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The Effects of a Known Family-Size Distribution
on the Estimation of Genetic Parameters
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SUMMARY

We consider the question: In a segregation analysis, can knowledge of
the family-size distribution (FSD) in the population from which a sam-
ple is drawn improve the estimators of genetic parameters? In other
words, should one incorporate the population FSD into a segregation
analysis if one knows it? If so, then under what circumstances? And
how much improvement may result?

We examine the variance and bias of the maximum likelihood es-
timators both asymptotically and in finite samples. We consider Pois-
son and geometric FSDs, as well as a simple two-valued FSD in which
all families in the population have either one or two children. We limit
our study to a simple genetic model with truncate selection.

We find that if the FSD is completely specified, then the asymptotic
variance of the estimator may be reduced by as much as 5%-10%,
especially when the FSD is heavily skewed toward small families.
Results in small samples are less clear-cut. For some of the simple
two-valued FSDs, the variance of the estimator in small samples of
one- and two-child families may actually be increased slightly when
the FSD is included in the analysis.

If one knows only the statistical form of the FSD, but not its param-
eter, then the estimator is improved only minutely.

Our study also underlines the fact that results derived from asymp-
totic maximum likelihood theory do not necessarily hold in srhall sam-
ples.
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We conclude that in most practical applications it is not worth in-
corporating the FSD into a segregation analysis. However, this prac-
tice may be justified under special circumstances where the FSD is
completely specified, without error, and the population consists over-
whelmingly of small families.

INTRODUCTION

Suppose, in a sampling scheme whose aim is to estimate genetic parameters,
information (either complete or partial) is available about the family-size distri-
bution (FSD) in the population from which the sample is drawn. Then this
information can be used [1] to modify the estimates of these parameters. To do
so requires using a more cumbersome form of the likelihood (the ‘‘Grand-
Multinomial,”” or GM, formulation; see below) than is customary. Since this
GM formulation uses FSD information, we might expect it to lead to better
estimators than the usual one. In this study, we consider the extent to which
information about a known FSD improves the estimators of genetic parame-
ters. We do this by examining the large-sample variances and the small-sample
means and variances of various estimators. Our analysis of the asymptotic
variances is, in part, an extension of the work of Barrai et al. [2]. For finite
sample sizes, we use a combination of exact calculations and simulations. We
will show that unexpected values for the exact small-sample variance can arise.

In the model we consider, we will also show, as a subsidiary result, that the
asymptotic formula for the variance of the estimates of genetic parameters is
sometimes not accurate, when families can have only one or two children, even
for samples of 100 families or more.

We give particular attention to a simple two-valued FSD in which all families
in the population have either one or two children, since we felt, for reasons
given in [1], that the advantages of the GM formulation would be greatest in
such a population.

Here, we consider only the situation where our knowledge of the FSD,
although perhaps incomplete, is accurate. Ewens and Asaba [3] showed that if
an incorrect assumption is made for the form of the FSD we can expect a small
bias in the estimate of p, together with a rather larger bias (up to about 10%) in
the estimated asymptotic variance of this estimate.

For simplicity, we limit our calculations to one simple genetic model,
namely, that in which for ascertainable families there is one unknown probabil-
ity p that a child will be affected. We also assume that every family with at least
one affected child is ascertained (truncate selection).

PRELIMINARY RESULTS. GRAND- AND SEPARATE-MULTINOMIAL FORMULATIONS AND
KNOWLEDGE OF THE FSD

Before we approach the large- and small-sample behavior of the estimator,
we define what we mean by the grand-multinomial and separate-multinomials
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formulations. Suppose data are available, in a sample, from families of various
sizes. Common practice is to treat the data for any specific family size as
coming from some multinomial distribution and then (for maximum likelihood
estimation) to find a total likelihood by simply multiplying the likelihoods for
each observed family size. We call this the separate-multinomials (SM)
method. However, as pointed out by Hodge [1], if we have information on the
FSD, this approach is not correct. The entire dataset must be viewed as coming
from one more-complicated ‘‘grand’’ multinomial distribution, whose probabil-
ities are determined in part by the FSD. We call estimation of p using a likeli-
hood calculated from this single-distribution grand-multinomial (GM) estima-
tion. Apart from the increased efficiency implied by use of the FSD, this
approach also allows use of one-child families in segregation analysis, some-
thing not possible under SM estimation. Hodge [1] showed that estimates of
genetic parameters under the two approaches are identical if, in fact, nothing is
known about the FSD, but not otherwise. Our main aim is to investigate the
increased efficiency in parameter estimation when information on the FSD is
available and is used (via a GM estimation procedure).

This information will, in practice, take one of two forms: either the complete
FSD is known or else the form of the distribution is known (e.g., Poisson) up to
the value of an unknown parameter. We may thus distinguish three cases: case
A: FSD completely known (GM estimation); case B: FSD known in form,
parameter unknown (GM estimation); case C: FSD unknown (SM estimation).

The SM Likelihood

As is well known, the likelihood of the sample, for SM estimation (case C), is
Le = const - pR(1 — p)* K[ [ 11 = (1 = p) =™ .

Here, nj; is the number of families in the sample that are of size i and have j
affected, R = 23 n;; is the total number of affected children, S = ZXi n;; is the
total number of children in the sample, #; is the total number of families in the
sample of size i, and =n; = n is the total number of families in the sample.

The GM Likelihood

Suppose, in cases A and B, that the population probability that a family is of
size i is a/0). [The set of values a,(8), a»(0), . . . is then the FSD.] This notation
allows for the possibility of a parameter 8, known in case A but unknown in
case B, characterizing the distribution. The GM likelihood is now (Hodge [1])

La = Lg = const - pR(1 — p)S~R [A(p, )] " ﬂ [a;(0)]" (1)

where R, S, and n; are as defined above and A(p, 8) = =a; () [1 — (1 — p)].
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LARGE-SAMPLE VARIANCES
Case A

When the form {a; (8)} of the FSD is known exactly, standard theory ([4],
pp. 43-44) shows from equation (1) that the reciprocal of the large-sample
variance g ” of the maximum likelihood estimator (MLE) p of p is given by:

Nt _onp _ 2Pa®0 = pY?  [Siag®)d = p) P
@ Ty " A n e :

(2

Case B

When 0 is unknown, it must be estimated simultaneously with p by maximum
likelihood estimation. A second differentiation gives an information matrix,
which, when inverted, yields the large-sample variance o of p. We find

(08) 7" = (@A) 7" = L0/gs , A3)

where 1,4 and g are terms in this information matrix whose explicit forms we
do not present here.

Case C
As is well known [5], the large-sample variance oc? of p is given by

(ed)~! = nw _ n2i2a,~((-))(1 — p)i-Z _ns i2a,~(9)(1 _ p)zi—z
C AP(I - P) A A 1 - (1 — p)'
4)

So far as the comparison between a42, o5, and o¢” is concerned, we would
intuitively expect that 04> < o> < oc’. We can show theoretically (see AP-
PENDIX) that 04> < o, with equality holding only if all family sizes are equal.
However, we have not been able to prove in general that 04> < og? or that
og’ < oc’, although we can do so in some specific cases.

Results

We have calculated the large-sample variances (2), (3), and (4) for a variety of
FSDs and a variety of parameter values. In all cases, we found that the ratio
ogloc? is less than, but very close to, unity. This implies that if the general
form of the FSD is known (e.g., Poisson), but with the numerical value of the
parameter of the distribution unknown, there is essentially no gain in using the
more complex estimation procedure of case B rather than the simpler proce-
dure of case C, where no knowledge of the FSD is assumed.

The ratio o2%oc? is usually quite close to unity, but not as much so as oo’
We tabulate o5%/oc? for the case where the FSD is Poisson in table 1, for the
case where the FSD is geometric in table 2, and for the case where the family
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TABLE 1

AsYMPTOTIC VARIANCE RATIOs 05202 FOR THE Poisson FSD

SEGREGATION RATIO p

PoISSON PARAMETER 6 .01 .05 .10 .20 25 .50 .90
S 1.000 977 959 932 923 910 .969
1.0 ...l .995 .978 961 938 932 928 978
20. . .995 979 .964 .949 946 955 .990
3.0 .995 .980 .968 .958 .958 973 .996

size takes the two values 1 and 2, with respective probabilities 1 — 6 and 6, in
table 3.

The main features of the tables and of our unreported calculations are the
following: (1) In every case considered, 042 < og? < o2, confirming our intui-
tive expectation. (2) As mentioned above, the difference between og* and o is
minute—in the Poisson case, for example, the difference between the two
variances never exceeds 0.4%. (3) The differences between o2 and oc? are
sometimes more noteworthy. This difference can be as high as 5%-10%; that
is, the ratio o, %/oc? goes down to 95% or even 90%. Such cases occur when the
population FSD is skewed toward smaller families, as in the upper portions of
the first three tables.

FINITE SAMPLE-SIZE VARIANCES AND BIAS

Large-sample formulas for the variances of maximum likelihood estimates,
such as those considered in the preceding sections, are often assumed to give
accurate expressions for samples of size 100 or more. Real samples will often
be less than 100, and, further, the large-sample formulas might not be accurate
even for samples exceeding 100. Also, estimates might be biased in small
samples, and if so, a better measure of the accuracy of an estimator is the mean
square error rather than the variance. For these reasons, we investigated small-
sample properties of our estimators and calculated the biases and mean square
errors of estimators, as well as the variances.

An immediate problem in this connection concerns the large amount of com-

TABLE 2

ASYMPTOTIC VARIANCE RATIOS 6,%/0c? FOR THE GEOMETRIC FSD
ProB(FaMILY SiZE = i) = (1 — 6)6'

SEGREGATION PROBABILITY p

GEOMETRIC PARAMETER 0 .01 .05 .10 .20 25 .50 .90
Ao .994 975 954 924 913 .896 .963
15 T .993 969 .947 921 914 913 974
S 991 .962 939 - .921 919 935 .985
0 PP .986 .949 .932 931 945 963 .994

G .962 .936 .949 971 .980 993 .999
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TABLE 3

ASYMPTOTIC VARIANCE RATIOS 0 4%/0¢-> FOR THE Two-VALUED FSD

FSD
SEGREGATION RaTIO p

1 2
(1 -0, 0 .01 .05 .10 .20 .25 .50 .90
.99 Ol oo 995 977 .958 927 916 .890 957
.90 A0 .996 981 964 937 .927* .903* 961
.75 S 997 .986 973 952 .944* .923* .968
.50 SO .998 992 985 972 .967* .952% 979
25 IS .999 997 .993 .988 .985 978 .990
.10 90 . 1.000 .999 .998 .995 .994 991 .996

* Also see table 4.

puting necessary for exact calculations. We used a two-pronged approach. We
started with the simplest possible FSD, the two-valued distribution with only
one- and two-child families. Exact calculations are feasible for this FSD. For
more complicated FSDs, we turned to Monte Carlo simulation. We now pre-
sent the results of these two approaches in turn.

Exact Calculations: The Two-Valued FSD

Under this FSD, a family has either two children, with population probability
0, or one child, with probability 1 — 6. Moreover, there are only three classes
of families in the dataset, with respective numbers n,;, n,;, and n,;, where,
using the notation established above, n;; is the number of i-child families with
exactly j children affected.

First, the estimators of p in cases B and C are identical, namely:

P = 2npnl(ny + 2n3) . &)

This estimator ignores, as it must, the one-child families, and this fact causes
some difficulties in estimation theory, since in a small sample there is a nonneg-
ligible probability that each family in the sample has only one child. No estima-
tion of p would, or could, be undertaken for such a sample. Therefore, we
decided to consider, in principle, only those samples with at least one two-child
family. Probabilities for such samples can be found by a simple conditional
probability argument; for samples of 20 or more, no significant amendment is
necessary in this recalculation.

In case A (the FSD known, i.e., 6 known), it follows from the likelihood (2)
that the MLE of p is

p =1{0(n, — nyp) — ny — nyp

+ [(0"22 — 0ny; + nyy + n22)2 + 40(1 + (-))n”nzz]'/:}/ZOn”
when n,; is nonzero and

P =1+ 0nn/(1 + 8)nyp + nyl @)
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when n,, is zero. Note that when 6 = 1 (all families of size 2), the estimator (7)
is identical to estimator (5), as we expect, since then there can be no difference
between SM and GM estimation.

For any given sample size n, and for any given values of the parameters 6 and
p, we can calculate the probability of each possible value of the triplet (n,;, ns;,
n,;), conditioned on ny; + n;, > 0. For each such triplet, we can estimate p
using estimator (5) for SM estimation and estimator (6) or (7) for GM estima-
tion. The exact mean value of the estimate of p for each mode of estimation can
then be calculated by taking the weighted average (the weights being the proba-
bilities for each triplet) of these estimates, and, similarly, the exact variance
and the exact mean square error of each estimate can be found.

Table 4 shows the mean square error (MSE) for various sample sizes from
n = 20 families up to n = 500. (We do not show the variance, since its behavior
is very similar to that of the MSE for these values of n.) Table 5 gives the biases
of the two estimators.

Our intuitive prior convictions would be that GM estimation of p is in all
respects superior to SM estimation, since it uses the known form for the FSD.
In some aspects of the tables, this intuition is confirmed: the bias in GM
estimation is always less than for SM estimation for the numerical values we
considered in table 5, and, as the sample size increases, the two variances

TABLE 4

Exact MSE RaTtios (MSEA/MSE() FOR THE TwWo-VALUED
FSD, as A FUNCTION OF SAMPLE SIZE n

FSD SEGREGATION RATIO p
(1 -6, 0 No. .25 .50
.90 0. ... 20 951 .795
40 1.027 .848
60 1.044 .881
80 1.037 .885
100 1.022 .883
200 970 .889
500 941 .897
x .927* .903*
75 25, 20 1.054 .923
40 1.028 913
60 997 907
80 .980 909
100 971 911
x . .944* .923*
.50 S50....... 20 1.026 952
40 .993 944
60 .983 946
80 978 947
100 .976 .948
x .967* .952*

* The asymptotic values are taken from table 3.
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TABLE 5

Exact Biases IN THE ESTIMATION OF p FOR CAses A aAND C, FOR THE
Two-VaLUED FSD

GENETIC PARAMETER p

FSD .25 .50
(1 -6, 6 No. Case (A) Case (C) Case (A) Case (C)
.90 .10 20........ -.017 —.052 —.044 —.080
40 ........ -.010 -.027 -.014 —.040
60........ —.008 -.018 —.007 -.025
75 .25 20........ —-.015 -.023 -.017 —.032
40........ —.006 -.011 —.006 —.015
60........ —.004 -.007 —.003 -.010
.50 .50 20........ -.010 -.013 -.010 -.016
40 ........ —.004 —.006 —.005 —.008
60........ -.003 —.004 —.003 —.005

Norte: Bias is E[ p] — p.

approach their asymptotic values, for which, as noted above, the GM value is
always less than the SM value. However, the tables present several curious
features. We would expect, both from common sense and from the large-
sample comparison, that the MSE for estimation of p would be smaller under
GM estimation than for SM, no matter what the sample size. This, however, is
not always the case. For 6 = .5 and p = .25, GM estimation has a lower MSE
only for sample sizes of 35 or more, while when 6 = .25 and p = .25, the
sample size must be 60 or more before GM estimation has the lower MSE. For
6 = .1 and p = .25, we require a sample of 120 or more. On the other hand,
when p = .5, GM estimation has a smaller MSE for all numerical values we
considered.

The second curious feature is that the ratios of the GM to SM MSEs do not
necessarily smoothly increase (or smoothly decrease) as the sample size is
increased: the ratio can, for example, increase and then decrease (and, then, as
for the case 6 = .5, p = .5, increase again). On the other hand, in the majority
of cases, the ratio is smoothly increasing (or decreasing, as the case may be) as
soon as the sample size exceeds about 30.

Both these curious features are true for the variance as well as the MSE.

Simulations

As stated earlier, it is extremely difficult to calculate exact variances of
estimates of p in finite samples when the FSD allows families of size larger than
two. This is because of the very large number of possible ways that the families
can be distributed. We therefore conducted some simulations for the Poisson
FSD, to assess whether the conclusions just reached for one- and two-child
families continue to hold. The results of this simulation are reported in table 6.
We note the following conclusions: first, SM and GM estimates have variances
that are quite close: second, for small samples, it is possible that the SM
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TABLE 6

SIMULATED VARIANCE RATIOS 0 4%/ac> AND Biases FOR Cases A aAND C, FOrR THE PoissoN FSD
(SEGREGATION RaTIO p = .25)

POISSON PARAMETER 6

0.5 3.0
Variance Bias Bias Variance Bias Bias
M* No.t ratio (A) ©) ratio (A) )
750 20 e 1.03 —.016 -.025 97 —.006 —.007
300 SO o .99 -.009 —.012 .96 -.005 —.005
150 100 ... 91 —.009 —.009 .95 —.005 —.004
x 921 .96%

* M = no. datasets simulated.
+ No. = no. families per dataset.
1 From table 1.

estimate has a smaller variance than the GM estimate (although this cannot be
completely verified because of the randomness in the simulation procedure);
third, that the SM and the GM variances have both effectively reached their
large-sample values when the sample size is 100 or more. Finally, the biases of
the two estimators are close, and both approach zero as n increases. Thus, for
the more ‘‘spread-out’’ Poisson family-size distribution, the asymptotic theory
seems rather more accurate than for the less ‘‘spread-out’” one- and two-child
family case.

DISCUSSION

Here, we have examined the effect that knowledge of the population family-
size distribution (FSD) can have on the estimation of genetic parameters. We
have considered three cases: where we know the FSD completely (case A);
where we know the statistical form of the FSD but not its parameter 6 (case B);
and where we know nothing about the FSD (case C). We have examined a
variety of FSDs, and of these, we have reported here results for the Poisson,
the geometric, and a simple two-valued FSD in which all families have either
one or two children. We have considered both the asymptotic (large-sample)
variances and the variances and biases for finite-sample sizes.

Briefly, we found the following for the asymptotic variances. Comparing
cases A and C: the asymptotic variance for case A, 042, cannot exceed a¢>. The
ratio o 5%/oc? is close to unity in many cases. However, for selected examples of
the FSDs we examined, this ratio can be lower than .95, or even .90. These
lower ratios occur when the segregation parameter p is around .25 to .50 (i.e.,
within a reasonable range for genetic models) and when the FSD is skewed
toward smaller families (e.g., 6 = 0.5 in the Poisson; and several cases in the
two-valued FSD). Comparing cases B and C, however, there is little decrease
in the variance, and the ratio og*oc? is close to unity for all values of the
parameters considered.

For finite-sample sizes, the results are not so straightforward. Whether we
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look at the variance or the MSE, we find that the ratio o5*/oc> occasionally
exceeds unity; moreover, this ratio does not always approach its asymptotic
value smoothly. In particular, we can make these statements with certainty for
the simple two-valued FSD (table 4), the only FSD for which we did exact
calculations. Simulations for the Poisson FSD (table 6) also yielded a ratio
greater than unity for at least one sample size, although with simulations we
cannot rule out the possibility that this observation is due simply to random
variation.

The fact that the ratio o,%/oc? can exceed unity in finite samples seems
counterintuitive to us. If the FSD is known, then the GM estimator (6) or (7)
represents the MLE, whereas the SM estimator (5) can be viewed as ‘‘arbi-
trarily’’ throwing out some information. Intuitively, we expected the MLE to
have lower variance and MSE than any other estimator. However, in fact, such
arelationship is not guaranteed theoretically, since in this case the MLE of p is
not a sufficient statistic for p (see [4]).

The simple two-valued FSD interested us for two reasons. First, due to its
simplicity, it is amenable to exact calculations. (The number of different ways
that n families can be distributed among k categories is (n + k — 1)¥/[n! -
(k — 1)!]; see [6]. Thus, for example, if the FSD includes families up to size 4,
then there are 10 different types of families in the dataset. Now even a sample
of only 10 families includes approximately 92,000 different configurations, and
even for a [small] sample of 30 families, there are approximately 2 x 108
different family configurations.) The second appeal of the two-valued FSD was
our intuitive expectation that, to the extent that case A was superior to case C,
this superiority should be greatest in populations with a preponderance of small
families, and, indeed, our findings did support this intuition.

We turn now to the question of why we used exact calculations for finite
sample sizes, as opposed to relying exclusively on simulations. The quantity
we were interested in—namely, the ratio of two variances—is difficult to simu-
late precisely without extraordinarily large numbers of families. To illustrate,
consider the entry for sample size n = 50 in table 6, with the Poisson parameter
6 = 0.5. Three hundred of these datasets were simulated. We can use F tables
to form an approximate 95% two-sided confidence interval about the simulated
ratio of .99 shown in the table. With (300,300) degrees of freedom, the
confidence interval is approximately (0.79, 1.24). This interval is nowhere near
narrow enough to settle the question of interest, that is, whether the true
variance ratio is greater or less than unity. Yet 15,000 families were used. To
obtain a sufficiently narrow confidence interval would require tens of
thousands, perhaps hundreds of thousands, of simulated families. At least for
larger n (n = 100 in table 6, for example), we can see that the simulated
variance ratio is fairly close to the asymptotic value. But for smaller sample
sizes (n = 20 and n = 50), we cannot be sure the simulated variances are near
their asymptotic values.

Although we were primarily interested in the behavior of MLEs of a genetic
parameter, a secondary finding is the need for caution in the use of asymptotic
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large-sample statistical properties for populations where the family size is lim-
ited to one or two children. Our exact calculations reveal that even samples of
100 such families can have variances that are far from their asymptotic limits
(table 4). Moreover, although the ratio o4%/oc? is always less than unity asymp-
totically, it can be greater than unity in finite samples, even those as large as 60,
80, or 100 families. It is true that these are 60 or 100 very small families, and our
simulations suggest that this problem would be less severe in studies involving
larger families. Nevertheless, we should not apply asymptotic results too casu-
ally to small samples, whatever the family-size distribution.

CONCLUSION

The main conclusion we reach is that when estimating genetic parameters
from data from families of various sizes, the most reasonable estimation proce-
dure in most situations is that involving SM estimation, that is, where any
information one has concerning the family-size distribution (FSD) is ignored.
The reason for this is as follows: If the FSD, with all its parameter values, is
known and used in the estimation procedure, one can expect at best only a
small gain in precision for estimation of genetic parameters (and, in some cases,
for samples of size 30-50, there may even be a loss in precision), compared to
the SM estimation procedure where information on the FSD is ignored. When
the form of the FSD is known (e.g., Poisson), but its parameter values are
unknown (and must be estimated along with the genetic parameters), at best a
minute increase in precision over the SM approach will occur. Since, also,
there are possible biases involved if an incorrect form for the FSD is assumed,
and since the calculations are rather simpler in the SM case, we believe that, on
the whole, the best practical estimation procedure is SM estimation, that is,
estimation where one simply ignores any information about, or one makes no
assumption about, the form of the family-size distribution.

However, we might consider amending these conclusions for a population
meeting two very specific requirements. First, census data must be available
giving an accurate description of the FSD—not as following a particular statis-
tical distribution, such as the Poisson, but simply as a multinomial probability
for each family size. Second, the population must consist almost exclusively of
very small families. As we have shown here, when the population consists of
75% one-child and 25% two-child families, or even 90% one-child and 10% two-
child, then using the GM formulation (case A) can decrease the variance of the
estimator by approximately 10%—with reasonable sample sizes that could
realistically be available (table 4). Although these two requirements will proba-
bly not be met very often, they might be fulfilled currently in the People’s
Republic of China.
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APPENDIX
PROOF THAT o2 < o¢’
We will use the expressions (2) and (4) to prove that 6, < ¢, equality holding if and
only if all families are of the same size.
The first two terms on the two respective right-hand sides of expressions (2) and (4)

are equal, so that the desired inequality will hold if we can show that [Z iaf6) -
(1 = p)~'PIA? < [Z # af0)(1 — p)*~%)/A, or

?a(6)1 — p)*~*
I—a-py

[S ia @)1 — p) ' < [z ]{2 a®ll - (1 - pyl} |

whatever the form of {a,(8), a(0), . . .}. The coefficient of a*(8) on both left- and right-
hand sides is (1 — p)*~2. The coefficient of a(6)a{8) on the left-hand side is

2ij(1 — py*i=% (A1)

and on the right-hand side is
B L= (L= pY] | A= P = A= pY]
1-(1-p 1 -1 - py

Thus, the desired inequality will follow if expression (A1) < (A2) for i # j. Dividing both
expressions by the positive quantity ij(1 — p)*/~2 this will be the case if
< =pll = =py]  jd—pll = =p)
JaA=pyYlt —a-pl1 id-p)yf1t — 1 - py]

But this inequality is always true for i # j, since the right-hand side is of the form
x + x~!, which exceeds 2 unless x = 1, which implies i = j.
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