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Some Fallacies in the Computation of Paternity Probabilities

MIKEL AICKIN'

SUMMARY

Legal identification of fathers by means of a "paternity probability"
has been used in European courts for decades, and has recently been
introduced into American courts and accepted by some of them. The
voluminous literature on this topic contains virtually no fundamental
criticism of the logical basis for the probabilistic computations. Here I
suggest that the "paternity probability" suffers from three basic fallacies:
(1) contrary to claims, the figure is not, in fact, the probability that the
alleged father is the true father, (2) the denominator of the likelihood
ratio used in the computation is driven by (sometimes self-contradictory)
assumptions and is not based on facts, and (3) post-inclusionary com-
putations are based on speculation about genotypes that does not constitute
scientific evidence. It is recommended that pending the resolution of
these difficulties "paternity probabilities" should not be computed or
introduced as positive evidence of paternity.

INTRODUCTION

The recent rise of illegitimacy rates in the United States, together with a concomitant
expansion of public financial support for single-parent families, has made the
establishment of paternity an issue of increasing concern to state and local gov-
ernments. Federal pressure, in the form of threats to reduce funding, has forced
the state and county attorneys into a central, aggressive role in paternity suits,
frequently displacing the traditional notion that the mother has the greatest interest
in such proceedings. The consequence has been that the courts are not equipped
to deal with the potential flood of litigation that would result if a substantial
fraction of men accused of paternity refused out-of-court settlements.
An ideal solution here would be an infallible method of detecting paternity,

one that would convince correctly accused fathers of the futility of further legal
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action and immediately exonerate incorrectly accused men. It was with the hope
of bringing to the court a sufficiently reliable, if not infallible, test for paternity
that the American Association of Blood Banks (AABB) sponsored a conference
to resolve outstanding differences among experts concerning the computation
and interpretation of the genetically based "probability of paternity." The published
results of that conference [1] contain guidelines that essentially encourage the
admission as evidence of any mathematical or statistical computation concerning
paternity, provided only that it is clearly explained. The purpose of this paper is
to show that in the light of fundamental difficulties in the computation of paternity
probabilities these guidelines are ill-advised.

PROOF AND PROBABILITY IN PATERNITY TESTING

A paternity dispute occurs when a mother and child are presented to the court,
and the issue is to determine who is the father. In "one-man" cases, a single
man is identified as the alleged father, while in "several-men" cases, there is a
collection of men known to the court who are possible fathers. Until recently,
the role of genetics has been to use serological evidence as a means of testing
whether an alleged father could be excluded from paternity ([1], p. 21 ff.).
Barring a mutation, laboratory accident, or break in the chain of evidence, a
negative result from the "inclusion-exclusion test" exonerates the alleged father,
and this traditional use of blood tests will not be questioned here.
However, as a direct result of progress in serological testing that permits the

identification of several genetic systems, especially HLA, it is currently believed
that when the alleged father is included the genetic evidence not only admits him
as a possible father but also actually provides some positive support for the
proposition that he is the father ([1 ], p. 63 ff.). Long before the modern advances,
a technology for computing a "probability of paternity" was developed in a
classic paper by Essen-Moller [2] ("The Power of Similarities to Prove Paternity").
This paper has become a seminal work for paternity testers, and has been quoted
frequently in court and in the literature as the justification for various computations
[3].
Throughout the literature on paternity probabilities, there has been a reluctance

to examine the fundamental logic of Essen-M61ler's formulation of the problem,
and a consequent acceptance of paternity probabilities as scientific evidence.
Here I suggest that in many of its applications this methodology embodies basic
fallacies. This is not done to show that genetic evidence has no part in paternity
disputes, but rather to argue that the current practice is overly optimistic, if not
opportunistic, in its attitude about what biostatistical evidence can establish.

THE FRAMEWORK FOR COMPUTING PATERNITY PROBABILITIES

In ([1], p. 155 ff.), Kaye and I suggested that a welter of idiosyncratic systems
of notation has arisen in dealing with paternity probability calculations. We argued
that adherence to the standard notation of elementary probability theory was more
likely to introduce clarity of thought into the computations. The notation of that
paper will be used for the purposes of this one.
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We imagine that there is a parameter, b, that indicates what the true but unknown
situation is. We use b = 0 to stand for the case in which none of the possible
fathers before the court is the actual father, and b = i to mean that of the n
possible fathers, the ith is the true father. In one-man cases, the only possibilities
are b = 0 or b = 1.
We also use the symbol T to stand for the genetic evidence that is to be introduced

in court. This evidence may differ widely from case to case, and so we intend to
use T in a flexible way. In some cases, T will stand for the inclusion-exclusion
test, so it will represent the outcome that a particular alleged father is either
included or excluded. In other cases, T may stand for an entire list of the phenotypes
of the mother, child, and all possible fathers known to the court.

Regardless of how T is used, the probabilities P(T~b = 0) (computed under
the assumption that none of the known possible fathers is the actual father) and
P(T~b = i) (computed under the assumption that the ith possible father is the real
father) are the relevant figures to compute for any statistical inference. According
to the Bayesian philosophy, each individual judge or juror should assess these
values in the following way. Before the introduction of the serological evidence,
one should formulate prior probabilities P(b = 0) and P(b = i) that reflect the
degree of belief in each of these situations justified by the previous evidence in
the case. To express degrees of belief after the serological evidence is admitted,
each judge or juror should use generally accepted rules of probability to compute
P(b = i1T) = P(T~b = i)P(b = i)/K, where K is the sum of the expressions
P(T~b = i)P(b = i) for i running from 0 to n. The number on the left in this
equation is to be interpreted as the degree of belief that b = i after the introduction
of T.

It should not be thought that the Bayesian method follows in some way inexorably
from the laws of probability. There is substantial controversy whether the situations
b = i have the same logical status as real-world observations such as T, and
whether the same laws ought to apply to both of them. An alternative theory of
generating beliefs from evidence has been proposed by Shafer [4], and stands as
a logical alternative to the Bayesian method. Nevertheless, most paternity testers
accept the Bayesian framework, and even those who do not still regard the com-
putation of P(T~b = i) as the ingredient necessary for coming to a conclusion
about paternity.

In one-man cases, the Bayesian computation can be cast in a particularly simple
form:

P(b = 1 T) - LR P(b = 1)
P(b = OIT) P(b='0)

where LR is the likelihood ratio, and equals P(T~b = 1)IP(Tlb = 0). Even non-
Bayesians recognize the LR as a crucial summary of the evidence in one-man
cases, and it has come to be called the "paternity index." The Essen-Moller
method is the special case in which the prior odds ratio P(b = 1 )IP(b = 0) equals
1. Large values ofLR or P(b = lIT) are taken as scientific evidence of paternity.
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THE ALTERNATIVE HYPOTHESIS FALLACY

In one-man cases, the parameter b is defined so that b = 1 corresponds to the
situation in which the alleged father is the biological father, and b = 0 corresponds
to the case in which he is not. This seems appropriate, because it correctly models
the central factual finding that the judge or jury needs to make. Regardless of
whether one chooses to use Bayesian or other inferential schemes, the problem
is to come to a conclusion whether b = 1 or b = 0 is, in fact, correct.
When the LR assumes a value greater than 100, which it frequently does in

cases of nonexcluded men where a rich genetic system like HLA is used, then it
is common practice to follow Essen-M6ller in reporting that the "probability of
paternity" exceeds .99, so that the evidence in favor of paternity is quite great.
When LR exceeds 1,000, the Essen-Moller formula yields .999, which the average
judge or juror might be excused for thinking provides not only strong support
for paternity, but also nearly a proof that the alleged father is the biological
father. Indeed, one source [5] even goes so far as the use of the phrase "practically
proved" in referring to the interpretation of such a high LR, and the AABB
guidelines evidently approve the use of this phrase ([1], p. xiv). But what is it
that has been "practically proved" by an LR greater than 1,000? The formal
mathematical statement of the problem suggests that it is the paternity of the
alleged father, but is this really what the biological evidence says?
The answer is clearly no, for the simple reason that with current technology

the genetic evidence produced by a laboratory cannot distinguish which of two
nonexcluded men is the actual father. Supporters of the use of the Essen-Moller
and other similar formulas agree that the biological evidence cannot draw such
distinctions, but they go on to argue that the LR correctly reflects the chances of
the observed biological evidence under the two hypotheses (b = 0 and b = 1),
and that use of standard statistical techniques yields the formulas for the "probability
of paternity" that they put forth. Although this argument appears sound, and has
been almost universally accepted by experts in paternity testing, it does not seem
to deal with the problem that no laboratory evidence can pick the correct father
from a group of men biologically capable of being the father.
To put this in concrete terms, imagine a situation in which the alleged father

A has the same serological type as another possible father B, who is not known
to the court. Suppose that the mother had sexual relations with both men. No
matter which man the mother chooses to accuse of paternity, the "probability of
paternity" will be the same. Even if the mother herself doesn't know which man
is the father, and flips a coin to decide which to accuse, we can arrive at the
result that paternity is "practically proved" for the randomly accused man. There
is obviously something wrong with the reasoning that leads to the high "probability
of paternity" in this case, and it is equally clear that it has something to do with
the fact that the laboratory cannot produce any evidence suggesting that one or
the other of the men is more likely to be the father.
To uncover the source of the fallacy, we have to go back to the fundamental

definitions from which all the computations flow. It is not difficult to see that if
we change b = 1 to mean that the alleged father "has the same serological
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phenotype as the true father," rather than saying that he "is the true father,"
then none of the calculations producing LR are in any way changed. It is also
not difficult to see that the probabilistic behavior of LR over many cases does
not change when we alter the meaning of b = 1. It follows that the use of LR in
statistical arguments, in effect, tests the null hypothesis that the alleged father
is genetically distinguishable from the true father against the alternative hypothesis
that he is not. If we make the redefinition, then we are using the biological
evidence to determine whether or not the alleged father has the same genetic
characteristics as the actual father, and this is the only kind of information that
the serological evidence can supply.

It might be argued that this redefinition of b is a minor point, not materially
altering the overall conclusion. Whether this turns out to be correct or not in any
particular case is an interesting question. But one cannot go so far as to say that,
in general, there is no real difference between asserting that it is "practically
proved" that a man is the father and asserting that it is "practically proved" that
he has the same phenotype as the father. Depending on the other evidence in the
case, the distinction between these two conclusions can be either trivial or enor-
mous. In the case of the serologically identical men, the difference is crucial,
and the proper definition of b eliminates the undesirable property of "paternity
probabilities" by which they might guarantee conviction of a man chosen at
random. Here, it is quite reasonable to conclude that both men have a high
probability of being genetically indistinguishable from the father, but it is nonsense
to say that they both have high probabilities of being the father.

This fallacy is similar to a problem that is well known in the theory of linear
models [6], and it is somewhat remarkable that statisticians had not discovered
it earlier.

THE NULL HYPOTHESIS FALLACY IN ONE-MAN CASES

The alternative hypothesis fallacy seems to suggest that the current method of
interpreting the LR needs to be changed, but it does nothing to suggest that the
use of LR involves any basic impropriety. On the other hand, the null hypothesis
fallacy suggests that in "one-man" cases the LR should not be computed or
entered into the proceedings in any fashion. This second fallacy is independent
of the first.

In obtaining the numerator of LR, one assumes for the purpose of computation
that b = 1. This assumption, together with accepted principles of genetics, makes
it possible (although in some cases complex) to compute the numerator, and it
is difficult to raise any objections to the computation. However, the same may
not be said of the denominator, where the assumption is that b = 0.

Let it be emphasized that the cases under investigation here are "one-man"
cases, in which the only evidence before the court involves a single accused
father. Here, the hypothesis b = 0 suffers from a certain vagueness. Simply
saying that the alleged father is not the biological father (or is distinguishable
from the biological father) does not in and of itself dictate how P(Tib = 0) must
be computed. What is required is a more precise description of the mechanism
by which T might have arisen, when the alleged father is falsely accused. It is

908 AICKIN



FALLACIES IN PATERNITY PROBABILITIES

nearly universally accepted by paternity-testing experts that the way to proceed
is as if the actual father were drawn at random (in terms of his genetic characteristics)
from some population. In some formulations of the problem, the assumption is
that the alleged father was drawn at random, but the same basic reasoning is
present in both approaches. Once the genetic frequencies of characteristics of
that population are assumed known, then standard probabilistic computations
using the rules of genetics yield the denominator probability.

Again, this computation is unobjectionable-under the assumptions that are
being made. The question that needs to be addressed is whether the assumptions
are reasonable. Several authors have pointed to an obvious weakness in the
standard computation which results from the fact that the population, from which
the true father is supposed to be drawn, may be poorly defined, and there may
not be very good evidence about the distribution of genetic characteristics in that
population. One feature of the argument is that in a rich system, like HLA, there
are so many alleles and testing is so expensive that no proper statistical studies
have been done on any population in order to estimate haplotype frequencies.
The estimates that are available are evidently from "convenience samples," that
is, samples consisting of whomever appeared at the blood bank or laboratory for
testing. Since such a sampling plan has unknown characteristics, there is no
theoretical way to establish how precise are the resulting estimates of frequencies.
If the published frequencies misrepresent the population they are supposed to
describe, then the subsequent computation of P(T~b = 0) is incorrect, and worse,
there is no way to estimate how much in error it may be.
On the other hand, supporters of the use of LR in one-man cases might point

to the fact that with a system like HLA each possible phenotype occurs in the
population with such a small frequency that it does not make much difference
whether the frequencies are estimated precisely or not. For example, if LR is
computed on the basis of the inclusion-exclusion test, then the denominator is
the probability of including a randomly drawn man, and, again, assuming that
the genetic systems investigated are sufficiently rich, this denominator will be
very small. Whether the resulting LR turns out to be 1,000 or 2,000 doesn't seem
like a very important issue: in either case, the evidence is strongly in favor of
paternity, and we are only quibbling about exactly how strong it is.
However, the arguments against LR based on our ignorance of true gene fre-

quencies miss the main point. The issue is not whether in a Los Angeles court
case we should use the population of Los Angeles, of California, or of the entire
country in computing the denominator. Neither these nor any other geographically
determined populations are relevant to the case. What is pertinent is the population
of "plausible fathers." This is the collection of men for whom one might have
some reasonable belief, however small, that they might be the biological father.
If, in fact, the alleged father is falsely accused, then any formulation of the
hypothesis b = 0 must refer to the population of plausible fathers, because it is
obvious that whatever selection process the mother used to choose whom to
accuse, she used this population.
To see what effect might be expected from using plausible fathers rather than

geographical populations, imagine a hypothetical case in which an observer in
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the courtroom knows who the plausible fathers are and has the same genetic
information on them that has been collected on the alleged father. This observer
is capable of formulating the hypothesis b = 0 as a random draw from the
collection of plausible fathers, and so he has no difficulty computing the denom-
inator required for LR. For instance, if the inclusion-exclusion test is used, and
if all of the other plausible fathers would be excluded as biological fathers, then
his denominator would be zero, and it would be logically (not just probabilistically)
proved that the alleged father were guilty. At the other extreme, if the other
plausible fathers would all be included as possible biological fathers, then his
denominator would be equal to one, and the genetic evidence in LR would say
nothing about the alleged father. In intermediate cases, if the alleged father were
included and if m of the n other plausible fathers were biologically capable of
being the father, then the observer would compute m/n for the denominator.

There are three intriguing features of this. First, the computations for our
observer are very simple and would be easily understood by anyone with a vague
grasp of random draws and what it means to be excluded from paternity. This
would be in contrast to the elaborate probabilistic computations that have occupied
the attention of many paternity testers. Second, the population of other plausible
fathers may be very difficult to identify; although one certainly would not want
to admit the entire population of Los Angeles into this circle, it might be exceedingly
difficult to determine reasonably whom this group ought to include. Third, the
results obtained by our observer would usually differ materially from those based
on a random draw from some geographical population (again, assuming a rich
genetic system under test). This third fact is crucially important because it shows
the degree to which the assumptions determine the conclusion.

Supporters of the use of LR will, of course, want to emphasize the second
point above. They will argue that it would certainly be a good idea to discover
the collection of plausible fathers, and they would have no qualms about permitting
the denominator to be computed on this basis. But in practical situations, the
difficulties standing in the way of discovering the plausible fathers are enormous.
And even if they could be identified, it might be excessively time-consuming
and costly to undertake genetic testing on all of them. Thus, the substitution of
a known geographical population for the obviously more relevant population of
plausible fathers is to be seen as an acceptable substitution, not only on the
grounds of cost but also because we can imagine that the actual plausible fathers
were drawn genetically at random from the wider population, and sampling at
random from a sample drawn at random is mathematically equivalent to drawing
at random from the original population (see [7]).

Although this line of reasoning is attractive on practical grounds, it does not
withstand a test of whether the final computation gives a number that is sufficiently
pertinent to the particular case at hand. It asks, in effect, that we substitute
probabilities in place of knowledge, a practice that is sometimes acceptable and
sometimes not. For instance, in one case [8], the court desired to determine the
proportion of a state's automobiles that were covered by insurance. A statistician
was commissioned to design and execute a study and to report on its conclusions.
In this case, the sample drawn by the statistician was, in effect, substituted for
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the population from which it was drawn in order to permit the court to draw its
conclusions. This is a legitimate substitution of probabilities for knowledge because
the statistical characteristics of the sampling plan were well understood, and
even though the reported percentage might not have been precisely correct, there
was very little chance that it was substantially wrong. One could question whether
the reported figure of 97% under- or overestimated the true value by one or two
percentage points, but no one could reasonably maintain that the true figure were
50%.

But the substitution of probability for knowledge in paternity testing does not
have these features. When an LR value of 1,000 is reported, based on the assumption
of sampling from a geographical population, but, in fact, there are only two other
plausible fathers, one of whom would be excluded, then the value of LR should
be equal to 2 (based on the inclusion-exclusion test). In this case, the difference
between the conclusion based on probabilities for an unknown pool of plausible
fathers is substantially different from that based on knowledge of the pool, and
the probability-based evidence is clearly misleading. When the customary LR
value is not correct, it can be very wrong, and it is the divergence between the
two conclusions in this case that makes the probability-based evidence unacceptable.
In effect, by using the standard LR, we are employing a procedure that sometimes
points us in the right direction, and sometimes points in exactly the wrong direction,
and we have no means of telling in each particular case whether we are being
informed or misinformed by the "paternity probability." Although paternity testers
are fond of pointing out that the LR should make these disastrous errors relatively
infrequently, this is only a statement about the long-run performance of the LR,
and provides no comfort in individual cases.

Serious although it is, this difficulty is eclipsed by a further and even more
fundamental objection to the standard calculations of LR that has gone unnoticed
by paternity experts. Let us imagine ourselves as a juror who finds some elements
of credibility in the stories of both sides, so that perhaps P(b = 1) = .6 and
P(b = 0) = .4. Then the LR is computed in the standard fashion from the genetic
evidence, and found to be 500. The posterior odds favoring paternity are 500(.6/
.4) = 750, and so the "probability of paternity" is .99867. Perhaps we may be
forgiven for wondering how our .4 belief in the father's story dwindled to .00 133
just on the basis of the fact that he is not excluded from biological fatherhood.
The answer is that when the LR was computed, the hypothesis b = 0 was framed
in a way that discounts our belief in the father's story. It is easy to see that this
is true. We only have to approach the court observer (who, we recall, knows all
about the plausible fathers) who has computed an entirely different LR and a
rather smaller posterior "probability of paternity." Now, as a juror, we are not
in the position of the court observer, because we do not know the plausible
fathers, and so we do not, in fact, have access to his computation. But, by the
same token, we are not in the position of someone who has no knowledge whatsoever
about the plausible fathers, and who might be driven to use the draw from the
geographical population as a device for coming up with the denominator of LR.
We are, in fact, intermediate between these two extreme positions. To the extent
that we believe the father's story (.4), we also believe that the collection of other
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plausible fathers contains at least one man who would not be excluded, namely,
the actual father. The standard computation of the denominator makes this pos-
sibility very unlikely as a consequence of its assumptions, in effect ignoring our
.4 belief that it is true.
The core of the fallacy is this. The standard method carries out its computation

of the denominator of LR by choosing to interpret the probabilistic effect of b =
0 in a certain way, but anyone who had some prior belief in b = 0 would almost
certainly choose to represent its probabilistic effect in another way, one more
favorable to the alleged father. In effect, jurors who have some prior belief in
the alleged father's story are being swindled out of that belief.
To be fair, we ought to point out that if a juror had virtually no prior belief in

the alleged father's story, and the standard LR turned out to be very small, then
he, too, might have been swindled.

This is a fundamental objection to the use ofLR. Neither the Bayesian approach
nor any other approach takes into consideration how the proper probabilistic
consequences of b = 0 are to be determined.

Supporters of the standard LR method might well ask, if their method is wrong,
what is right? The answer here is painfully clear. Without any additional information
about the collection of plausible fathers, the juror is unable to compute the de-
nominator of LR in such a way that it avoids distorting his perception of the
evidence. He may feel that the standard computation gives a value that is too
low (or too high), but he has very little basis on which to substitute a more
accurate figure, because his belief about the plausible fathers is so vague. Con-
sequently, the current methods must be abandoned until a statistical technology
is developed for incorporating into the computations the judge's or juror's vague
belief about the class of plausible fathers.

THE USE OF POST-INCLUSION GENETIC INFORMATION

Another class of fallacies involves the use of genetic information above and
beyond what is used for the inclusion-exclusion test. Although these new fallacies
are related to the null hypothesis fallacy, they have some special features that
turn on the difference between a phenotype (directly observable inherited traits)
and a genotype (often unobservable, microscopic chemical properties of cells).
Only one such fallacy will be presented here.
The situation involves a genetic system with two codominant alleles, called 1

and 2, and a relatively rare silent allele, called s. So, for instance, an individual
with phenotype 1 could have genotype either (1,1) or (J,s)-that is, he or she
had to have inherited the I gene from at least one parent, and the other gene
could be anything but a 2, for in that case, the phenotype would be 1-2. The
silent allele is never expressed, so one cannot tell in this case whether or not it
is present.

In the case to be considered, the mother, child, and alleged father all have
phenotype 1. The collection of plausible fathers is known to consist of the alleged
father and one other man, whose phenotype is 2.

In the hypothesis-testing framework, there are only two alternatives here,
b = 1 or b = 2, and so we can continue to use the LR, in the form P(T~b = 1)/
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P(T~b = 2). Thus, large values of LR point in the direction of the alleged father.
If we take T to be the inclusion-exclusion test, then both the numerator and

denominator of LR are 1, since the phenotypes of the mother and child do not
exclude any man from paternity. Then LR = 1, and we see that no information
about paternity is yielded by the inclusion-exclusion test.
The feeling among nearly all paternity testers is that we should now go further

to speculate about the genotypes of the two men, based on our knowledge of
their phenotypes. This is done by referring to table 1, which lists all the possible
triples of father-mother-child genotypes for the cases consistent with the phenotypes
observed. The probabilities of observing these triples can be computed from
standard genetic principles, and are listed in the table, where p, q, and r stand
for the known relative frequencies of the 1, 2, and s genes, respectively, in the
population.

Since T now stands for the phenotype quadruple (mother, child, alleged father,
other man), the numerator of LR is the probability of drawing the phenotypes we
actually observed, assuming the alleged father is the true father, while the de-
nominator is the same probability assuming the other man is. This gives

LR = p2(p2 + 4pr + 3r2)(q2 + 2qr)
pqr(p + r)(p2 + 2pr)

It is convenient to make the innocuous assumption that p = q, so we have the
simple expression LR = 3 + (pir).

Let us now suppose that the silent allele is quite rare, so that r is very small.
The paternity testers now compute that LR is very large, and so there is considerable
evidence that the alleged father is guilty. Indeed, one paternity tester has suggested
that the conclusion is obvious just from looking at table 1 and seeing that for the
"other man" to be the father he must be the rare type (2,s) whereas the alleged
father could be the common type (1,1). Thus, the LR is taken to be the proper
way of quantifying this obviously informative evidence.

TABLE 1

GENOTYPE TRIPLES AND THEIR PROBABILITIES
CONSISTENT WITH THE EVIDENCE PRESENTED, IN A

HYPOTHETICAL 1-2-s SYSTEM

Father Mother Child Probability

1,1 1,1 1,1 . p4
I,1 Is 1, .p3r
1, Is Is .p3r
J,s 1,1 1,1 . p3r
J,s 1,1 I,s p3r

1,s l ,s 1,1 . p~r
J,s l ,s J,s . 2p2r2

2,s 1,1 1,sp pqr
2,s J,s ,s .pqr2
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Let us try to see now what is obvious and of what we are being informed. The
first possibility is that the other man is (2,2). He is then excluded from being the
father, and it is proved (logically) that the alleged father is guilty. The second
possibility is that the other man is (2,s), and then if we assume the alleged father
is (1,1), we can recompute LR = 2(p + 2r)I(p + r), or if he is (J,s), we can
recompute LR = 2(2p + 3r)I(p + r). Since r is very small, the first of these
values will be nearly 2, the second nearly 4.

Thus, we see that in the three possible cases, one is definitive in convicting
the alleged father, and the other two provide some modest evidence against him.
What seems obvious here is that the value of 3 + (pir), computed by the paternity
tester, is in some sense an intermediate value between an enormous LR [if the
other man is (2,2)] and two very modest LRs [if he is (2,s)]. It is like a weighted
average with the enormous LR weighted more heavily than the modest ones.
Of what, then, does the paternity tester's LR inform us? It gives us an overall

figure, highly incriminating to the alleged father, which obscures the fact that in
one set of circumstances there is rather little evidence against him. It achieves
this effect by substituting speculation about random draws of genotypes for our
(admittedly noninformative) knowledge about phenotypes. It is therefore an ex-
ample of those cases in which substitution of probabilities for knowledge is
unacceptable, because of the divergence between the conclusions in particular
cases. .

It is also clear that the paternity tester's LR is capable of swindling us out of
our prior beliefs in this case. Any prior belief we have that the other man is the
true father entails a belief that he is (2, s) rather than (2,2), but by its assumptions,
the LR computation makes the (2,s) outcome unlikely.

This specific example was used here because it is on its way to becoming a
touchstone for separating paternity-testing enthusiasts from those who have doubts
about the method. Another example can be given in terms of the morphologically
identical ABO system, in which the silent allele is common. For instance, using
a table of LR for this system ([1], p. 79), we find that if the mother is B and the
child 0, then only AB men are excluded from paternity and the LRs for the other
types are .63 for A, .71 for B, and 1.51 for 0. The inclusion-exclusion test tells
us only that the true father must carry the 0 allele. The post-inclusionary LR
uses information about the "other" allele, the one not connected with paternity.
Whether a man additionally carries A or B or another 0 is irrelevant to paternity.
The type A father is, in a sense, carrying automatic protection against being
found to be the father of any of his type 0 children. With enough systems under
test, there could be men with rare-enough combinations that they would have
almost zero paternity probability for all but a small fraction of their own children.
These are representative of a very large family of fallacious computations

based on putatively precise genetic reasoning. In many cases, some of the spec-
ulative aspects could be removed from the calculations by obtaining more infor-
mation on the individuals involved (by family studies, for example). In the silent
gene example, knowledge of the genotype of the other man seems far more useful
and informative than the paternity tester's LR.
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CONCLUSION

The history of the use of probabilities in paternity testing is worthy of study.
The methods were developed and codified primarily by researchers who did not
pretend to be statistical experts, and as professional statisticians have moved into
the field, they have seemed unwilling to raise fundamental questions about the
assumptions underlying the earlier work. Perhaps this is because the whole problem
appears so easy from the statistical standpoint that no rethinking seems to be
called for.
The purpose of this paper has been to press the argument that considerable

thought will be necessary before paternity probabilities become a useful tool for
legal proceedings. Some courts may have gone too far already in accepting the
expert testimony of paternity testers, and the new AABB guidelines unfortunately
threaten to strengthen this trend. The immediate challenge is to develop methods
of statistical reasoning that deal with fallacies like those presented here, before
the current methods establish such a foothold in the legal arena that they become
impossible to dislodge.
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