ri; 0) is greater than some con-
stant c, and the expected value of the maximum pedigree lod score. The sample
proportion j5 of maximum lod scores greater than c provides an estimate of the
probability of a maximum lod score greater than c; [j5(l - '5)In]1/2 is the stan-
dard error of the estimator. The sample mean of the maximum lod scores
provides an estimate of the expected maximum lod score.
For 0 < .50, P(Z*(0) :,- 3.0) represents the statistical power of the pedigree to
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reject the hypothesis of no linkage when the two loci are linked. For 0 = .50,
P(Z*(O) : 3.0) is the probability of erroneously concluding linkage to a single
unlinked marker, that is, of making a type I error. Ifm markers are to be tested,
an estimate of the overall type I error probability taking into account all m tests
is 1 - P[Z* (.50) < 3.0]', assuming independence. Analogous calculations can
be made for a set of pedigrees.

Simulating pedigrees at several true recombination fractions Oj suggests the
effect of the distance to a marker on the linkage information. For linked loci
(0 < .50), calculating Z(ri; 0) at several ri allows for the possibility that the
maximum lod score for a given pedigree may occur at a test recombination
fraction r # 0. This is important since the largest lod scores result in pedi-
grees where (perhaps by chance) little or no recombination occurred. Thus,
the largest pedigree lod scores will often occur at a test recombination fraction
r < 0. For unlinked loci (0 = .50), calculating Z(ri; 0) at several ri suggests
the length of the region that might be excluded by testing for linkage to an un-
linked marker.

Information provided by a spanning set of markers. If a spanning set of
markers equally spaced at d cM intervals is to be used, a disease locus will
be within t and (d - t) cM of the two closest markers (0 S t - d/2), as well as
(d + t) and (2d - t) cM of the next closest markers, and so forth. Thus, in calcu-
lating the probability of achieving a maximum lod score greater than c when
a spanning set of markers is to be used, we should consider not only the closest
linked marker but also neighboring marker(s). To keep the number of true
recombination fractions 0 in the simulation manageably small, I consider only
those markers no more than d cM from the disease locus; that is, the two
closest markers when t > 0, and the three closest when t = 0. The result is an
underestimate of the power; however, unless d is rather small, these closest
markers provide most of the linkage information, and the underestimation
should be minor. If d is small, what follows can be modified to take into account
additional linked markers.

Let Md(t) be the maximum lod score to any linked marker at most d cM
away, assuming a spanning set of markers evenly spaced at d cM intervals and
conditional on t cM being the distance to the nearest marker. Let Md*(t) be the
corresponding maximum for the test recombination fractions ri considered.
Then if 0, is the recombination fraction corresponding to a map distance of t
cM, the probability that Md(t) should be greater than c may be estimated by

I I - P[Z*(H,) < C]P[Z*(Odt) < c] t > 0
P[Md*(t) > c] =

1 - P[Z*(O) < C]2P[Z*(Od) < c]
0 (3)

The standard error of this estimator is given in APPENDIX B.
Assuming that the distance t from the disease locus to the nearest marker is

uniformly distributed on the interval 0 to dl2, the (unconditional) probability
that the maximum lod score Md to any linked marker up to d cM away should
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be greater than c is P[Md ¢ c] = 21d ftf2P[MA(t) - c] dt. Applying Simpson's
rule for numerical integration [10] and approximating Md(t) by Md*(t),

P(Md ¢C) P(Md* > C) (4)
l6{P[Md*(O) ' C] + 4P[Md*(d14) 3 c] + P[Md*(dl2) cC]}.

The standard error for this estimator is easily calculated since if X1, X2,... are
independent random variables and cl, c2,... are constants, then Var(lk Ck Xk)
= -k Ck2 Var(Xk).
For small to moderate map distances, say t - 25 cM, 0, t/100 for mapping

functions 0, taking into account inference. For larger t, one might want to
explicitly evaluate the mapping function 0, to choose the appropriate recombi-
nation fractions to simulate.
For example, suppose d = 20 cM. Then 0, t/100 for all t - d. To estimate

the power to detect a linked marker: First, estimate probabilities of lod scores
greater than c for pedigrees with true recombination fractions 0 = 0 and .20;
o = .05 and .15; and 0 = .10. Second, substitute these results in equation (3) to
estimate the conditional probability of a maximum lod score greater than c to
any linked marker assuming distances to the nearest marker of 0, 5, or 10 cM,
respectively. Third, substitute the estimates of M20*(0), M20*(5), and M20*(l0)
into equation (4) to estimate the unconditional probability of a maximum lod
score greater than c to any linked marker.

If the estimated power for a spanning set at 20 cM intervals is insufficient,
more pedigrees might be sought. Alternatively, one might consider an analysis
with a denser marker spacing; for example, with d = 10 cM. The power when
d = 10 cM can immediately be approximated by ½12[MI0*(0) + M1o*(5)]; this
estimate can be calculated directly from the simulation results for 0 = 0, .05,
and .10 already undertaken. A more accurate approximation is obtained by
additional simulations with 0 = .025 and .075 and application of Simpson's rule
[10].

If the estimated power is very close to one, a less dense spanning set might
be considered. Again, a portion of the results from the d = 20 cM simulations
should be reused to keep the additional simulation work to a minimum.

4. Joint Linkage Information in a Set of Pedigrees
Given a set of pedigrees with family history data, carrying out the above

procedure for each available pedigree suggests which pedigrees are likely to
provide the most linkage information. In addition, we can estimate the total
linkage information for the set of pedigrees.

First, the probability that the maximum summed lod score should be greater
than some constant c can be estimated. Since a large number of replicates N
will be desirable, a reasonable estimate of the probability of a maximum sum-
med lod score greater than c is obtained by summing the lod scores Z(ri; 0) for
the nth replicate of each pedigree (1 - n - N) and calculating the proportion of
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these maximum summed values greater than c. The alternative approach of
convolving the distributions for the different pedigrees and finding their max-
imum would be much more difficult computationally and would quickly be-
come impractical for even a modest number of pedigrees and replications. The
procedure outlined above for the lod scores for single pedigrees can then be
repeated for the summed lod scores.

Second, the probability that at least one of the available pedigrees will by
itself have a maximum lod score greater than c can be estimated. This probabil-
ity is of particular interest when genetic heterogeneity is a concern; given
genetic heterogeneity, summing the lod scores for several pedigrees is inappro-
priate. Assuming markers evenly spaced at d cM intervals, the probability that
at least one pedigree will have a lod score greater than c to at least one of the
linked markers is estimated by

1-1n P(kMd*< c) (5)
k

Here, kMd* is the approximate maximum lod score to any linked marker for the
kth observed pedigree. The standard error for this estimator is given in AP-
PENDIX B.

Third, the expected maximum summed lod score may be calculated.

APPLICATION

As an application of this method, consider the family history data illustrated
in figure 1. A rare, fully penetrant autosomal dominant disease is segregating in
these pedigrees. Genotype inferencing for the pedigrees was described above.

I simulated cosegregation of the dominant disease and a linked marker in
N = 1,000 replicates each of pedigrees A and B at true recombination fractions
0 = 0, .05, .10, .15, .20, and .50. Table 1 lists the test recombination fraction ri
at which lod scores were calculated for each true recombination fraction 0.
Simulations were carried out using the FORTRAN program SIMLINK which I wrote
for this purpose. Lod scores were calculated using LIPED [6, 7]. In each analy-
sis, I assumed a two-allele, codominant marker with allele frequencies .50.
Table 2 presents the mean maximum lod scores and their standard errors for

TABLE I

TEST RECOMBINATION FRACTIONS ri

TRUE
RECOMBINATION TEST RECOMBINATION FRACTIONS
FRACTION
o r2 r3 r4 rs

. .............. . 00. ... ...

.05 ........... .01 .03 .05 .10 .20

.10 ........... .01 .05 .10 .15 .20

.15 ........... .01 .05 .10 .15 .20

.20 ........... .01 .05 .10 .20 .30

.o ...........0 .01 .05 .10 .15 .20
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TABLE 2

MEAN MAXIMUM LOD SCORE ± STANDARD ERROR FOR A DOMINANT DISEASE AND A LINKED
CODOMINANT MARKER

TRUE
RECOMBINATION PEDIGREE
FRACTION
0 A B A + B*

.00 .................. 2.84 ± .04 2.57 ± .04 5.41 ± .06

.05 .................. 2.07 ± .04 1.92 ± .04 3.84 ± .06

.10 .................. 1.52 ± .04 1.45 + .03 2.75 ± .05

.15 .................. 1.05 ± .03 1.02 ± .03 1.89 ± .04

.20 .................. 0.70 ± .02 0.77 ± .02 1.28 ± .03

NOTE: Means and standard errors are based for each 0 on N = 1,000 simulated pedigrees assuming a two-allele
codominant marker with allele frequencies .50.

* Maximum summed lod score for pedigrees A and B together.

each 0 < .50. As expected, the mean maximum lod score decreased as the true
recombination fraction 0 increased for both pedigrees. The average maximum
summed lod score ranged from 5.41 for 0 = 0 to 1.28 for 0 = .20. For unlinked
loci (0 = .50), the means of the summed lod scores were uniformly negative
(data not shown). For r - .10, the mean summed lod score was less than - 2.0,
the value customarily accepted as excluding linkage.

Table 3 reports the estimated probabilities of maximum lod scores greater
than 2.0 and greater than 3.0 assuming a single linked marker. Probabilities of
maximum lod scores greater than 2.0 or 3.0 also decreased with increasing 0.
The probability that the maximum summed lod score for A and B together ex-

TABLE 3

PROBABILITIES OF A MAXIMUM LOD SCORE GREATER THAN 2.0 OR 3.0 ± STANDARD ERROR
FOR A DOMINANT DISEASE AND A LINKED CODOMINANT MARKER

TRUE
RECOMBINATION PEDIGREE
FRACTION
0 c A B A+B* AorBt

.00 ........... 2.0 .71 ± .01 .66 ± .01 .97 .01 .90 ± .01
3.0 .44 ± .02 .34 ± .02 .91 ± .01 .64 ± .01

.05 ........... 2.0 .49 ± .02 .43 ± .02 .85 ± .01 .71 + .01
3.0 .24 ± .01 .19 ± .01 .65 ± .02 .39 + .02

.10 ........... 2.0 .30 ± .01 .27 ± .01 .64 .02 .49 .01
3.0 .11 ± .01 .10 ± .01 .39 ± .02 .20 ± .02

.15 ........... 2.0 .18 ± .01 .14 ± .01 .41 ± .02 .29 ± .01
3.0 .06 ± .01 .04 ± .01 .19 ± .01 .10 ± .01

.20 ........... 2.0 .07 ± .01 .08 ± .01 .21 ± .01 .15 ± .01
3.0 .02 ± .004 .01 ± .004 .08 ± .01 .03 ± .01

NOTE: Means and standard errors are based for each 0 on N = 1,000 simulated pedigrees assuming a two-allele
codominant marker with allele frequencies .50.

* Probabilities that the maximum summed lod score for the two pedigrees should be greater than c.
t Probabilities that the maximum lod score for at least one pedigree should be greater than c.



TABLE 4

PROBABILITIES OF A MAXIMUM LOD SCORE GREATER THAN 2.0 OR 3.0 + STANDARD ERROR
FOR A DOMINANT DISEASE AND A SPANNING SET OF CODOMINANT MARKERS SPACED

AT d = 20 cM INTERVALS

PEDIGREE

t(cM) c A B A + B* A or Bt

A. Probabilities Md*(t) conditional on the distance t to the nearest marker

0 2.0 .75 .01 .71 .01 .98 .003 .93 .01
3.0 .47 ± .02 .36 ± .02 .92 ± .01 .66 ± .01

5 2.0 .58 .01 .51 .01 .91 .01 .80 .01
3.0 .29 ± .01 .23 ± .01 .72 ± .01 .45 ± .01

10 2.0 .52 ± .02 .47 ± .02 .87 ± .01 .74 ± .01
3.0 .21 ± .02 .18 ± .02 .63 ± .02 .36 ± .02

B. Unconditional probabilities Md* assuming a marker spacing of d = 20 cM

2.0 .60 ± .01 .54 ± .01 .92 ± .01 .81 ± .01
3.0 .30 ± .01 .24 ± .01 .74 ± .01 .47 ± .01

NOTE: Means and standard errors are based for each 0 on N = 1,000 simulated pedigrees assuming two-allele
codominant markers with allele frequencies .50.

* Probabilities that the maximum summed lod score for the two pedigrees should be greater than c.
t Probabilities that the maximum lod score for at least one pedigree should be greater than c.

ceeded 2.0 or 3.0 ranged from .97 and .91 for 0 = 0, to .21 and .08 for 0 = .20.
The probability that at least one of the pedigrees had a maximum lod score
greater than 2.0 or 3.0 ranged from .90 and .64 for 0 = 0 to .15 and .03 for
o = .20. The maximal lod scores often occurred at a test recombination fraction
r < 0 (data not shown). For example, for 0 = .05, the probability of a lod score
greater than 3.0 was greater at r = .01 (.225 for pedigree A, .184 for pedigree B)
than at r = .05 (.192 for A, .145 for B).

Table 4 presents the probabilities of achieving a maximum lod score greater
than 2.0 or 3.0 to at least one linked marker up to 20 cM distant. When the
nearest marker is t = 0 cM away, these probabilities are only slightly elevated
above those for a single linked marker with 0 = 0 (table 3), suggesting that the
additional two markers 20 cM away provided little additional power. For t = 5
cM and particularly for t = 10 cM, the improvement in power by considering
the two closest markers is substantial. For example, a single linked marker 10
cM distant gave probabilities .64 and .39 for maximum summed lod scores
greater than 2.0 or 3.0, respectively (table 3); considering two such markers
increased these probabilities to .87 and .63 (table 4).
Using Simpson's Rule [10] to summarize these values in a single estimate of

the power for a spanning set of markers at 20 cM intervals, I found that together
the pedigrees gave probabilities .92 and .74 of a maximum summed lod score
greater than 2.0 and 3.0, respectively. Further, the probabilities that at least
one of the pedigrees should by itself have a lod score greater than 2.0 or 3.0 was
.81 or .47, respectively. Thus, a linkage study based on those two pedigrees and
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a spanning set of markers equally spaced at 20-cM intervals would have about a
74% chance of demonstrating linkage. If heterogeneity was suspected, so that
the lod scores for the pedigrees could not be summed, this power estimate
would be reduced to 47%.
By estimating the probability of a lod score greater than 2.0 or 3.0 when 0
.50, I also estimated the probability of incorrectly inferring linkage to an

unlinked marker, that is, of making a type I error. Among the 1,000 replicates
each of pedigrees A and B, only two replicates resulted in a lod score as large as
2.0; no lod score was greater than 2.37. Considering the summed lod scores;
only for one pedigree pair was a lod score greater than 2.0 achieved; the
summed value for that pair had a maximum value of 2.25. Thus, even if many
markers are tested for linkage in these pedigrees, the probability of concluding
linkage when it is not present is small.

DISCUSSION

The simulation approach suggested in this paper is the analog of power
calculations used in more standard statistical problems. In linkage analysis, one
tests the null hypothesis of no linkage (0 = .50) against the alternative of
linkage (0 < .50). Approximate control of type I error (that is, concluding
linkage when 0 = .50) is achieved by appropriate choices of the value at which
one concludes linkage [11, 12]. However, power considerations for linkage
studies have received relatively little consideration [13-15], and most of that
has been restricted to nuclear family data. Clearly the reason for this is the
variability of possible pedigree structure and phenotypes and the dependence
of the lod score on pedigree structure, phenotypes, and recombination fraction.
Skolnick et al. [13] and Elston and Bonney [15] calculated the expected lod

score for offspring of phase-known, double-backcross matings and from it the
expected numbers of offspring to demonstrate linkage as a function of the
recombination fraction. Further, Skolnick et al. [13] calculated the expected
lod scores for sibships of various sizes and the expected numbers of sibships
required to demonstrate linkage. While their results are instructive, they do not
provide the expected lod score for a particular pedigree, since it is usually not
clear how many fully informative offspring are present in a given pedigree and
since related sibships analyzed as intact pedigrees provide more information
than the same number of sibships analyzed separately [14]. Further, they give
no direct estimate of power.
An alternative approach to linkage information based on classical likelihood

methods was suggested by Ott [16]. He calculated the Fisher information (see,
for example, [17]) for the recombination fraction, given sibship data and several
parental mating types. While this approach could be generalized to pedigrees, it
does not directly answer our question of primary interest, namely: Is there
sufficient family data to establish linkage if a linked marker exists?

In contrast, the simulation approach described here provides a direct esti-
mate of the power to detect linkage. Further, the method is practical. For
pedigrees A and B, simulating 1,000 replicates, calculating 1,000 sets of lod
scores, and reading and manipulating the lod scores to estimate the linkage
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information criteria required about 60 min elapsed time on an IBM-AT micro-
computer, or a total of about 12 hrs elapsed time for the entire analysis re-
ported. The time and expense of a large-scale linkage study, particularly one in
which cell lines are to be grown for each individual and a significant portion of
the genome spanned, easily justify the effort required to carry out such an
analysis.
The power calculation suggested here does require certain assumptions.

First, I assume that family history data are accurate. Obviously, errors in
reporting may occur; however, any effect on the linkage information is likely to
be small. Second, one must choose the type of marker to simulate. The choice
of a two-allele, codominant marker with equal allele frequencies represents a
compromise between highly polymorphic RFLPs with many alleles and two-
allele markers that barely satisfy the frequency definition of a polymorphism.
As the spanning set of markers for the human genome is constructed, prefer-
ence will be given to markers that are highly polymorphic, so that this choice of
markers to simulate should not be overly optimistic. Assuming a two-allele
marker rather than a multiple-allele marker saves simulation time and computa-
tion time. Third, I have assumed that because genetic diseases are rare, certain
genotypes (for example, homozygous DD for an autosomal dominant disease)
do not occur. This may occasionally be wrong. Fourth, male and female recom-
bination fractions are likely different, although here I have assumed they are
equal. In fact, such simplifications and minor errors really are not of great
concern. In this analysis, as in any power calculation, one seeks an approxi-
mate answer to our information questions. Of more fundamental importance, to
determine the power provided by a set of pedigrees, one must assume a mode
of inheritance for the disease. If mode of inheritance is uncertain, any conclu-
sions based on the linkage information analysis are contingent on the mode of
inheritance assumption being correct.

CONCLUSION

In this paper, I have described a simulation approach to estimate the infor-
mation for linkage in a set of pedigrees. This approach is practical: it requires a
limited amount of time, can be carried out prior to the bulk of the effort of a
linkage study, and provides objective evidence on the chance that the study
will be successful. For an investigator deciding whether his or her time would
be well spent on a particular linkage study, this sort of evaluation should be of
great interest.

COMPUTER PROGRAMS

Two FORTRAN programs were written to carry out the analysis described:
SIMLINK simulates the replicate pedigrees and LODSTAT reads the lod score file
and calculates the linkage information statistics. Source code for both pro-
grams, together with documentation and sample analyses, are available from
the author at a nominal charge to cover the cost of a floppy disk and mailing. If
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a linkage analysis program other than LIPED is used, the subroutine in LODSTAT
which reads the lod score files will require modification.
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APPENDIX A

SIMULATING LINKAGE IN A PEDIGREE WITH KNOWN

DISEASE GENOTYPES

The efficient simulation of linkage in pedigrees is possible if the conditional probabil-
ity of the two-locus genotype vector g = (g1, g2, . . . , gp) given the disease locus
phenotype vector x = (x1, x2, . , xp) factors as in equation (2). I now demonstrate that
this factorization holds if (a) known disease phenotype implies known disease genotype
and (b) disease genotypes are known or can be inferred for the parents of all descendants
with known disease genotype.

Let h = (hI, h2, . . . , hp) be the vector of disease locus genotypes. Write g = (g', g")
and h = (h', h"), where prime indicates known disease genotype and double prime
unknown disease genotype. Then P(glx) = P(glh') = P(g)/(h') = P(g)l/;P(h), where the
sum runs over all unobserved disease genotype vectors h". Using assumption (b) above
and the law of total probability, the denominator may be evaluated as

Z P(h) = J P(hk)J P(hilhl,, h12) E 7 P(hk) J P(hilhl,, h12)
h" kFkO' fD' h" keO" loD"

- j7J P(hk) 1 P(h1lh, , h12)
kFO' If-D

Finally, noting that P(gjjgj1, g12)1P(hjjhj,, h12) = P(g11g11, g12, hi), and P(gk)IP(hk) = P(gklhk),

J P(g,) J P(g1lgl, g12) 1 P(gk) 1 P(g1lgl, g12)
P(g|x) = keO' fDP kMIX16"

P(h)
hp'

= 171 P(gklhk) 1 P(g1lg1, g12, hi) 1 P(gk) 1 P(gllglil g12).
keO' l@D' keO" MD"

Using assumption (a) and the fact that conditioning on unknown phenotype does not
alter P(gk) or P(gjjgj,, g12), the result is proven.

APPENDIX B

STANDARD ERRORS

The estimators of P[Md*(t) > c] in equation (3) are of the form 1 - p32 52(t = 0),
1- PIP2 (O < t < d12), and 1 p52 (t = d/2), where 'I and 92 are independent sample
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proportions. Similarly, the estimator in equation (5) of the probability of at least one
pedigree maximum lod score greater than c is of the form

K K

1- jnj Plk Pf2k (t = 0), I - P1kP2kj0<t<-2 )
k=l k=1

and
K

2
n

i-JPlk (t =4)

Note that the {PIk} are independent random variables and that N5ik is distributed as
binomial on N trials with probability of success equal to the corresponding population
proportion Pik.

If Z is distributed as binomial on N trials with probability of success on each trial p,
then

E(Z) = Np

E(Z2) = N(N - 1)p2 + Np

E(Z4) = g(N, p) = N(N - 1)(N - 2)(N - 3)p4
+ 6N(N - 1)(N - 2)p3 + 7N(N - 1)p2 + Np.

Hence, using the definition of variance and the independence of the {Pik},

K K

Va[1 knJ7JPlk P2k] = N5K 7 {g(NPlk)[(N - l)p2k2 + P2kj}

- N 2K K {[(N - 1)PIk2 + PlkI2kj

K 2 K

Var[I - 171 P1kP2k] = N2K 1 B [(N - 1)Pik2 + Pik]
k=l i=l k=l

i2 kl ]2 (A- 1 )-[ I rII Pikc Al
K K

Var[l - I Plk ] = N4K J g(N, Plk)
k=l k=l

K2
- N 2K{ 171 [(N - l)P1k2 + Plk]}

Substituting Pik for Pik in on the right-hand sides of equations (A-1) and taking square
roots gives the desired standard errors.
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