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Maximum Likelihood Estimation of Genetic Parameters
of HLA-Linked Diseases Using Data from Families

of Various Sizes

W. J. EWENS1'2 AND CHRISTINE P. CLARKE2

SUMMARY

This paper is concerned with estimating parameters associated with
HLA-linked diseases. We consider a single disease locus closely linked
to HLA, allowing a disease and a normal allele. The parameters to be
estimated are the penetrances of the genotypes at the disease locus, the
population frequency of the disease allele, and the distance of the disease
locus from HLA. The presently used method of estimation uses HLA-
sharing information from affected sib-pairs. The method proposed here
generalizes the previous approach, using data from all sibs (affected or
unaffected) in a family of any size. It allows immediate generalizations
to the use of information on parental affectedness status and population
prevalence.

INTRODUCTION

The basis of HLA-linked diseases has received considerable attention in recent
years. The simplest model so far analyzed is that of one susceptibility locus
linked to HLA, admitting one normal and one susceptibility allele. For data
consisting of families of two sibs, both of whom are affected by the disease, the
most frequently used theoretical approach for this model is the shared-haplotype
method of Thomson and Bodmer [1], described in the next section.
A problem currently attracting much interest is how data from families of

various sizes, with each family having possibly more than two affected sibs, can
be analyzed. One broad strategy is to continue to focus on the shared-haplotype
method, and to approximate a number of families of various sizes by an "equiv-
alent" number of families of size two by taking pairs of affected sibs in families
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having three of more affected (Louis et al. [2], Motro and Thomson [3]), or to
reduce the data in some other way (Green et al. [4]). We argue here against this
strategy, for two reasons. First, there are problems inherent in the shared-haplotype
approach itself as well as inefficiencies and possible biases in reducing families
with more than two affected sibs to artificial families having exactly two affected
sibs. Second, a reduction of this nature is unnecessary. A relatively simple maximum
likelihood estimation procedure is available specifically designed for families
with various numbers of affected sibs. This procedure is described under THE
MAXIMUM LIKELIHOOD APPROACH. Since maximum likelihood methods have op-
timality properties, do not involve the biases possibly involved in an artificial
data reduction, and have other advantages described later, we advocate their use
for the form of data in question.
We make two broad comments that apply to any analysis of family data used

for HLA-linked diseases. First, since a family must usually satisfy some condition
to enter a sample (e.g., have at least two affected sibs), any estimation procedure
must incorporate ascertainment sampling theory as well as segregation analysis
theory. Second, as noted by Louis et al. [2] and Spielman et al. [5], it is desirable
to conduct a "sensitivity analysis" of any parameter estimation method. This
investigates the sensitivity of any parameter estimate to assumptions about the
numerical values of other parameter estimates as well as to parts of the data. We
expand on both these comments later.
Our main aim in this paper is to set out the maximum likelihood estimation

theory for the "one-susceptibility-locus, one-susceptibility-allele" model when
the data consist of families of various sizes and have various numbers of affected
sibs. We realize that the DR3/4 excess and other observations imply that the
genetic basis of insulin-dependent diabetes mellitus (IDDM) is quite possibly
more complex than that described by this model. Nevertheless, we apply our
methods to the Cudworth data on IDDM recently published by Green et al. [4]
(and recently analyzed using this model by Green et al. [4] and by Motro and
Thomson [3]), so as to exhibit properties of the maximum likelihood estimation
procedure using real data and to compare our estimates with those deriving from
a "shared-haplotype" approach.

THE SHARED-HAPLOTYPE METHOD

We begin by describing the classical shared-HLA-haplotype method for the
"one-susceptibility-locus-linked-to-HLA, one-susceptibility-allele" model, since,
although, as mentioned in the INTRODUCTION, problems can arise with applying
this method for families of various sizes, it serves as a natural introduction to
the maximum likelihood approach.
Denote the susceptibility locus by D, with alleles D and d. We define the pop-

ulation frequency of D by p and assume the penetrances (i.e., probabilities of
contracting the disease) of the three genotypes to be

Genotype: DD Dd dd

Penetrance: x Xx 0
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Of the three parameters, x, p, and A, we are particularly interested in A, and in
considering the hypothesis "A = 0," that is, D recessive to d. In terms of x, p,
and A, the population prevalence of the disease is given by the expression

p2x + 2Xxp(1 - p) . (2)

The susceptibility locus is assumed to be linked to HLA with recombination
fraction R. To compare our data analysis for IDDM, described later, with those
of Green et al. [4] and Motro and Thomson [3], we initially assume R = 0, since
these authors made this assumption in their analyses. It is then easily shown (see
Thomson and Bodmer [1], Suarez et al. [6]) that in families of two sibs, both of
whom are affected, the respective probabilities X, Y, and Z that the two sibs share
2, 1, or 0 HLA haplotypes are

X = x2[(¼/4 - X/2X2)p2 + ½/2K2p)]IT (3a)

Y = X2[(1/2 -_)p3 + X(1 - ½/2X)p2 + ½/2K2p]IT (3b)

Z = x2[(½/2 - X)2p4 + 2X(1/2 - X)p3 + X2p2]IT (3c)

where

T = x2[(1/2 -_)2p4 + 2(1/4 - X2)p3 + (1/4 + X)p2 + X2p] (3d)

Note that x2 cancels in the equations for X, Y, and Z so that x cannot be estimated
using only shared-haplotype frequency data from two affected sibs in a family
of two. We have left the x2 term in equations (3) for comparison with other
equations developed later. Only two of the equations (3a)-(3c) are independent,
the third being implied by the other two; for reasons of symmetry, we exhibit all
three equations.

Suppose, in a sample of n families, all having exactly two sibs both of whom
are affected, there are ni sib-pairs sharing i HLA haplotypes (i = 0, 1, 2; no +
n1 + n2 = n). The essence of the shared-haplotype method is to equate X, Y,
and Z to the observed frequencies and, hence, to estimate A and p. As Louis et
al. [2] and Spielman et al. [5] pointed out, an undesirable feature of this procedure
is the sensitivity of the estimate of p to the observed fraction Z = no/n of sib-
pairs sharing no HLA haplotypes. This sensitivity of parameter estimation to the
value of Z is not specific to the shared-haplotype method: a parallel sensitivity
arises, as we show later, for maximum likelihood estimation. One possible problem
does, however, apply specifically for the shared-haplotype method. Suppose, for
example, that the families in the sample are chosen by an ascertainment scheme
in which each family can be of any size but must have exactly two affected sibs.
We show later that the shared-haplotype ratios above are not correct for such
families, so that in view of the sensitivity of the estimate of p to the observed
value of Z, possibly inaccurate estimates of p would arise by using (3a)-(3c) as
the theoretical values ofX, Y, and Z for data arising from these families. Although
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amended XYZ ratios can be calculated for these families, it remains true that in
the past all shared-haplotype estimation procedures have used the ratios (3) no
matter what the family size.
A further difficulty with the shared-haplotype approach is that one is not able,

using only X, Y, and Z, to use it to estimate the parameter x. Additional problems
arise if we allow nonzero values of R. If R is nonzero, the equations for X, Y,
and Z involve R (as well as X and p), and if the data consist only of families of
size two, as assumed above, the estimating equations become underidentified
(i.e., one is trying to estimate three parameters from only two data points). No
unique estimation of X, p, and R is now possible unless extrinsic assumptions
are made about p or X. We will note later that problems of sensitivity arise in
assuming particular values for some parameters: in particular, setting X or R
equal to 0 leads to quite different estimates of x andp than when these are allowed
to be free parameters. Thus, assuming X or R = 0 simply to be able to solve the
XYZ equations typified by equations (4) below can lead to biased parameter esti-
mates.
An additional difficulty with the shared-haplotype approach is the following.

The random variables no and n1, coming from a trinomial distribution, would
have, even in moderate-size samples, approximately normal distributions. How-
ever, the transformation from no to n1 to f and X is nowhere near linear, so that
p and X cannot be expected, except in very large samples, to have approximately
normal distributions. (We observe later that the joint distribution of f and X, in
samples of reasonable size, is quite nonnormal.) Little reliance, then, can be
placed on the value of standard error estimates of A and X, and, in particular, the
"two standard deviation rule" may not be invoked. We amplify these remarks
later.
A final difficulty with the shared-haplotype methodology is that by its very

nature it focuses on affected sibs. However, data are now becoming available in
which the HLA haplotypes of nonaffected sibs, as well as the affectedness status
of parents, are available. It is very difficult to see how the shared-haplotype
approach in its present form can handle the information provided by these data.
(Although we agree that the information available in unaffected sibs could be
quite small, it is shown in Spielman and Ewens [7] that use of information on
affectedness statuses of parents will decrease the variances of maximum likelihood
estimates of parameters, for typically occurring parameter values, to about one-
sixth or less of the values when this information is not used. This significant
decrease does not seem available under the shared-haplotype approach.)

For all the reasons mentioned above, we do not advocate data reduction followed
by application of the shared-haplotype method for families of sizes two or more
with two or more affected sibs. We turn now to the approach we do advocate,
namely, maximum likelihood.

THE MAXIMUM LIKELIHOOD APPROACH

In a recent discussion of estimation procedures in ascertainment sampling, one
of us (Ewens [8]) obtained the maximum likelihood equations for the estimation
of genetic (and, if appropriate, ascertainment) parameters in various ascertainment
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sampling schemes, in particular, in those where no constraint is made on the
family size. We now write down these equations, with a revised notation adapted
to conform with shared-HLA-haplotype data, with computer programming re-
quirements, and also, as far as possible, with that used by Green et al. [4]. In
ascertainment schemes, a family must satisfy some requirement to be a potential
member of the sample, and in the case of Cudworth's data on IDDM, it is that
at least two sibs in the family be affected by IDDM. We thus focus here on the
theory appropriate for this requirement: the corresponding theory in other cases
will parallel closely that given here. We let P(m) be the probability that a family
having m sibs has at least two affected: this probability is a function of p, x, X,
R, and ascertainment parameters. For families of size m, we further define a
family to be of "type" mki if the family contains k affected sibs whose HLA-
sharing characteristics are of type i, defined in more detail below (m = 2, 3,
4 . . .; k = 2, 3, . . ., m; i = 1, 2, 3 . . .). Suppose in the data that there are
n(m) families of size m and that of these n(m, k, i) are of size m and "type" mki.
Let P(m, k, i) be the probability that a family of size m and type mki enter the
sample; as with P(m), this is a function ofp, x, A, R, and ascertainment parameters.
The maximum likelihood approach reduces to maximization, as a function of p,
x, A, R, and ascertainment parameters, of the function

, 1: ,> n(m, k, i) log P(m, k, i) - f n(m) log P(m) (4a)
m k i m

= E E n(m, k, i) log [P(m, k, i)/P(m)] . (4b)
m k i

Green et al. [4] produce estimation equations that derive from conditioning on
the observed numbers of m and k for each family, a procedure with which we do
not agree, since maximum likelihood theory (see [8]) shows that correct condi-
tioning is as given in equations (4) above.
At this point, we must take up the question of the ascertainment model to be

used. Various models are possible, and the choice of the most appropriate model,
for any given data set, is unfortunately seldom clear. (For a thorough discussion
of this much debated point, see Stene [9].) One widely adopted approach (see,
for example, Motro and Thomson [3]) is to consider several ascertainment schemes
and compare the estimates arising from each. For the moment, we assume the
"complete ascertainment" model, under which it is assumed that there is a fixed
(unknown) probability a that a family of any size, having two or more affected
sibs, enters the sample. Under this assumption, the parameter a drops out of the
expressions (4) and thus cannot be estimated, and for the purposes of estimating
p, x, A, and R, we can put a = 1. We do this from now on, and will consider in
a later section the effects of choosing other ascertainment models.
To use the functions (4), it is necessary to compute the P(m, k, i) and the P(m)

values. The latter are comparatively easy to calculate since they do not involve
HLA status. We have five parental mating types that can produce affected offspring,
and we enumerate these as follows (PMT stands for parental mating type):
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Mating type: DD x DD DD X Dd Dd X Dd DD x dd Dd x dd

Enumeration:] = 1 2 3 4 5

Frequency: PMT(j) = p4 4p3(1 _ p) 4p2(l _ p)2 2p2(1 _ p)2 4p(l - p)3

(5)

Given parental mating type j, j = 1, . . ., 5, the number of nonaffected
offspring has a binomial distribution with paremeters shown (PNA stands for
probability of not being affected):

PNA(1) = 1 - x, PNA(2) = 1 - 1/2(1 + X)x, PNA(3) = 1 - /4x - ½/Ax

PNA(4) = 1 - Xx, PNA(5) = 1 - /½Ax . (6)

The probability that, in a family of size m, there are at least two affected is then

5

P(m) = 1 - (1 - p)4 - 3 PMT(j)[PNA(j)]m
j=1

5

- m E PMT(j)[PNA(j)]m-1[1 - PNAQj)] . (7)
j=1

The form (7) for P(m) is the most suitable for computer calculation.
The probabilities P(m, k, i) are evaluated by an extension of the argument that

led to equation (7). The probability that a family of size m has k affected, (and,
hence, m - k nonaffected), and that the HLA configuration of the k affected sibs
is of type i, is of the form

P(m, k, i) = (7) E PMT(j)[PNA(j)]m-kw(j, k, i) (8)
J=1

where the weights w(j, k, i) are the probabilities that, in a family with parental
mating type j, there are k affected sibs having HLA configuration of type i. To
use these probabilities, it is necessary to adopt a convention for listing the possible
HLA configurations of affected sibs, and we do this, for k = 2, 3, 4, and 5, in
table 1.
The weights w(j, k, i) are given in table 2 for k = 2, 3, 4, and 5 (covering

effectively all values arising in practice), and are calculated by a routine (although
tedious) examination of all possible recombination events leading to the required
HLA configuration.
One immediate use that can be made of equations (7) and (8) is to calculate

the theoretical XYZ ratios for families of size larger than two (recall that the
equations (3) apply only to families of size two). We have done this for various
x, p, and A combinations and exhibit some results in table 3. This table reveals
two important features. First, while the ratios are no longer independent of x [as
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TABLE 1

NOTATION FOR HLA PATTERNS OF AFFECTED SIBS

No. affected sibs (k) Pattern no. (k, i) HLA pattern

2 ........... 2,1 aclac
2, 2 aclad
2, 3 ac/bd

3 ........... 3, 1 aclaclac
3, 2 aclaclad
3, 3 aclac/bd
3, 4 aclad/bd

4 ........... 4, 1 aclaclaclac
4, 2 aclaclaclad
4, 3 aclaclac/bd
4, 4 aclaclad/bd
4, 5 aclacladlad
4, 6 aclac/bd/bd
4, 7 aclaclad/bc
4, 8 aclad/bc/bd

5 ........... 5, 1 aclaclaclaclac
5, 2 aclaclaclaclad
5, 3 aclaclacladlad
5, 4 aclaclaclac/bd
5, 5 aclaclaclad/bc
5, 6 aclaclaclad/bd
5, 7 aclac/bcladlad
5, 8 aclaclac/bd/bd
5, 9 aclacIbclad/bd
5, 10 acladladIbc/bc

they were in equations (3)], the dependence on x is very weak, and this implies
that no really satisfactory estimate of x can be found using shared-haplotype
information only. Second, the value of Z depends quite significantly on family
size (at least for large x, p, and X), and in view of the sensitivity of parameter
estimation under the shared-haplotype approach to the value of Z, it appears
unwise to use the ratios (3) for estimation purposes for families that have exactly
two affected sibs but may be of various sizes.

NUMERICAL RESULTS

Our main aim here is to exhibit the maximum likelihood equations and to
compare their solutions with those arising from other approaches. Thus, although
we have doubts that the model we use (one susceptibility locus, one susceptibility
allele) is appropriate for IDDM, we present in this section some numerical results
found by applying the maximum likelihood methods to Cudworth's data for IDDM
(see table 4). These data have also been analyzed recently by Motro and Thomson
[3] and by Green et al. [4]. Both these analyses assume R = 0, and thus we also
make this assumption for the moment. We also temporarily assume a complete
ascertainment model, since this perhaps comes closest to the ascertainment model
implicitly assumed by Green et al.

Application of the maximum likelihood procedures that we have described
leads to
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TABLE 3

THEORETICAL X, Y, AND Z RATIOS IN FAMILIES OF SIZES 2, 3, AND 4, EACH FAMILY HAVING EXACTLY
Two AFFECTED SIBS, FOR VARIOUS X, p, AND X VALUES

FAMILY x=.1 x=.8
p A SIZE X Y Z X Y Z

.05 .1 2.6006 .3743 .0251 .6006 .3743 .0251
3.6002 .3750 .0248 .5966 .3809 .0225

4 .......... .5998 .3757 .0246 .5891 .3900 .0209
.05 .4 2 .......... .4587 .4988 .0425 .4587 .4988 .0425

3 .......... .4594 .4989 .0417 .4665 .4990 .0345
4 .......... .4602 .4989 .0409 .4728 .4992 .0279

.20 .1 2 .......... .5374 .3981 .0645 .5374 .3981 .0645
3 .......... .5401 .3967 .0632 .5689 .3813 .0498
4 .......... .5427 .3953 .0620 .5853 .3713 .0434

.20 .4 2 .......... .3835 .4978 .1187 .3835 .4978 .1187
3 .......... .3849 .4978 .1172 .4004 .4979 .1017
4 .......... .3863 .4979 .1158 .4147 .4980 .0872

p = .160(±+ .089),A = .103(±+.041),x = .470( ±+.167) , (9)

where values in parentheses are ± 1 standard error. We mentioned in the previous
section that, under the shared-haplotype approach, the estimators p and X would
not, except in very large samples, have approximately normal distributions. The
same remark is true of maximum likelihood estimates, for much the same reason
as that given for XYZ-derived estimators. We therefore do not believe, for example,
that it is approximately 95% likely that X lies in .103 + .082 and that x lies in
.470 ± .334. Nor do we believe that the standard normal theory testing procedures
using the chi-square statistic 2 log [LI(max)/L2(max)] are valid for testing hy-
potheses about parameters in this model.

This view is supported by the fact that although X [given in equations (9)] is
2.5 standard deviations above zero, formally a significant excess, the chi-square
statistic for the hypothesis A = 0 takes the value 2.00, which is not large enough
to reject the hypothesis. This seeming contradiction arises from, and confirms,
the quite nonnormal joint distribution of X and p.

If we assume that A = 0, the maximum likelihood estimators of p and x are

p = .346, x = .309 . (10)

We note the rather high value of f and the consequent high estimated population
prevalence of .370 [see equation (2)]. We will return to the assumption A = 0
later.
We have just mentioned the population prevalence. If this can be assumed

known extrinsically, a trivial programming amendment allows us to estimate
parameters subject to the prevalence value's being given. The estimates (9) lead
to an estimated prevalence of .025, six times larger than the often quoted value
of about .004 for IDDM (Spielman et al. [5]). Under the constraint that the
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prevalence is .004, the maximum likelihood estimates of p, x, and X are =

.039, X = .093, and x = .470.
We now turn briefly to the sensitivity of the estimates to small changes in the

data. In Cudworth's data (table 4), there is an increase as the family size increases
(rather than the theoretical decrease under the model presently being considered)
in the proportion of families having two affected with the HLA configuration act

bd. This is very largely caused by the four families of size three having two
affected sibs with this HLA configuration. If we were to ignore these four families,
our estimates of p, x, and X become

p = .083,X = .105, I = .630 , (1 1)

and the estimate of p is now about half its previous value. This illustrates the
sensitivity of the estimate of p to data from four families only (out of 133). This
sensitivity will apply to any estimation procedure, in particular to any generalized
shared-haplotype procedure that attempts to use data from families of size two
or more, and makes us quite wary of many published parameter estimates for
IDDM and other diseases.

TABLE 4

FAMILY TYPES REPRESENTED IN THE DATA OF CUDWORTH,
TOGETHER WITH No. FAMILIES OF EACH TYPE OBSERVED

Family size No. affected Type no. No. observed

2 ...... 2 2,2,1 26
2, 2, 2 19
2,2,3 1

3 ...... 2 3,2, 1 21
3, 2, 2 14
3,2,3 4

3 ...... 3 3,3, 1 2
4 ...... 2 4,2, 1 14

4,2,2 9
4,2,3 1

4 3 4,3, 1 1
4,3,2 2
4,3,3 1

4 4 4,4, 1 1

5 ...... 2 5,2, 1 4
5,2,2 2
5,2,3 1

5 ...... 3 5,3,2 2
5,3,4 1

6 ...... 2 6,2, 1 4
6,2,2 1

11 2 11, 2, 2 1

11 3 11,3, 1 1
Total ... 133
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We now compare our estimating procedure, and our estimates, with those of
Green et al. [4] and Motro and Thomson [3]. Green et al. center their estimation
procedure around a statistic IN, the sum over all families of the sum over each
parent in each family of the numbers of the most frequently occurring HLA
haplotypes from each parent. We believe, first, that use of this statistic loses part
of the information afforded by the data. Second, and more important, in computing
the mean and variance of IN, Green et al. do not apply the condition that at least
two sibs in each family be affected. In ascertainment sampling schemes such as
that leading to Cudworth's data, where a family must satisfy this condition to
enter the sample, it is necessary that this condition be applied: for example, the
probabilities P(m, k, i)/P(m) in equations (4) are probabilities conditional on
exactly this requirement. We are therefore not confident that their parameter
estimates are accurate and do not pursue them further here.
The analysis of Motro and Thomson [3] is centered around the XYZ ratios and

applies these ratios for families of size two or more, with two or more affected
sibs. Motro and Thomson use the classical values (3) in their analysis, applying
these pairwise to affected sibs when more than two affected sibs arise in the
family. Although there is no bias in this procedure, we believe it does not lead
to estimates as efficient as those given by maximum likelihood.

Using three different ascertainment models, Motro and Thomson find unex-
pectedly high estimates of p, not only for IDDM but also for other diseases. This
does not occur because they use a different estimation procedure than we do,
but, rather, is due to their making the assumption A = 0. For essentially the same
data set as we have used, and assuming A = 0, they estimate p at .330 for the
ascertainment model considered in this section. (Our estimate, for A = 0, is
quite close to this, namely, .346. The closeness of the two estimates arises
because most families in the data set contain only two sibs: if all families contained
only two sibs, the estimates would be identical.) The approach of Motro and
Thomson is to test the hypothesis A = 0 (which, with their data, they accept)
and then to estimate p assuming A = 0. In view of the difficulty of formulating
a reliable test of the hypothesis A = 0 (arising from the quite nonnormal joint
distribution of f and X as described earlier), we have some reservations about
this procedure. Our preference is to estimate p and K jointly, since, as we have
seen, the estimate of p is very sensitive to the choice of A, and even if the
hypothesis A = 0 can be accepted using a valid test (a procedure not yet available),
a large difference can be found in the estimate of p by forcing K = 0 and by
allowing K to be estimated simultaneously with p.

NONZERO RECOMBINATION

In all of the above analyses, we have put R (the recombination fraction between
the susceptibility locus and HLA) equal to zero, so as to compare our estimates
with those of Green et al. [4] and Motro and Thomson [3], who make this as-
sumption. Our estimation procedure, however, allows nonzero values of R. When
R is a free parameter, the likelihood of the observations is a function of four
parameters, x, p, K, and R, and may be maximized with respect to all four
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parameters by standard numerical methods. The estimates of these parameters,
using all the data of table 4, are

I, = .00087 (±+ .0169), X = .0040 (.0492),

x = .773 (+.280), R = .133 (+.054) . (12)

Note the great difference in the estimates of p, X, and x from those in equation
(10), where the restriction R = 0 is imposed. This suggests that great caution
should be exercised in assuming zero recombination between a susceptibility
locus and HLA, and that estimates of genetic parameters obtained when this
restriction is made should be viewed with great caution.

DIFFERENT ASCERTAINMENT MODELS

The ascertainment model assumed above is that of "complete ascertainment":
the ascertainment probability at of any family with at least two affected sibs is
independent of the number of affected sibs. The actual choice of ascertainment
model is, of course, a matter of considerable difficulty, and we prefer to adopt
the approach, used by Motro and Thomson, of considering several ascertainment
models. A broad class of ascertainment schemes is covered by the assumption
that the probability of ascertainment of a family with k affected sibs is of the
form

aL[l - (I - 7T)k] (13)

where at and -n are unknown parameters. The choice r = 1 corresponds to
complete ascertainment while the limiting case X >0 is that of single ascertainment.
As with our previous analysis, the parameter a drops out of the estimation equations
and thus cannot be estimated. We may thus assume a = 1, for simplicity, in the
estimation process.
We have generalized our theory to allow for an ascertainment scheme described

by equation (13). We do not give the mathematical details here. In the generalized
model, we may either restrict - to particular values (for example, a value close
to zero, corresponding to the single-ascertainment model) or let 'r be a further
free parameter, and maximize the likelihood with respect to it and the remaining
parameters. Initially, we considered both approaches, but found that under the
second approach the standard error of the estimate of ar was extremely large
(often the asymptotic maximum likelihood formula gave a standard error nu-
merically larger than 1) and, as a consequence of the correlation between the
parameter estimates, this gave unrealistically large values of the standard errors
of the remaining parameter estimates. We found a much more satisfactory approach
was to fix -r at particular chosen values (and, in particular, on at two cases
rr 0, - = 1, corresponding to single ascertainment and complete selection,
respectively), and to estimate the remaining parameters for each fixed -r value.
The maximum likelihood estimates of the remaining parameters when we set

-r equal to the (small) value .001 are:
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p = .00090 ± .01234, X = .0050 + .0365,

x = .573 + .243, R = .129 ± .050 (14)

We note, by comparing equations (12) and (14), that the estimates of p and R
are very little affected by the choice of ar, that is, they are very close in the
single-ascertainment and the complete-ascertainment models. (They are, in fact,
close for all choices of Tr between 0 and 1.) The estimate of X changes rather
more, from .0040 to .0050 as r decreases from 1 to 0, while, as expected, the
value of x changes the most (from .773 to .570). Thus, there is a far smaller
change in parameter estimates as one changes the ascertainment model than there
is by assuming special values for parameters within a fixed-ascertainment model,
a conclusion that is of some interest in view of the considerable attention paid
recently to choices of ascertainment models.
To emphasize this point, we calculated the single ascertainment (i.e., 7T =

.001) estimates of p and x under the assumptions R = 0, X = 0. Our estimates
were

p = .332 ± .045, I = .229 ± .059 . (15)

Comparison of equations (10) and (15) shows very little difference in the estimated
values of p under complete- and single-ascertainment models, and a moderate
change to the estimate of x. Motro and Thomson reached, so far as estimation
ofp is concerned, an essentially identical conclusion. On the other hand, comparison
of equations (14) and (15) shows that large changes to the estimates of the remaining
parameters can arise by imposing the assumptions R = 0 and X = 0, even within
a given ascertainment scheme. This is why we have claimed that it is dangerous,
without some good reason, to make these assumptions.

REMARKS

We emphasize that our main aim in this paper is not to produce parameter
estimates for IDDM, but to outline the theory of-maximum likelihood estimation
for the one-susceptibility-locus, one-susceptibility-allele model when data come
from families of different sizes. We do not feel sufficiently confident that this is
the correct model for IDDM for the parameter estimates given above to be accurate.
We have used IDDM data for three reasons: to illustrate the theory, to compare
the parameter estimates with those found by Motro and Thomson [3] and Green
et al. [4] (who do assume this model), and to demonstrate the sensitivity of
parameter estimation (in the maximum likelihood approach, at least), to assuming
specific values for some parameters and to small subsets of the data.

Regarding the latter point, we believe that all parameters should be estimated
freely and not under assumptions concerning particular parameter values. Not
enough is known about the true values of these parameters to make the fixing of
parameter values a safe approach in the light of the sensitivity of estimation
referred to above, nor are formal normal-theory tests of hypotheses about parameter
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values reliable in the light of the marked nonnormal distributions of parameter
estimates.

In view of the sensitivity of parameter estimation to small parts of the data, it
is clear that not only a much larger data set than Cudworth's will be necessary
before reliable estimates are found, but also data sets involving more information
from each family. In this connection, we remark that the theory presented here
can be extended readily to cover data where the disease status of parents is used
as part of the data. It will be shown (Spielman and Ewens [7]) that use of this
information reduces variances of parameter estimates to about one-sixth of their
previous values. We are, thus, wary about the value of any parameter estimates
published in the literature that are arrived at without using this or similar infor-
mation.
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