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Summary

We previously developed a method of partitioning genetic variance of a quantitative trait to loci in specific
chromosomal regions. In this paper, we compare this method-multipoint IBD (identical by descent) method
(MIM) -with parametric multipoint linkage analysis (MLINK). A simulation study was performed comparing
the methods for the major-locus, mixed, and two-locus models. The criterion for comparisons between
MIM and MLINK was the average lod score from multiple replicates of simulated data sets. The effect of gene
frequency, dominance, model misspecification, marker spacing, and informativeness are also considered in
a smaller set of simulations. Within the context of the models examined, the MIM approach was found to

be comparable in power with parametric multipoint linkage analysis when (a) parental data are unknown,
(b) the effect of the major locus is small and there is additional genetic variation, or (c) the parameters of the
major-locus model are misspecified. The performance of the MIM method relative to MLINK was markedly
lower when the allele frequency at the trait locus was .2 versus .5, particularly for the case when parental
data were assumed to be known. Dominance at the trait major locus, as well as marker spacing and
heterozygosity, did not appear to have a large effect on the ELOD comparisons.

Introduction

As a result of the GENOME initiative, a set of highly
polymorphic index markers located 10-15 cM apart
are being developed for each human chromosome.
Such an index map may now make it possible to local-
ize genes contributing to multifactorial quantitative
traits or complex diseases which do not exhibit a sim-
ple Mendelian pattern of inheritance. In humans most
previous efforts at linkage of complex diseases and
traits have utilized sib-pair (Penrose 1935; Suarez et
al. 1978; Lange 1986) or affected-relative-pair (Weeks
and Lange 1988) methods. For quantitative traits,
Haseman and Elston (1972) proposed a sib-pair method
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based on the regression of the squared sib-pair differ-
ence for the trait on their estimated genetic correlation
at the marker locus. This method was extended (Amos
and Elston 1989; Amos et al. 1989) and was used to
examine linkage of a number of hypertension-related
quantitative traits to a number of blood-group and
electrophoretic markers (Wilson et al. 1991). Our ap-
proach also uses the concept of identical by descent
(IBD) but is based on the amount of genetic material
shared in a given chromosomal region rather than at
a single marker locus. Specifically, we estimate the
expected proportion of genetic material in a particular
chromosomal region shared IBD for each pair of sib-
lings in a given sibship, on the basis of their genotypes
at a series of marker loci in that region. These esti-
mates are then used to partition genetic variance of a
human quantitative trait to loci located in that region.
This method will be denoted the multipoint IBD
method (MIM) throughout the remainder of the pres-
ent paper.

If the quantitative trait under investigation displays
an inheritance pattern indicative of a major gene segre-
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gating in the families, and if this hypothesized major
locus can be accurately characterized in terms of its
model parameters, then the parametric methods of
pairwise linkage analysis (Morton 1955; Ott 1974)
and multipoint linkage analysis (Lathrop et al. 1984,
1985) may be used. In addition to being the most
powerful test for linkage if the model is correctly speci-
fied, the parametric approach has the advantage of
providing precise estimates of the hypothesized major
gene's location along the genetic map. Although a
number of investigators have examined the power of
the lod-score method to detect linkage between a
quantitative-trait locus and a single marker (Lange et
al. 1976; Demenais et al. 1988; Boehnke 1990), no
studies have been performed examining the power of
this method in the multipoint case. It is important to
point out that the lod-score approach is only applica-
ble when there is significant evidence of a major locus
influencing the trait; moreover, a genetic model of
this locus must be specified. However, if the model
is misspecified, this may lead to lower power, false
positives, and biases in the estimation of the recombi-
nation fraction(s). Although some studies have shown
that accurate characterization of the genetic model is
not necessarily a requirement for detecting or exclud-
ing linkage (Risch et al. 1989; Skolnick et al. 1989),
it is not known how general this effect is. For example,
Clerget-Darpoux et al. (1986) found that misspecifi-
cation of the degree of dominance could cause a reduc-
tion in the expected lod score, particularly for a reces-
sive disease with moderately high (.50) penetrance.
Our initial studies (Goldgar 1990; Goldgar and

Oniki 1990) have shown the MIM method to be con-
siderably more powerful than the Haseman-Elston
method, even when the latter was modified to examine
multiple loci. Of perhaps more interest is the compari-
son between our approach and multipoint linkage
analysis. Given the relatively model-free nature of our
method, if it compares favorably in terms of power
with standard multipoint linkage analysis under an
assumed known model of single-locus inheritance, we
can be assured that under more realistic conditions,
where there may be a more complex underlying etiol-
ogy, the proposed method would be superior. Another
potential advantage of the MIM method is that it is
based only on sibship trait values; parental phenotype
data are not used. This may be important for linkage
studies of traits or diseases in which accurate or mean-
ingful measurements can be obtained only in children
or adolescents. One would anticipate a substantial loss
of power for detecting linkage of a quantitative trait

when using multipoint linkage analysis in the absence
of parental phenotypes. In the present study we com-
pare the power of our method (MIM) with that of
traditional multipoint linkage analysis, for a variety
of major-locus models.

Methods

MIM

A more complete description of the MIM method
can be found in Goldgar's (1990) paper. In brief, the
MIM method assumes the absence of genetic interfer-
ence across a known map of genetic markers. We as-
sume that the quantitative trait under study is due
to additive genetic effects and a normally distributed
random environmental component. The method is pa-
rameterized by two parameters: h2, the proportion of
total trait variance due to genetic influences, and P,
the proportion of genetic variance due to loci in the
test chromosomal region defined by the marker loci
being studied. For each sib pair we first estimate the
proportion of the test region shared by the pair IBD
conditional on the marker genotypes in the region.
These estimates are used to form the predicted covari-
ance matrix of the sibship trait values as a function of
these proportion IBD estimates and the parameters P
and h2. The likelihood of the standardized sibship trait
values is then given by a multivariate normal density
function with a mean of zero and with covariance
matrix as determined above. The overall likelihood of
the data set is the product of these density functions
across families. Numerical maximum-likelihood tech-
niques are used to estimate P and to test the null hy-
pothesis P = 0.

MLINK

As implemented in the present study, parametric
multipoint linkage analysis was performed using the
MLINK program of the package LINKAGE (Lathrop
et al. 1985), under the assumption of no interference
across a known genetic map. The usual single-locus
model -i.e., that the trait phenotype is composed of
the effects of a single major locus plus normally distrib-
uted individual-specific residual variation around each
major genotype mean-was assumed. The major-
locus model is parameterized by five parameters: q,
the allele frequency at the major locus; gi, the mean
of the ith genotype, i = 1, 2, 3; and a2, the residual
variance about each genotype mean. In addition, we
have a single parameter, 0, related to the position of
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the hypothesized trait locus on the fixed genetic map.
For convenience this is taken to be the recombination
fraction between the major locus and a flanking
marker locus. The recombination fraction between
the trait and other markers is determined from 0 and
the fixed genetic map. For fixed values of the major-
locus parameters the likelihood of pedigree as a func-
tion of 0 is calculated. The value of 0 (location of
major locus) which maximizes the likelihood can be
determined and compared with the likelihood calcu-
lated under the hypothesis that the major locus is un-
linked to the marker region.
The comparison of the two methods will be done

through use of a simulation program which was writ-
ten to evaluate the MIM method and modified and
extended to implement the studies reported here. This
program is described in some detail in Goldgar's
(1990) paper but can be summarized as follows: The
program allows for a simulation of a quantitative trait
with the following components: trait loci which are
located in the marker region being tested, an unlinked
trait locus ofrelatively large effect, a polygenic compo-
nent, and random environmental effects. On the basis
ofinput parameters of allele frequency, degree ofdom-
inance, trait heritability (in the broad sense), and pro-
portion of genetic variance due to the aggregate effects
of the "major" trait locus or loci, the magnitudes of
the effects of alleles at each trait locus located on the
test chromosomal region are determined. To simulate
the polygenic component, a similar procedure is used
to determine allelic effects of 10 additive trait loci each
with two equally frequent alleles, which are unlinked
to the test region and to each other. The random envi-
ronmental component is simulated by generating for
each individual an independent random normal devi-
ate with 0 mean and variance 1 - h2. The program
uses an input genetic map of marker and trait loci to
simulate the process of recombination between linked
loci by assuming Haldane's (1919) function for trans-
lating map distances into recombination fractions.
Note that this assumes the absence of interference be-
tween recombination in adjacent intervals.

Ideally, we would have liked to estimate all the rele-
vant parameters through maximum-likelihood meth-
ods and to use as the criterion for comparison the
empirical power derived from evaluation of the gener-
alized likelihood-ratio test. However, given the com-
putational constraints in the MLINK procedure, it
was not possible either (1) to perform maximum-
likelihood estimation of the location of the trait locus's
with regard to the marker region or (2) to estimate the

parameters of the genetic model for each simulated
data set. Instead, the multipoint lod score was calcu-
lated assuming the correct position of the trait major
locus. For the MIM analysis an analogous procedure
was performed where we calculated the logio of the
ratio of the likelihood under the hypothesis of P equal
to its true value to the corresponding likelihood under
the null hypothesis P = 0. The average lod score from
50 data sets generated under the same conditions was
used as the criterion for comparing the MIM and
MLINK methods.

Models to Be Tested

For the majority of the comparisons in the present
paper we restrict ourselves to an additive major locus
with two equally frequent alleles. This allows all three
genotypic distributions to be represented in reason-
ably high frequency in each simulated sample. The
primary factors to be investigated in the simulation
comparisons are the magnitude of the effect of the
major locus and the nature of the residual variation.
For the former, we assume that the major trait locus
accounts for 30%-70% of the total phenotypic varia-
tion. Three models of the residual variance are consid-
ered: (1) all residual variation is due to individual spe-
cific random environmental effects; (2) 50% of the
residual is polygenic and 50% random environment;
and (3) 50% of the residual is due to a second major
locus and 50% is random. The experimental design is
detailed in table 1. In terms of the MIM method, the
parameter P, the proportion of genetic variance due
to the test marker region, is calculated as VLML1(1 -
VRE) and trait heritability is equal to (1 - VRE).
For the main body of simulations we assumed that

the trait locus was located equidistant between two
fully informative flanking markers located 50 cM
apart. This implies a recombination fraction of .197
between the trait locus and each marker. We also as-
sumed that the characteristics of the major gene (gene
frequency, genotypic means, and common SD) that
were needed for the parametric analyses were known
and were set equal to their input values. Similarly, we
assumed that the trait heritability needed for the MIM
analysis was known as well. For each of the models
examined we reanalyzed the generated data sets by the
MLINK program and assuming that the parental trait
data were unknown. In all the simulation reported
here a data-set size of 100 families with four offspring
each was assumed. Our preliminary studies show that
this sample size has reasonable power for detecting the
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Table I

Major-Locus Models Examined in Primary Simulations

RESIDUAL VARIATIONC

MAJOR-Locus PARAMETERb M Model II Model IIIModelVI
VLML' Pi 12 43 a 2 VRE VPG VRE VUML VRE

.7 ... 1.183 .0 -1.183 .3 .3 .15 .15 .15 .15

.6 .... 1.095 .0 -1.095 .4 .4 .20 .20 .20 .20

.5 ... 1.000 .0 -1.000 .5 .5 .25 .25 .25 .25

.4 .... .894 .0 - .894 .6 .6 .30 .30 .30 .30

.3 ... .775 .0 - .775 .7 .7 .35 .35 .35 .35

NOTE. -The major locus was assumed to have two equally frequent additive alleles.
a Variance due to linked major locus.
b gi = Mean of major-locus genotype i; and 02 = variance of each major-locus genotype.
C VRE = variance due to random environmental effects; VPG = variance due to polygenic effects; and

VUML = variance due to unlinked major locus.

effects of loci influencing a quantitative trait and is
achievable in practice as well.

In a subset of models (those with VLML = .4) we
examined the effect of model misspecification by esti-
mating the model parameters for each method, on
the basis of an independent data set of 200 nuclear
families. The major-locus parameters for the paramet-
ric multipoint method were estimated using the ILINK
program assuming no linkage, and the overall trait-
heritability estimate needed for the MIM method was
estimated as twice the sibship intraclass correlation.
These parameter estimates were then used for an anal-
ysis of 50 replications, as described above. Although
it would have been desirable to estimate parameters
for each generated data set and to use these estimates in
the analysis of that particular data set, computational
considerations did not permit that approach. For com-
parative purposes, the same data sets were analyzed
using the true simulated values of the parameters.

In addition to the primary simulations and those
designed to investigate model misspecification, three
additional factors were investigated: (1) the effect of
distance between markers (50, 25, and 10 cM) and
marker heterozygosity (H = 1.0, .7, .5, and .3), (2)
allele frequency, and (3) dominance (q = .2; additive,
dominant, and recessive) at the major locus. For these
latter experiments we chose the mixed model (model
II) with VLML = .4 as the standard of comparison;
it seemed most similar to the kind of traits one might
see in practice, and for the mixed model and two-
locus model it showed nearly equivalent average lod
scores for the MLINK and MIM methods. All analyses

were performed on a DECstation 5000 RISC-based
workstation.

Results

Table 2 displays the results of comparisons between
MIM and MLINK for the main body of simulations,
giving for each model and major-locus effect the aver-
age lod score calculated using MLINK and MIM and
the ratio between the MIM average lod score and its
equivalent obtained from MLINK. When all the resid-
ual variance was due to random normal environmen-
tal effects, the assumptions inherent in the parametric
analysis are satisfied, and in all cases the MLINK anal-
ysis had higher lod scores than did the MIM analysis.
When the major gene accounted for 50% or less of the
total variation, the MIM method was about 75% as
efficient as the MLINK approach, when average lod
scores were used as the criteria. The preceding as-
sumed that the model parameters were known without
error and that the parental trait values were present.
When we eliminated the parental phenotype data, the
relative efficiency of the MIM approach was approxi-
mately 90% for all major-gene effects examined.
However, when the model included other genetic vari-
ation in the residual (models II and III), the MIM
method fared somewhat better. When parental trait
data were included, the MIM analysis was roughly
equivalent to the MLINK analysis, for .4 and .3 values
of the linked major-locus effect, while, without paren-
tal phenotypes, MIM performed as well as or better
than MLINK, for all magnitudes of the linked major-
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Table 2

Power Comparisons between MIM and MLINK, as a Function of Major-Locus
Effect and Model of Residual Variation

A. Parental Trait Phenotypes Known

MODEL I (major locus) MODEL II (mixed model) MODEL III (two locus)

ELODa ELOD ELOD

VLML MLINK MIM Ratiob MLINK MIM Ratio MLINK MIM Ratio

.7 ... 5.45 2.97 .55 5.96 3.88 .65 5.19 3.44 .66

.6 ... 2.99 1.84 .61 3.25 2.41 .74 3.32 2.42 .73

.5 ... 1.63 1.22 .75 2.14 1.72 .80 2.11 1.94 .92

.4 ... .88 .66 .75 1.00 .97 .97 .91 .88 .97

.3 ... .32 .24 .75 .52 .58 1.10 .56 .60 1.06

B. Parental Trait Phenotypes Unknown

MODEL II
MODEL I (major locus) (mixed model) MODEL III (two locus)

VLML ELODc Ratio ELOD Ratio ELOD Ratio

.7 ..... 3.35 .89 3.97 .98 3.58 .96

.6 ..... 1.94 .94 2.27 1.06 2.41 1.00

.5 ..... 1.29 .95 1.60 1.07 1.71 1.13

.4 ..... .72 .91 .88 1.10 .87 1.01

.3 ..... .26 .92 .45 1.28 .51 1.18
a Average lod score from 50 replications.
b Ratio of average lod score from MIM to that from MLINK.
c Average lod score for MLINK. ELODs for MIM are identical to those in section A.

locus examined. In the analysis of 500 replicates for
type I error when MIM was used, there were no sig-
nificant deviations from the nominal level of .05, for
any of the models examined.
The effect of model misspecification can be seen

in table 3. Table 3A shows the parameter estimates
obtained for the three methods. As one would expect,
the estimates ofthe parameters ofthe major locus were
poorer when additional genetic variation was present
in the model. In particular, a greater effect for the
major locus was inferred than was actually present.
The estimates of heritability used in the MIM analysis
were quite good for all three models. As shown in
table 3B, when heritability was estimated instead of
assumed to be equal to its true value, there was virtu-
ally no effect on the average lod score for the MIM
method. However, when the estimated model parame-
ters were used, the average lod scores when MLINK
was used were reduced, most noticeably for model
III (the two-locus model), in which there was a 22%
reduction in average lod score.

Table 4 examines the effects, on both methods, of

both a lower gene frequency and dominance at the
major locus. The effect that reduced gene frequency
had on theELOD ratio was more severe than the effect
of dominance at the major locus. For known parental
phenotypes, there was a marked drop in the perfor-
mance of the MIM method compared against the
MLINK approach, for all three models, from an
ELOD ratio of .97 for this model when q = .5 to .76
for the additive case when q = .2. The addition of
a dominance component reduced the relative ELOD
comparison only slightly from that seen in the additive
case. When parental data were assumed to be unavail-
able, the drop-off in performance under the dominant
model was not as severe (1.1 vs. 1.0), and, relative to
MLINK, the MIM method actually performs better
than it does in the additive, q = .5 case.

Table 5 shows the effects that (a) the distance be-
tween markers and (b) the informativeness of the two
markers have on the two methods. Neither reduced
marker informativeness nor marker distance seemed
to have a consistent effect on the ELOD ratio. The
lowest ratio observed (. 8) occurred for the 25-cM map
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Table 3

Effect of Model Misspecification on MIM-MLINK Comparisons

A. Estimated Parameter Values

Model I Model II Model III
(major locus; h2 = .4), (mixed; h2 = .7), (two locus; h2 = .7)

Parameter True Estimated Estimated Estimated

q ....... .50 .49 .56 .44
Al ......... .894 .718 .951 1.143
L2 ...... .0 .124 -.084 .153
3 ........ -.894 -.924 -1.132 -.896
2 ......... .6 .675 .417 .434

b2 ............ .40 .69 .67

B. Comparison of ELODs by Using Estimated Parameters

MODEL I MODEL II MODEL III
(major locus) (mixed) (two locus)

True Estimated True Estimated True Estimated

ELOD:
MIM ........64 .64 1.01 1.02 .99 1.00
MLINK.... .86 .75 1.12 1.02 .98 .76

Ratio. .75 .86 .91 1.00 1.01 1.32

NOTE. -The effect of the linked locus was equal to 40% of the total phenotypic variance. Parental
phenotype data were assumed to be known.

and the lowestH value, while some of the higher ratios
were observed with similarly low heterozygosity but
for both the 50- and 10-cM distances. Last, we note
that the MIM analysis required about a tenth as much
CPU time as did the MLINK likelihood calculations.

Discussion

From table 2 it is clear that the relative advantage
of MIM compared with the parametric multipoint

analysis is largest in those situations in which there is
a large degree ofuncertainty regarding the major-locus
genotype, given the trait phenotype. This is true re-

gardless ofwhether this uncertainty is a result of a high
degree of overlap between genotype means or is due
to the presence of other genetic effects not included in
the parametric model. In particular, there is a large
reduction in ELOD for the parametric analysis when
we assumed that parental quantitative trait values are

unknown. This effect was largest for model I, with the

Table 4

Effects of Gene Frequency and Degree of Dominance on Two Methods for
Mixed Model (Model 11) with a Linked Major Locus Accounting for 40% of
Phenotypic Variance

q = .2
q~ ~ ~~~~q.

ADDITIVE Additive Dominant Recessive

PPK PPU PPK PPU PPK PPU PPK PPU

ELOD:
MIM .......97 ... .96 ... 1.17 ... .78 ...

MLINK ... 1.00 .88 1.26 .94 1.63 1.04 1.11 .78
Ratio ......... .97 1.10 .76 1.02 .72 1.13 .70 1.00

NOTE. -Model parameters were fixed at their simulated values. Results are based on 100 replicates.
PPK = parental phenotypes known; and PPU = parental phenotypes unknown.
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Table 5

Effects That Marker Heterozygosity and Map
Distance between Markers Have on Average
Lod Score of Two Methods

Da (in cM) ELOD
AND H MIM MLINK RATIO

50:
.3 ......... .43 .42 1.02
.5 ......... .52 .57 .92
.7 ......... .64 .75 .85

1.0 ......... .98 1.13 .87
25:

.3 ......... .65 .82 .80

.5 ......... .98 1.22 .80

.7 ......... 1.27 1.46 .86
1.0 ......... 2.42 2.61 .93

10:
.3 ......... 1.57 1.62 .97
.5 ......... 1.94 2.13 .91
.7 ......... 3.01 3.08 .98

1.0 ......... 3.43 3.52 .97

NOTE. -The simulated model was a mixed model (model II) with
VLML, and parental phenotype data were assumed to be known.

a Distance between markers.

major gene accounting for at least 50% of the total
variance; in these cases a 30%-40% reduction in
ELOD was observed.

It is difficult to directly compare the average lod
scores obtained in our simulations with those of other
investigators who have examined the power of the lod
score method to detect linkage of quantitative traits.
The other studies concentrated on dominant major
loci, were restricted to pairwise analyses, used differ-
ent family structures, and, in general, examined
tighter linkage. In order to compare our results we
simulated one of the models used by Boehnke-spe-
cifically, a dominant major locus with a frequency of
.133, a separation between high and low genotypic
means of 1.5 SDs, and complete linkage with a fully
informative marker locus. Boehnke estimated for this
case that a sample size of 972 individuals would be
needed to achieve a lod score of 3.0, assuming ran-
domly sampled nuclear families of size 5 and that link-
age at .10 would result in an increase by a factor of
2.5, yielding an estimated sample size of 2,430 indi-
viduals for this case. For this model, we arrived at a
figure of 2,200 individuals for nuclear families of size
6 and for a trait locus flanked by fully informative
markers located 25 cM from the trait locus. Thus the

efficiency of flanking markers, each 25 cM from the
trait locus, appears to be roughly comparable to that
of a single marker linked at half the distance.

It is interesting that the ELOD for the parametric
multipoint analysis was about 10%-20% higher for
the mixed and two-locus models than for the "correct"
model of independent normal residual variation. This
result is not only counterintuitive but appears to con-
flict with that found in the study by Boehnke (1990),
where the mixed model produced lower ELODS than
did the random environmental model. Boehnke (1990)
showed that, in general, the sample size required to
achieve a lod score of 3.0 was 1.0-2.2 times greater
under the polygenic model, depending on the degree
of separation of genotypes and on the pedigree and
sampling strategy used. We note, however, that the
cases analyzed by Boehnke were for a rare (q = .025)
dominant trait which was completely linked to the
marker locus (0 = 0). In these cases the trait locus
accounted for relatively small proportions of the total
phenotypic variance; for the largest effect examined,
the major locus accounted for only 18% of the total
variance. It is noteworthy that Boehnke found that
the larger the major-gene effect, the less the effect of
polygenic background. Thus the large major-locus
effect and the high gene frequency used in our study
may account for the disparate findings. The MIM ap-
proach clearly performed better in the presence of
polygenic or additional single-locus variation. In fact,
any effect which increases the overall average similar-
ity of the sibship trait values allows the method to
better detect the effects of trait loci located in the
marker region.

Table 3 shows that, when the parameters of the
major locus were estimated from the data, there was
a reduction in average lod score for the multipoint
linkage method. This was certainly the case for models
II and III, in which additional variation was present in
the form either of polygenic effects or of a second
major locus which could not be accounted for by the
model used to estimate the major-locus parameters.
However, there was also a smaller reduction in power
for the case in which the basic model was correct. As
table 3A shows, the residual variation was underesti-
mated in models II and III; all the genetic variation
tended to be subsumed under the single major locus.
The degree of dominance and gene frequency esti-
mates did not seem to be as affected. For the MIM
method, it has been our experience that incorrect spec-
ification of heritability may result in quite biased esti-
mates of P, the proportion of genetic variance due to
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loci in the test marker region, but does not result in
loss of power or in inflated type I error.
We chose as our baseline model an additive major

locus with two equally frequent alleles. This would
allow all three genotypes to be represented in relatively
high frequency and would give a broad spectrum of
mating types, while minimizing the frequency of unin-
formative matings. The results in table 4 indicate that
the larger effect is one ofreduced gene frequency rather
than the effect of dominance. For traits with gene
frequencies substantially lower than the .2 used in
these simulations, one presumably would be sampling
through probands with extreme trait phenotypes and
would thus have a high proportion ofinformative mat-
ings. One advantage of the parametric approach is
its ability to "recognize" uninformative matings, i.e.,
matings in which both parents have a high probability
of being homozygous at the major trait locus. The
MIM method, which does not use parental data and,
moreover, does not consider genotypes at individual
trait loci, has no way of distinguishing these parents
or uninformative matings. If the overall phenotypic
variance due to the linked locus remains constant, a
reduced gene frequency at the major locus results in an
increased effect of the gene, i.e., increased separation
between genotype means. It is this separation which
has been shown to be the major factor in the power
of the lod-score method in other studies (Demenais et
al. 1988; Boehnke 1990). This may explain why with
reduced gene frequency there was essentially no
change in MIM average lod score, while that for
MLINK increased by about 25%. We believe that in-
corporating into our method a probability of informa-
tiveness as a likelihood-weighting factor may improve
its performance for situations in which there are a
large proportion of uninformative families in the sam-
pled data set; stratifying the analysis by parental mat-
ing type at the major trait locus has been shown to
increase the power of the Haseman-Elston method
(Amos et al. 1989). Alternatively, one could employ
various sampling strategies in an effort to ensure a high
proportion of informative matings.

In table 5 the results regarding the effect that marker
heterozygosity and distance have on the comparison
of the two methods, are of interest, largely because of
the absence of any consistent pattern. These changes
may represent random fluctuation, with the relative
power of the two methods unaffected either by dis-
tance between flanking markers or by marker hetero-
zygosity, at least in the range of these parameters that
is examined in the simulation study.

We originally developed the MIM method to be
applied to those situations in which there was no evi-
dence of a single major locus. The method was de-
signed to be analogous, in human data, to the method
that Lander and Botstein (1989) developed for lower
organisms and that was successfully applied to localiz-
ing quantitative trait loci in tomatoes (Paterson et al.
1988). However, the results of these simulations indi-
cate that the MIM procedure may prove useful for
analyzing quantitative trait data even in many situa-
tions in which there is evidence for major-locus varia-
tion. Although, as in any simulation study, the gener-
alization of results beyond the specific models tested
is hazardous, several conclusions may be drawn from
our study regarding the use of the MIM method for
the major-locus case. In particular, the method may
prove useful in situations where (a) parental data are
unknown; (b) the effect of the major locus is small
relative to the total variance; (c) there is reason to
believe that the model may be inaccurately specified;
and (d) when there is evidence of residual genetic or
correlated environmental variance after the major lo-
cus is accounted for. We would advocate using the
MIM procedure as a multipoint screening tool testing
a series of intervals or SO-100-cM regions across the
genome. When significant variation due to a particular
region is detected, the parametric approach could be
used to simultaneously estimate the model parameters
and more accurately characterize the position of the
trait locus.
While more work is necessary to examine further

questions of robustness to deviations from normality,
effects of interference, and the presence of common
environmental effects, we believe that, for the analysis
ofmany complex traits, theMIM method can provide
a useful alternative to parametric linkage analysis. A
user-friendly computer program for carrying out the
MIM analysis on real data sets is currently under de-
velopment and can be obtained at no cost by writing
to the authors.
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