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Multipoint Gene Mapping Using Seriation.
I. General Methods
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SUMMARY

Initial and accurate inference of locus order and estimates of inter-
locus distances and interference can be obtained using seriation tech-
niques. The analysis requires a matrix of recombination values that
can be estimated by standard pairwise linkage analysis. This allows
combination of results from individual investigators without reanaly-
sis of basic pedigree material. Seriation can be performed without the
use of a computer.

INTRODUCTION

The construction of a comprehensive genetic map of each human chromosome
has long been a goal of human genetics. However, plagued by the paucity of
polymorphic markers, lack of informative crosses, and small sibship sizes,
mapping by the family-study method has in the past been difficult and limited.
The continuing discovery of DNA markers has provided a virtually limitless
source of polymorphic markers for use in linkage studies. These markers,
together with reference pedigrees, such as those available through the Centre
d'Etude du Polymorphisme Humain (CEPH), have made it possible to con-
struct a multilocus linkage map of each human chromosome. Although many
different strategies have been suggested for multipoint mapping (Meyers et al.
1976; Lalouel 1977; Rao et al. 1979; Lathrop et al. 1984, 1985), there is at
present no widely accepted multipoint methodology.
The major goals of multipoint mapping are to obtain locus order and to

estimate map distances between loci. These goals are fundamentally different
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from the analysis of two-locus data, a type of analysis whose primary goal is to
establish linkage. This change in priority is due in part to the increasing avail-
ability of chromosome-specific DNA probes. Multipoint methods must not only
detect linkage but must also allow inference about the process of recombina-
tion. It is therefore important that the methodologies used for constructing
multipoint maps make a minimum of simplifying assumptions and are applica-
ble to a large number of loci. These requirements are necessary since very little
is known about recombination mechanisms in higher organisms. Thus, specific
models of the recombination process may discard important mapping informa-
tion. More important, a multilocus mapping method must also be constrained
by several practical considerations. Specifically, the method must allow linkage
data to be combined and communicated by independent investigators and
should not be limited by the availability of extensive computer resources.

In the present paper a new multipoint mapping methodology called seriation
is presented. This method uses the results of pairwise linkage analysis to deter-
mine locus order and to estimate map distances. It is applicable to an arbitrarily
large number of loci, makes few assumptions about the underlying structure of
the data, and, at the same time, is conceptually simple and computationally
easy.

OBTAINING LOCUS ORDER BY SERIATION

The Pairwise Distance Matrix
The seriation algorithm uses as input a matrix of distances between all possi-

ble pairs of loci to be mapped. The distance metric used must display two basic
properties, monotonicity and symmetry. In gene mapping the metric of choice
is the recombination value, which is easily estimated by the lod-score method
of Morton (1955) using computer programs such as LIPED (Ott 1974) and LINK-
AGE (Lathrop et al. 1984, 1985). A major advantage of the lod-score method is
the ease with which linkage data may be reported and summarized from mate-
rial collected by independent investigators.

The Seriation Algorithm
In 1971 Gelfand (1971) presented an algorithm by which a collection of n

objects could be linearly arranged from knowledge of the similarity between
pairs of objects. The goal of this algorithm was to order the set of points so that
the matrix of similarities between all possible pairs of objects was monotoni-
cally arranged or in "Robinson" form (Gelfand 1971). In Gelfand's original
paper (Gelfand 1971), seriation was used to recover the temporal order of grave
sites in which archeological artifacts had been located, using as a measure of
similarity the proportion of artifacts common to two graves. The application of
this procedure to multilocus gene mapping is straightforward. In gene mapping
the natural metric is a distance, the recombination value between pairs of loci,
rather than a similarity measure as suggested by Gelfand (1971).

Consider a distance matrix of pairwise recombination values for n loci where
Ou is the estimated recombination value between the ith and jth locus in the
matrix.

181



BUETOW AND CHAKRAVARTI

For each locus Li, i = 1, 2, . . ., n (referred to as the reference locus),
1. Write locus Li.
2. Consider the distance between Li and the other (n - 1) loci. Select the locus
(Lj) with the smallest distance from Li and place it to the right of Li, i.e., LLj.
For the remaining (n - 2) loci in the row referenced by Li, the following

procedure is repeated:
1. Choose the locus Lk from the remaining unplaced loci in that row with the
smallest distance to Li.
2. Compare the distance ofLk with the two loci currently external in the cluster
of placed loci, LI (the locus on the left side) and Lr (the locus on the right side),
i.e., LI, . .. , Lr.

If Okr > OkI, place Lk to the left of the cluster of currently placed loci, i.e.,
LkLl, ...* Lr, or, if Okr < OkI, place Lk to the right of the cluster of currently
placed loci, i.e., LI, . .. , LrLk-

In matrices generated from small samples or from very closely linked loci, it
is possible that some of the estimated recombination values will be identical.
These identical distances may result in ties at various points in the ordering
algorithm. Therefore, we present a set of general rules for resolving ties.

If at any point in considering the row referenced by Li a tie is encountered
when trying to select the next locus-i.e., Oy = Oik, if Lj and Lk are placed to
different sides of the ordered locus cluster (e.g., LjL,, . . . , LrLk)-the tie
requires no further consideration; on the other hand, if they are both placed to
the same side-i.e., Li, . . . , Lr (Lj,Lk)-the two loci should be ordered with
respect to the locus most external on that side in the ordered locus cluster (Lr
or LI). If this fails to resolve the tie, the next two internal loci in the ordered
cluster should be considered, i.e., (LLr* or L1*L1). If, after considering all loci
already placed, the tie cannot be resolved, the group may be ordered with
respect to a locus external to the tied loci and placed locus cluster.
To use an external reference locus, Le, one selects the next closest locus in

the row indicated by the reference locus (Li) that is not included in the tied
group. This locus is then placed with respect to the ordered locus cluster-
Lr, . . . , LI (Lj,Lk) Le-and the tied loci are ordered with respect to their
distance from this locus, Oje and Oke. If this locus fails to resolve the tie, a new
external locus is chosen. At the point that all loci in the reference row have
been attempted without breaking the tie, the tie is considered unresolvable.
A second situation in which a tie may be observed is when, in trying to place

locus Lk, the distance from the rightmost and leftmost loci in the ordered locus
cluster is found to be the same, i.e., Okr = OkI. This again can be resolved by first
considering the more internal loci in the ordered locus cluster and then, if
unsuccessful, using an external reference locus.

Determination ofLocus Order
After deriving an order with respect to each locus, it is necessary to reduce

these to a single order. If the estimated matrix of recombination values is
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monotonic (or Robinson), obtaining the final order is straightforward, since all
locus-specific orders will differ only in orientation and therefore be mirror
images of each other-i.e., A-B-C-D versus D-C-B-A (Gelfand 1971). Unfortu-
nately, many observed data matrices will not be optimal (monotonic), and a
variety of locus-specific orders may be observed. There are two approaches
that can be taken to obtain the final order.

First, one may obtain an average order by using rank scores (Gelfand 1971)-
namely, after each order has been oriented in the same direction, the average
position of each locus in the observed orders is determined. This is calculated
as the sum of ranks of this locus in each of the derived orders. The final order is
obtained by arranging the loci in the order corresponding to the magnitude of
the rank sum for each locus. If ties in the rank sums are observed, no single
final order is derived and a set of orders obtained by placing the tied loci in the
alternative positions are suggested. The final order is then judged by other cri-
teria.

Second, one may choose that order that comes closest to monotonically
arranging the elements of the recombination-value matrix. Such an order can
be obtained by measuring the goodness-of-fit to monotonicity. Gelfand (1971)
defined one possible monotonicity measure, the continuity index (CI), in which
the observed metric distance between two loci, Oij, is compared with the ordinal
distance between their locations in the order, namely,

i <JCI i,-)] 1

The CI value is computed for each order using equation (1), the best order
being the one with the lowest CI. One shortcoming of the CI is that the ratio of
metric to ordinal values does not assume a singular value for different optimal
distance matrices. Therefore, although the measure is useful in deciding which
of several orders provides the best fit, it is not possible to infer whether another
unspecified order may provide a better fit. Additionally, large Oij's with small
interlocus ordinal differences (j - i) will contribute more to the overall mag-
nitude of the CI than will loci with small Oij's and large (j - i) differences.

Least-Squares Estimation ofMap Distances
After obtaining the locus order, the interlocus map distances can be obtained

from the pairwise distances by means of least squares. In this procedure, the
ordered distance matrix of recombination values is transformed to map dis-
tances by means of an appropriate mapping function. From this transformed
matrix, estimates of interlocus distances between adjacent loci (di) can be
obtained. Consider the seriated order of a linkage group of n loci with distances
di between adjacent loci as follows:

did1 . . . di . . . dn

LI LI) .. Li L+ I ... Ln Ln.
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Let D(j, k) be the observed map distance between loci j and k, where j $ k;
j = 1, 2, ..., n - I and k = j + 1,.. ,n. The least-squares estimates of di are
then (see Appendix):

A 24i - (4:Di +eI+~D) (2)

n

for i = 1, 2, ... , n - 1, where,

i n

= > D(j, k) (3)
j=1 k=i+1

and (Do = on = 0

Estimating the Mapping Function
The results of the least-squares estimation depend critically on the choice of

an appropriate mapping function. Historically this choice has been either based
on interference relationships observed in experimental organisms (Rao et al.
1977; Ott 1985) or fixed for computational convenience (Lathrop et al. 1984).
An alternative strategy is to estimate this function from the present observa-
tions, as described below.
Map distances are additive, so that one can define an index that measures

how adequately a given mapping function succeeds in transforming the ob-
served pairwise recombination values to meet this additivity criterion. We
define one such index, stress (S).

Let, D(i, j) and di be defined as above. The expected distance between two
loci, E(i, j) is then the sum of the adjacent intervals between these two points,
or,

E(i,j) = di + di+I + . . . + djal *(4)

Stress can then be defined as (Lalouel 1977; Kruskal and Wish 1978)

s = E11 3 [D(i, j) -E(i j)]2

Although equation (5) appears to be similar in form to the x2 goodness-of-fit
statistic, it is not a x2. The terms are squared to make the index independent of
scale of measurement.
The best mapping function is then determined by a method similar to that

first suggested by Lalouel (1977). In brief, successive values of the mapping
parameter (p) in Rao's generalized mapping function (Rao et al. 1977) are used
to transform the observed recombination values to map distances. The value of
p that minimizes the stress in equation (5) determines the best mapping function
for this data set.
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DISCUSSION

Initial and accurate solutions to multilocus ordering and distance estimation
can be obtained from pairwise linkage data by using the seriation procedure
(Buetow et al. 1986). The mapping results obtained by using seriation on
simulated and empirical data sets are comparable to those determined by other
multipoint techniques and are described in the companion article (Buetow and
Chakravarti 1987) and in Buetow et al. (1986).
The use of pairwise linkage data and seriation methods, although less

efficient than true multipoint analysis (Lathrop et al. 1984), offers several ad-
vantages in constructing preliminary maps. First, the use of lod scores provides
a standard means of data communication and summary between investigators.
This aspect cannot be abandoned and will become more critical both as linkage
data accumulates and as it becomes impractical for any one investigator to test
all markers on a given chromosome. Seriation is a simple method for deriving
multilocus orders from compiled groups of data, such as those maintained by
Keats (Keats et al. 1979; Keats 1981). The addition of new marker or disease
loci to an established genetic map may be accomplished without reanalysis of
the basic pedigree material. At most, in an existing map of n loci, only n
pairwise tests will need to be performed. Also, unlike the location-score
method (Lathrop et al. 1984), it is not necessary to keep the previously mapped
locations fixed. Another advantage of seriation is that it requires few biological
assumptions. Since the locus order is derived from recombinations values, it is
not necessary to assume a mapping function. In fact, it is possible to estimate
interference levels and to determine the most appropriate mapping function for
a particular data set.

Seriation offers several practical advantages as well. First, the method is
applicable to an arbitrarily large number of loci. Second, the algorithm does not
require the use of a computer and, if desired, can be performed by hand, even
for large linkage groups. Simplicity in computation is one way in which seria-
tion differs from multidimensional scaling techniques (Kruskal and Wish 1978).
Seriation is also different from multidimensional scaling in that it uses the
recombination values as observed rather than reestimating them for each trial
configuration. This characteristic makes seriation less sensitive to 50%-
recombination values because it does not have to reconcile loci of various
underlying map distances with the same observed value.
The seriation algorithm is limited in two respects. First, it requires that all

possible pairs of distances between loci be available. When extracting data
from the literature, it may be difficult to recover a complete set of pairwise
comparisons. This normally can be overcome by seriating smaller sets of over-
lapping loci and could be eliminated by more comprehensive data reporting.
Second, seriation gives equal weights to all observations in the pairwise dis-
tance matrix. This should not present a significant problem when reasonable
sample sizes are used to estimate recombination values.
The least-squares procedure implicitly assumes independence of all pairwise

distances. This assumption is justified when recombination values are esti-
mated from independent studies and is approximately valid when they are
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estimated from the same set of families. This is true since there is a low
probability that multiple loci will be jointly informative in single families.
The seriation procedure is proposed as a means of providing initial gene

orders and interlocus distance estimates. These in turn may be used as input for
more time-consuming, maximum-likelihood multipoint techniques and will as-
sist in both reducing the number of possible orders that must be considered and
providing initial estimates for interlocus distances.
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APPENDIX

LEAST-SQUARES ESTIMATION OF INTERLOCUS MAP DISTANCES

We assume that L1, L2, . , L,, is the order of n loci within a linkage group with map
distance di (i = 1, 2, ..., n - 1) between loci Li and LiI (i = 1, 2, . .. , n - 1).
Furthermore, let Djk be the observed map distance between any two locus pairsj and k,
wherej # k = 1, 2, . . . , n. Our objective is to estimate the set of (n - 1) parameters (di)
from the set of n(n - 1)/2 pairwise observations (Djk) by means of the least-squares
method. We will assume that the observations Djk are independent of each other. Then,
the expectation of Djk is E(Djk) = dj + d>+ I + . . . + dk- 1, where j = 1, 2, ..., n - 1
and k = j + 1, .. ., n. In matrix notation, E(D) = Xd, where D is the m x 1 column
vector of the elements Djk arranged in dictionary order (i.e., D12, D13, ... , Din D23, D24,

. * *. * * * .Dn- Ign),d is the (n - 1) x 1 column vector (d1, d2, . . ., d_-1)', andX is an
m x (n - 1) matrix of zeros and ones such that the jth row corresponding to the
element Djk, for example, contains a 1 in every column betweenj and k; also m = n(n -
1)/2. The least-squares estimate of the vector (4 d) is obtained by minimizing Q = (D -
Xd)' (D - Xd) with solution [16],

d = (X'X) -(X'D), (Al)

or, alternatively, solving the equation

(X'X)d = X'D (A2)

Equation (A2) is easier to solve than equations (Al) since from (A2) we have

n - I n - 2 n - 3 ... n-i .. . 1
n-2 2(n-2) 2(n-3) ... 2(n-i) ... 2 d2 +2
n - 3 2(n- 3) 3(n - 3) ... 3(n-i) ... 3 d3 +3

n -i 2(n -i) 3(n -i) ... i(n- i) ... d 4= i

_1 2 3 ... i n- i dn-i L3n-
(A3)
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where
i n

Xi = Z E Djk
j=1 k=i+l

and represents the sum of all observed pairwise distances containing the interval di.
Also, we define 4o = 0n= 0. Note that from formula (A3)

n-1

= (n-i) E ada + i (n- )d,
a=l ,1=i+I

so that

n-I i-I

Xi-Xi- = X,(n- )do- a da, (A4)

and

i n-I

4;iX+1 a da-A (n - )d * (A5)
ax= I O=i+I

On summing equations (A4) and (A5), we obtain 24i - Xi- -P = nd,, so that

di= [24i - (4il + Xi+1)]In (A6)

REFERENCES

Buetow, K. H., and A. Chakravarti. 1987. Multipoint mapping using seriation. II. Anal-
ysis of simulated and empirical linkage data. Am. J. Hum. Genet. 41:189-201.

Buetow, K. H., A. Chakravarti, and S. Cole. 1986. A genetic map ot human chromo-
some lip. Genet. Epidemiol. [Suppl.] 1:135-140.

Gelfand, A. E. 1971. Seriation. Pp. 186-201 in F. R. Hodson, D. G. Kendall, and P.
Tauta, eds. Mathematics in the archaeological and historical sciences. Edinburgh
University Press, Edinburgh.

Keats, B. J. B. 1981. Linkage and chromosome mapping in man. The University Press
of Hawaii, Honolulu.

Keats, B. J. B., N. E. Morton, D. C. Rao, and W. R. Williams. 1979. A source book for
linkage in man. The Johns Hopkins University Press, Baltimore.

Kruskal, J. B., and M. Wish. 1978. Multidimensional scaling. Sage, Beverly Hills, CA.
Lalouel, J. M. 1977. Linkage mapping from pairwise recombination data. Heredity

38:61-77.
Lathrop, G. M., J. M. Lalouel, C. Julier, and J. Ott. 1984. Strategies for multilocus

linkage analysis in humans. Proc. Natl. Acad. Sci. USA 81:3443-3446.
. 1985. Multilocus linkage analysis in humans: detection of linkage and estimation

of recombination. Am. J. Hum. Genet. 37:482-498.
Meyers, D. A., P. M. Conneally, and E. W. Louvrien. 1976. Linkage group I: the

simultaneous estimation of recombination and interference. Pp. 335-339 in Baltimore
Conference (1975): Third International Workshop on Human Gene Mapping. Birth
Defects: Original Article Series.

Morton, N. E. 1955. Sequential tests for the detection of linkage. Am. J. Hum. Genet.
7:277-318.



188 BUETOW AND CHAKRAVARTI

Ott, J. 1974. Estimation of the recombination fraction in human pedigrees: efficient
computation of the likelihood for human linkage studies. Am. J. Hum. Genet. 26:588-
597.

. 1985. Analysis of human genetic linkage. The Johns Hopkins University Press,
Baltimore.

Rao, C. R. 1973. Linear statistical inference and its applications. Wiley, New York.
Rao, D. C., B. J. Keats, J. M. Lalouel, N. E. Morton, and S. Yee. 1979. A maximum

likelihood map of chromosome 1. Am. J. Hum. Genet. 31:680-696.
Rao, D. C., N. E. Morton, J. Lindsten, M. Hultdn, and S. Yee. 1977. A mapping

function for man. Hum. Hered. 27:38-51.


