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A General Multivariate Approach to Linear Modeling
in Human Genetics

GREGORY CAREY

SUMMARY

The general linear structural equation model is applied to problems in
human genetics where there may be more than one measured pheno-
type per individual. A modeling convention, termed conditional asso-
ciations, is developed to extend the general linear model so that it can
handle the unique problems in human genetic models that arise from
the pairing up of individuals or families under assortment between
mates and the assortative placement of adoptees. Formulas are pre-
sented to generate expected covariance matrices for assortment or
assortative placement on many variables simultaneously. It is demon-
strated that all linear models in human genetics can be reduced in form
to two fundamental equations. An algorithm is presented that will
allow the application of these two equations to linear modeling in
human genetics.

INTRODUCTION

The past decade has seen an increase in the application of linear modeling or
path analysis to problems in human genetics [1-7]. Multivariate models (i.e.,
models with more than one phenotypic measure per individual) have been
developed for twin data [8], and bivariate path models have been presented for
nuclear families [9]. Recently, Vogler [10] gave general matrix equations for
several models in familial resemblance on certain types of kinships.
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Linear models have also been extended to encompass phenomena such as
assortative mating. Cloninger [1 1] developed the notion of the copath, and Van
Eerdewegh [12] presented an analogous but general concept of a delta path.
Van Eerdewegh's formulation has the advantage of starting with first principles
and explicit assumptions. He presents general matrix formulas that one can
apply to multivariate assortative mating and assortative placement.* Clonin-
ger's copath formula has not been formally generalized to the multivariate case,
and his tracing rule may give erroneous expectations with some models [12].

Here, the general linear structural equation model [13] is applied to mul-
tivariate problems in genetics and a rationale is developed for extending the
general linear model to account for multivariate assortative mating and assorta-
tive placement.

THE GENERAL LINEAR MODEL

Let Y denote a vector of endogenous variables. In a path diagram, vector Y
consists of all variables with a straight arrow going into them. Let Z denote the
vector of all other variables in the model. Z is often subdivided into exogenous
and residual variables, usually denoted, respectively, as X and U. Let W be a
matrix of weights or path coefficients with subscripts determining the appropri-
ate vectors. For example, Wyx is the matrix of path coefficients from the Y
variables to the exogenous variables. The characteristic structural equation is

Y = WyyY + WyZZ . (1)

Let C symbolize a covariance matrix with subscripts denoting the variables
involved in the matrix, and let R signify a correlation matrix. The covariance
matrix for all variables in the model is

Z Y
Z Czz CzzB'

I ), (2)
Y BCzz BCzzB'

where B = (I - Wyy)-1Wyz. Predicted covariances are a function of the
covariance matrix among the Z variables and the two weight matrices. Conse-
quently, by knowing Czz, Wyy, and Wyz predicted covariances for all vari-
ables in the model are known.

* An anonymous referee pointed out that the term "selective placement" has been historically
used to refer to assortative placement of adoptees with adoptive families, not to selection of
adoptees and their families in the strict sense of the term "selection." I recognize this distinction
and use the term "assortative placement" throughout this paper. The unqualified term "assort-
ment" will refer to marital assortment.
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An important corollary of expression (2) is: If Y1 = W11A1 + W12A2 + *
WimAm and Y2 = W21A, + W22A2 + . . . W2nAn, then

m n

CY1Y2= I I Wl1iCAiAjW2j (3)

Here A denotes vectors that are causally antecedent to Y. Equation (3) applies
only to recursive linear models.

Subsets of Y variables may be recoded as Z variables by deriving Cyz and
Cyy and augmenting Czz by these two blocks. This recoding must be done in
proper order. Define the level of a Y variable as the maximum number of causal
arrows found by tracing backwards from the variable to a Z variable. Then Y
variables at levels 1 through n may be recoded as Z variables with respect to the
remaining Y variables at levels (n + 1) through (n + m), m > 0.
The general linear model (GLM) in equations (1), (2), and (3) has been used

to solve for predicted covariances in a number of disciplines such as psycho-
metrics, sociology, and econometrics [13-16]. There are two problems, how-
ever, with its direct application to human genetics. First, assortative mating
and assortative placement often express elements of the covariance matrix
among the Z variables in terms of correlations or covariances among the endog-
enous variables. Second, constraints, such as the assumption that gene-
environment correlation is at equilibrium over generations, may also result in
the expression of elements of one of the parameter matrices as a function of
Coy or Cyz.

Still, the parameterization in equations (1), (2), and (3) suggests a method of
solving for predicted covariance matrices in genetic problems in the presence
of assortment and assortative placement. If one could derive the effects of
assortment or assortative placement on the covariance matrix among the Z
variables, then one could substitute this new Czz matrix into the equations and
calculate the expected covariances for the rest of the model.

CONDITIONAL ASSOCIATIONS: ASSORTATIVE MATING AND ASSORTATIVE PLACEMENT

Traditional path analysis uses two conventions to represent the relationship
between pairs of variables. A single-headed arrow between two variables
signifies causality. A double-headed arrow may join two Z variables, say A and
B, and denotes an unspecified source of covariance; that is, A may cause B; B
may cause A; other variables may jointly cause A and B; or some combination
of the above may occur. Here, we introduce a different concept, related to the
copath [11] and the delta path [12], that models the effects of a sort/merge
process on the covariance structure of linear models.

First define a set as an individual or collection of individuals and all the
variables of the individual(s) that temporally occur up to the time of assort-
ment. Assortment and assortative placement are modeled as an imperfect sort/
merge procedure between two sets that are otherwise independent. Examples
of such paired sets are {husbands} and {wives} in assortment or {biological

777



mothers and biological fathers} and {adoptive mothers and adoptive fathers} in
assortative placement. By these definitions, the pairing up is done between
sets. Variables are included within each set. Some variables form the basis for
pairing, but actual pairing is done between concrete individuals, families, etc.
Of course, this process is a figurative analytical tool; it does not necessarily
imply a physical, spatiotemporal sorting of, say, men and women.

Sorting does not change the value of any variables; all means, variances, and
covariances remain unchanged within each set. Thus, GLM may be used to
derive the covariance matrix within each set. Denote the variables as vectors A
and A* for set one and set two, respectively. For example, if assortment is
modeled, then genotypes (G), environments (E), and phenotypes (P) for hus-
bands may constitute A; and G, E, and P for wives, the variables in A*.
Equations (1) and (2) or (3) allow solution for covariances within each set, or
CAA and CA*A*. Because Y variates can be recoded as Z variates, all elements in
A and A* may be regarded as Z variables.
To model assortment, let M denote a subset of A that are the primary assort-

ment variables. For example, if assortment is based on both phenotype and
environment, then M = (E, P)' for the father. Let M* be an analogous subset
for A*. Assume that all variables are standardized; the unstandardized case is
given later. Let D denote a matrix of assortment parameters between M and M*
such that dij is that part of the correlation between variable i, i e M, and variable
j, j E M*, that is due solely and exclusively to a matching on these two variables
and these two variables alone. dij is a parameter and need not be the observed
correlation between the two variables.

Parameter dij can be modeled after Carey and Rice's [1] derivation in the case
of univariate phenotypic assortment-conditioning the distribution of one
mate's variables on the other mate's phenotype. To generalize, it is assumed
that conditioning on a single variable removes the effect of that variable from
correlation coefficients. Because assortment and assortative placement are
modeled on the conditional distribution, these relationships are termed condi-
tional associations and the parameters, or dij's, that index the extent of direct
matching between variables are referred to as conditional parameters or condi-
tional paths. Van Eerdewegh's [12] parameterization uses the Greek 8 to de-
note these relationships. I deliberately choose the symbol d because condi-
tional associations turn out to be a specific case of the general formulation
given by Van Eerdewegh. I also follow Van Eerdewegh [12] by indicating
conditional pathways with a dashed straight line in a path diagram.

Let k and I denote two other variables, k E A, andl e A*. Let E(kl:ij) be an
operator that denotes the effect of dij on the correlation between variables k and
1. From the definition of dii, E(ij:ij) = dij. E(kl:ij) is not necessarily the total
expected correlation betwen k and 1 from the sort/merge, but only that part of
the correlation between k and 1 induced by parameter dij. Removing the effects
of dij by conditioning on i gives: 0 = E(kl:ij) - r(ki)E(li:ij). Here r(ki) is the
correlation between k and i. It has already been derived by using the GLM.
E(li:ij) may be derived by conditioning on j: 0 = E(il:ij) - dijr(lj), so that
E(kl:ij) = r(ki)dijr(jl).
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This procedure makes the implicit assumption that conditioning reduces the
effect to 0, or, in other words, the conditional association is the only reason
that two sets are correlated. It may be possible to develop other models where
conditioning generates other values of the partial correlation.
To generalize to the case of more than one conditional association, it is

assumed that the effect of each d parameter is additive. Thus,

r (kl) = ff I r(ki)dijr(jl)
iJ

or in matrix form,

RKK* = RKMDRM*K*, (4)

where K is a subset ofA and K* a subset of A*. Equation (4) accomplishes the
goal by letting K = A and K* = A*. A and A* are Z variables; RAM and RA*M*
have been calculated by the GLM procedure; and D is a parameter matrix.
Consequently, the effects of assortment and/or assortative placement on the Z
variables in the two sets can be calculated.
The unstandardized case may be derived by following identical logic for

E(kl:ij) applied to unstandardized covariances. A simpler alternative is to re-
scale equation (4). Let S denote a diagonal matrix of standard deviations. Then

CAA* = CAMSM1DSM*ICM*A* * (5)

Note that D is not rescaled into a covariance matrix. The operator in this case is
SM'DSM*-
Y variables that are causal consequences of A and A* may be derived using

the structural equation form given in equation (3): Y = WYAA + WyA*A*
+ WyuU, where U denotes all other causal influences not in A and A*.
The covariances may be calculated by equation (2) or (3) using CAA* from
equation (5). Note that when variances of A, A*, and U are fixed, conditional
associations may change the variance of Y. Consequently, models that begin
with standardized variances may not maintain that property under assortment
and assortative placement.

AN ALGORITHM TO DERIVE PREDICTED COVARIANCES

The derivations above suggest a succinct, recursive algorithm for deriving
predicted covariances in linear models in human genetics. The steps are-(1)
Solve within a set: Block the model by identifying the two sets joined by
conditional associations. Use the GLM to derive predicted covariances for all
the variables within each set. (2) Solve between sets: Use equation (4) or (5) to
derive covariances between the two sets.
These two steps may be continuously repeated until all covariances among Z

variables induced by conditional paths are derived. Any remaining structural
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equations will be of the form given in equation (1) or (3), so the GLM may be
applied to account for additional covariances.
Note that this algorithm uses only two general equations to derive covari-

ances: the general GLM equation (2) including its corollary (3), and the condi-
tional association equation, (4) or (5).
The term 'block" in step (1) is a technical term that refers to a series of

structural equations that are a subset of the whole model but are solved for
simultaneously. The term has not been formally applied to linear modeling in
human genetics. When there is more than a single pair of sets joined by condi-
tional associations, correct blocking of a model may be necessary to derive the
correct covariances. However, the correct method of blocking a model is more
difficult to grasp in the abstract than it is to apply to a concrete model. Van
Eerdewegh [12] suggested that temporal sequence dictates the order in which
matrices of delta parameters are applied to a model. The recursive nature of the
current algorithm also implies that temporal order is a valid criterion for block-
ing. In order to apply step (2) to sets {A} and {B}, the effects of conditional
parameters within sets {A} and {B} must be derived, and events within a set
must occur before pairing between sets. Thus, temporal order is used here as a
criterion for blocking, although correct covariances may be derived in some
models irrespective of temporal sequence. Blocking and the algorithm are illus-
trated by examples in the next section.

EXAMPLES OF MULTIVARIATE ASSORTMENT AND ASSORTATIVE PLACEMENT

As a first example, consider multivariate phenotypic assortment in a 3-
generation pedigree. Assume that variables are unstandardized and that verti-
cal environmental transmission takes place between phenotype of parent and
environment of offspring. In temporal sequence, assortment occurs first in the
grandparental generation. The sets are {paternal grandfather or pgf} and {pgm}.
Within a set, say {pgf}, the vectors are: Y = Ppgf and Z = (Gpgf' IEpgf')'. Placing
it into the form of equation (3) gives the structural equations: Gpgf = IGpgf,
Epgf = IEpgf, and Ppgf = IGpgf + IEpgf, which generates the following
covariance matrices:

CGpgfPpgf = CGP = CGG + CGE

CEpgfPpgf = CEP = CEG + CEE

Cppgfppgf = CPP = CGP + CEP

Ppgf may now be recoded as a Z variable because its covariance matrices with
Gpgf and Epgf are derived. To model assortment, the vectors are A =
(GpgflIEpgf' Ppgf')' and M = Ppgf. There are analogous vectors A* and M* for
{pgm}. Let T = SDS, where S = diag(Cpp) -1/2. Application of step (2) gives
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Gpgm1 Epgmt Ppgm
GpGf CGPTCPG CGpTCPE CGpTCpp

EpGf CEPTCPG CEpTCPE CEpTCpp

Ppgf CPPTCPG CppTCPE CppTCpp

Assortment in the parental generation must now be accounted for, so step (1)
is reapplied. The relevant blocks are {pgf, pgm, father (f)} and {mgf, mgm, and
mother (m)}. Arbitrarily, select the paternal block to solve for within set
covariances; they are assumed to be the same as those within the maternal set.
Let t denote a matrix of coefficients of environmental transmission from parent
to offspring, and let U denote residuals with subscripts indicating the variates.
The structural equations are:

Ef = tPpgf + tPpgm + UEf

Gf = 1/2 Gpgf + 1/2 Gpgm + UGf

Pf = Gf + Ef = Gf + tPpgf + tPpgm + UEf

which give, say, CGfPpgf = 1/2 (CGP + CGpgmPpgf) and CpflPpgf = CGfPpgf
+ t(Cpp + Cppgmppgf). To apply step (2) to the parental generation, first define
the relevant vectors. For the paternal set, vector A is the concatenation of the
following vectors: Gpgf, Epgf, Ppgf, Gpgm, Epgm, Ppgm, Gf, UGf, Ef, UEf, and Pf.
M = Pf. Similar vectors A* and M* may be constructed for the maternal set.
Only three relevant matrix blocks are given here:

CGfpmgm = CGPTCpmpmgm

CpfPmgm = CppTCpmpmgm

Cppgfpmgm = CppgfpfTCpmpmgm

It is easily verified that marital covariances in the parental generation equal
those in the grandparents.
Having accounted for assortment in the parental generation, remaining struc-

tural equations (i.e., those for grandchild) are all of the GLM form. Covari-
ances between grandchild and parent are assumed to be the same as those
between father and pgf. What must be derived are covariances between
grandchild and grandparent. The structural equation for grandchild (gc) pheno-
type is Pgc = 1/2 Gf + 1/2 Gm + tPf + tPm + UGgC + UEgc. Application of
equation (3) gives Cpgcppgf = 1/2 (CGfPpgf + CGmPpgf) + t(CPfPpgf + CPmPpgf).
All covariance matrices on the right-hand side have already been derived
above, so the expected covariance matrix has been calculated.
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FIG. 1.-A model for assortative placement based on parental phenotypes in the presence of
phenotypic mate assortment. G = genotype; E = (systematic) environment; U = unique environ-
ment (residual); P = phenotype. Dashed lines represent conditional pathways with m denoting
phenotypic assortment and t denoting assortative placement based on parental phenotype.

A second example is the solution for combined assortment and assortative
placement in an adoption design. It is depicted in figure 1. Figure 1 is schematic
in the sense that it is meant to represent a multivariate problem. Hence, the
variates G, E, etc., signify vectors and not single variables [10]. The dashed
line labeled m denotes a matrix of conditional parameters that models mul-
tivariate phenotypic assortative mating. The dashed lines labeled t denote the
assortative placement, assumed to take place on the basis of parental pheno-
types. For simplicity, it is assumed that t is equal among all four parents. It is
also assumed that variables are standardized.

In notation, the Gs and Es constitute the Z vector. In temporal order, mating
occurs before assortative placement. Thus, application of step (1) identifies the
sets as {husband} and {wife}. Because of symmetry in figure 1, it is immaterial
whether they are the biological or adoptive parents. Let h be a matrix of
weights (path coefficients) from the vector of phenotypes to the vector of
genotypes; e, a weight matrix from the phenotype to the environment vector;
and u, a weight matrix from phenotypes to residuals. The structural equation
within each set is P = hG + eE + uU, giving correlation matrices

RGP = RGGh' + RGEe'

REP = REGh' + REEe'

Rup = uu'

and

Rpp = hRGP + eREP + UU'

Vector A may be partitioned as (G' IE' U')' for one parent with an analogous
vector A* for the other parent. Application of equation (4) to these partitions
gives the relevant covariances between mates. For example, the correlations
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between G of father and P of mother is RGfPm = RGpmRpp, and the matrix of
marital correlations is Rpfpm = RppmRpp.
The algorithm must now be repeated to account for assortative placement.

The two sets are {biological father, biological mother} and {adoptive father,
adoptive mother}. Correlations within each set have been derived above. A for
the biological parents, say, may be partitioned as (Gf'JEfs1Gm'JEm'JPf'JPm')'.
An analogous partitioning may be constructed for A* in adoptive parents.
M = (Pf'lPm')', and given symmetrix t, D in equation (4) takes the form

t t

We do not show the whole partitioned matrix from the application of equa-
tion (4) to these definitions of A, A*, and D. Instead, one illustrative matrix
block is presented, that between genotypes of biological and adoptive parents:
RGbGa = (RGP + RGflm)t(RPG + RPmGf). Correlations between adoptive and
biological parents are functions of RGfPm and its transpose, which, in turn, are
functions of assortment parameters.

If the model were extended to include genotypic, environmental, and
phenotypic vectors of adopted offspring, then equation (1) could be applied
using the new Czz matrix just derived.

NONRECURSION

The algorithm also functions with nonrecursive models, although the applica-
tion is more intricate than it was for the recursive examples given above. In
general, nonrecursive models should be translated into recursive form using
antecedent variables, as Carey [17] did in order to model sibling imitation. For
example, suppose a marital correlation is a function of two processes, assort-
ment and subsequent imitation. For a single phenotype, structural equations
for the latter are Pf = Gf + Ef + aPm, Pm = Gm + Em + aPf. Recall that the
definition of a set includes all variables that occur before assortment. One
cannot imitate a spouse until an actual pairing has taken place. Thus, assort-
ment takes place on antecedent phenotypes of father and mother, say APf = Gf
+ Ef and APm = Gm + Em, not on Pf and Pm as defined in the structural
equations. Step (2) in the algorithm is applied to the equations for the antece-
dent phenotypes. The GLM equation (2) can then be applied directly to the
structural equations for Pf and Pm. Equation (3) cannot be used without some
algebraic reworking because it applies only to recursive models.

DISCUSSION

Starting from first principles and with some explicit assumptions about the
form of models, covariance matrices for linear models in human genetics take
the form of only two general equations. In the examples, covariance matrices
were solved for in a piecemeal fashion using the GLM equation (3) because this
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procedure is easy to understand. Using equation (2), however, provides an
efficient form for computer algorithms. Instead of tedious algebra or tracing of
paths, one can index variables by number, construct the appropriate parameter
matrices, and apply equation (2). When variables are ordered by temporal
sequence and the Z vector is continuously augmented with each pass through
the algorithm, the solution of equation (2) requires only two matrix multiplica-
tions. (It is assumed that nonrecursive models have been translated into a
recursive form.) The procedure can generate large matrices, but matrix size is
offset by the advantage of automatic computation. This is of great importance
as models become altered in the course of development. Instead of recomput-
ing expected covariances with the addition of a new path, the appropriate
element is simply added to a weight matrix. Also, this procedure is less suscep-
tible to error compared to ad hoc computer programs that perform many matrix
manipulations.
Two potential limitations of the present formulation are the application of

constraints and the occasional need to block a model. The generic problem with
constraints and blocking is that both are model dependent, so it is difficult to
make general statements about them. The most frequent constraint in path
models of familial resemblance derives from the assumption that variances of
genotype and environment, as well as the correlation between the two, are at
equilibrium across generations. To solve models involving these assumptions
some researchers [1-6] have explicitly derived one parameter in terms of other
parameters of the model. In contrast, Heath and Eaves [18] have used con-
strained optimization. Given the different methods of handling constraints, the
application of this algorithm may require ad hoc algebra to apply constraints.
This does not appear to be a limitation of this general formulation as much as it
is a recognition that constraints themselves are model dependent.
One consequence of multivariate assortment as modeled herein is that the

correct multivariate model for assortment must be specified in order to derive
correct covariances for the univariate model [12]. The same holds for assorta-
tive placement. This is easily verified by deriving the predicted covariances for
figure 1 and comparing them to the univariate predictions.
There are several similarities between the present formulation of conditional

associations and other attempts to model assortment and assortative place-
ment. Equations (4) and (5) are specific multivariate extensions of Cloninger's
[11] formula for copath relationships [his equation (15), not his tracing rule].
The copath in this case is identical to a conditional parameter.
The present formulation differs from Cloninger's in several respects. First, it

is assumed here that a conditional path cannot join two variables that are
already correlated. Cloninger permits this. Second, conditional associations
may change variances of variables further down in the model even when these
variables have been previously standardized. Cloninger restricts these vari-
ances to remain standardized after a copath is modeled (equation (16) in [11]).
Third, the concept of blocking (or simultaneous vs. sequential application of
copaths) was not fully explicated by Cloninger. Fourth, he did not discuss
nonrecursion.
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Van Eerdewegh [12] extended path analysis through the principles of "statis-
tical selection," a term that refers to the formula originally developed by Pear-
son [19] to predict response to selection and later shown to predict the effects
of changes in means, variances, and/or covariances in linear systems [20].
Although I start with different assumptions, equation (4) or (5) can be reworked
into Van Eerdewegh's equation (11.5) for delta paths. The present formulation
assumes that conditional associations are the only reason that two sets are
correlated. Van Eerdewegh's derivations do not require this assumption and
consequently are more general. Here, I present a computationally efficient
algorithm that joins the GLM with multivariate assortment and allows for non-
recursive models. Van Eerdewegh's interest was in developing the concept of
statistical selection and applying it to human genetic problems, so he did not
directly address these topics. While the assumption of uncorrelated antece-
dents limits the mathematical generality of the conditional association ap-
proach, it should not impose practical restrictions for many models of assort-
ment or assortative placement; that is, the assumption merely requires that the
only reason that the variables of one person are correlated with the variables of
his or her mate is the pairing up or matching of mates that occurs in assortment.
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