Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1987 Nov;41(5):882–890.

Induction of sister chromatid exchanges at common fragile sites.

T W Glover 1, C K Stein 1
PMCID: PMC1684333  PMID: 3674017

Abstract

Experiments were performed to gain further insight into chromosome structure and behavior at common fragile sites by testing the hypothesis that gaps at these sites predispose to intrachromosomal recombination as measured by sister chromatid exchanges (SCEs). Human lymphocytes were concurrently treated with aphidicolin, for determination of fragile site expression, and with 5-bromodeoxy-uridine, for SCE analysis. Aphidicolin induced chromosome gaps nonrandomly, with the great majority of gaps occurring at common fragile sites. On average, 66% of gaps were accompanied by an SCE at the site of the lesion. Analysis of two specific common fragile sites at 3p14 and 16q23 showed the same pattern; that is, on average 70% of gaps at these sites were accompanied by an SCE. These results show that common fragile sites are hot spots not only for chromosomal lesions such as gaps but also for SCE formation.

Full text

PDF
886

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur D. C., Bloomfield C. D. Banded chromosome analysis in patients with treatment-associated acute nonlymphocytic leukemia. Cancer Genet Cytogenet. 1984 Jul;12(3):189–199. doi: 10.1016/0165-4608(84)90030-x. [DOI] [PubMed] [Google Scholar]
  2. Berger R., Bloomfield C. D., Sutherland G. R. Report of the Committee on Chromosome Rearrangements in Neoplasia and on Fragile Sites. Cytogenet Cell Genet. 1985;40(1-4):490–535. doi: 10.1159/000132181. [DOI] [PubMed] [Google Scholar]
  3. Daniel A., Ekblom L., Phillips S. Constitutive fragile sites 1p31, 3p14, 6q26, and 16q23 and their use as controls for false-negative results with the fragile(X). Am J Med Genet. 1984 Jul;18(3):483–491. doi: 10.1002/ajmg.1320180318. [DOI] [PubMed] [Google Scholar]
  4. Glover T. W., Berger C., Coyle J., Echo B. DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet. 1984;67(2):136–142. doi: 10.1007/BF00272988. [DOI] [PubMed] [Google Scholar]
  5. Glover T. W., Coyle-Morris J., Morgan R. Fragile sites: overview, occurrence in acute nonlymphocytic leukemia and effects of caffeine on expression. Cancer Genet Cytogenet. 1986 Jan 1;19(1-2):141–150. doi: 10.1016/0165-4608(86)90381-x. [DOI] [PubMed] [Google Scholar]
  6. Hecht F., Glover T. W. Cancer chromosome breakpoints and common fragile sites induced by aphidicolin. Cancer Genet Cytogenet. 1984 Oct;13(2):185–188. doi: 10.1016/0165-4608(84)90060-8. [DOI] [PubMed] [Google Scholar]
  7. Ishii Y., Bender M. A. Effects of inhibitors of DNA synthesis on spontaneous and ultraviolet light-induced sister-chromatid exchanges in Chinese hamster cells. Mutat Res. 1980 Sep;79(1):19–32. doi: 10.1016/0165-1218(80)90144-5. [DOI] [PubMed] [Google Scholar]
  8. Kunz B. A., Taylor G. R., Haynes R. H. Induction of intrachromosomal recombination in yeast by inhibition of thymidylate biosynthesis. Genetics. 1986 Oct;114(2):375–392. doi: 10.1093/genetics/114.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Latt S. A., Stetten G., Juergens L. A., Buchanan G. R., Gerald P. S. Induction by alkylating agents of sister chromatid exchanges and chromatid breaks in Fanconi's anemia. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4066–4070. doi: 10.1073/pnas.72.10.4066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LeBeau M. M., Rowley J. D. Heritable fragile sites in cancer. Nature. 1984 Apr 12;308(5960):607–608. doi: 10.1038/308607a0. [DOI] [PubMed] [Google Scholar]
  11. Ledbetter D. H., Airhart S. D., Nussbaum R. L. Caffeine enhances fragile (X) expression in somatic cell hybrids. Am J Med Genet. 1986 Jan-Feb;23(1-2):445–455. doi: 10.1002/ajmg.1320230136. [DOI] [PubMed] [Google Scholar]
  12. Ledbetter D. H., Ledbetter S. A., Nussbaum R. L. Implications of fragile X expression in normal males for the nature of the mutation. Nature. 1986 Nov 13;324(6093):161–163. doi: 10.1038/324161a0. [DOI] [PubMed] [Google Scholar]
  13. Painter R. B. A replication model for sister-chromatid exchange. Mutat Res. 1980 May;70(3):337–341. doi: 10.1016/0027-5107(80)90023-8. [DOI] [PubMed] [Google Scholar]
  14. Perry P., Wolff S. New Giemsa method for the differential staining of sister chromatids. Nature. 1974 Sep 13;251(5471):156–158. doi: 10.1038/251156a0. [DOI] [PubMed] [Google Scholar]
  15. Schimke R. T., Sherwood S. W., Hill A. B., Johnston R. N. Overreplication and recombination of DNA in higher eukaryotes: potential consequences and biological implications. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2157–2161. doi: 10.1073/pnas.83.7.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wenger S. L., Hennessey J. C., Steele M. W. Increased sister chromatid exchange frequency at Xq27 site in affected fragile X males. Am J Med Genet. 1987 Apr;26(4):909–914. doi: 10.1002/ajmg.1320260419. [DOI] [PubMed] [Google Scholar]
  17. Yunis J. J., Soreng A. L. Constitutive fragile sites and cancer. Science. 1984 Dec 7;226(4679):1199–1204. doi: 10.1126/science.6239375. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES