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Linkage Strategies for Genetically Complex Traits.
1. Multilocus Models
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Summary

In order to investigate linkage detection strategies for genetically complex traits, multilocus models of in-
heritance need to be specified. Here, two types of multilocus model are described: (1) a multiplicative model,
representing epistasis (interaction) among loci, and (2) an additive model, which is shown to closely approxi-
mate genetic heterogeneity, which is characterized by no interlocus interaction. A ratio XR of risk for type
R relatives that is compared with population prevalence is defined. For a single-locus model, XR - 1 de-
creases by a factor of two with each degree of relationship. The same holds true for an additive multilocus
model. For a multiplicative (epistasis) model, XR - 1 decreases more rapidly than by a factor of two with
degree of relationship. Examination of XR values for various classes of relatives can potentially suggest the
presence of multiple loci and epistasis. For example, data for schizophrenia suggest multiple loci in interac-
tion. It is shown in the second paper of this series that XR is the critical parameter in determining power
to detect linkage by using affected relative pairs.

Introduction

The advent of highly polymorphic loci densely map-
ping the human genome has already led to the identifi-
cation and mapping of loci for a number of Mendelian
disorders. However, the prospect of using these RFLPs
for complex, non-Mendelian familial diseases holds
even greater promise because of the chronic and highly
prevalent nature of these disorders, such as cancer, car-
diovascular disease, epilepsy, autoimmune disease, psy-
chiatric disorders, and so on. The importance of iden-
tifying susceptibility loci for such diseases lies not only
in mapping them to the human genome but also in help-
ing to define both the pattern of inheritance and, ulti-
mately, the disease etiology.

Before undertaking a linkage study for a complex
disease, one must have some understanding of the
prospects of obtaining evidence for linkage; this will
depend on the number of loci involed in disease sus-
ceptibility, the frequency of high-risk alleles, the rela-
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tionship of genotypes at multiple loci on risk, the den-
sity of the RFLP marker map, and the polymorphic
content of the markers involved. In this series ofpapers,
I attempt to evaluate strategies for detection of linkage
of disease loci and mode of inheritance determination
by using pairs of relatives. The affected-sib-pair para-
digm has been used extensively for HLA-associated dis-
eases (Day and Simons 1976; Suarez et al. 1978). Its
success there is largely due to the highly polymorphic
nature of the HLA complex of loci. However, Thom-
son (1986) has shown that RFLPs can be used in the
same way as HLA using affected sib pairs. It has been
established (Day and Simons 1976; Cantor and Rotter
1986; Weeks and Lange 1988) that other types of rela-
tive pairs can also be used for linkage analysis, although
they have been utilized less frequently.

For relative pairs, deviations from null expectations
for marker-allele sharing depend on mode-of-inheri-
tance parameters and the number of loci involved, as
well as on the recombination fraction between the
marker and the disease locus. A partial assessment of
the number of loci and of the relevant parameters for
linkage can be made by examining familial recurrence
patterns. The present paper examines the essential
parameters for single- and multiple-locus models.
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Single-Locus Model

Assume that a single locus with n alleles underlies
disease susceptibility. Enumerate the alleles as gi, g2,
. gn. Let the population frequency of gi be ti for
i= 1, .. . , n. Let fi be the penetrance of genotype
gigs. Further, define the random variable Xi to be 1 if
individual 1 is affected, and 0 if unaffected; similarly,
define X2 for a related individual 2 of type R. If the
Hardy-Weinberg law is assumed to hold, the popula-
tion prevalence is given by

n n
K = E(Xi) = EE titfij. (1)

i=1 j=1

Define KR = E(X2 X1 =1) to be the recurrence risk
for a type R relative of an affected individual. Then
the probability that a proband and type R relative are
both affected is K x KR = E(X1X2) = Cov(XlX2)
+ K2. Thus, KR = K + (1/K)Cov(XlX2). This for-
mula was first derived by James (1971).

Define XR as the risk ratio for a type R relative of
an affected individual compared with population prev-
alence; that is,

%R = KR/K = 1 + (1/K2)COV(Xl,X2). (2)

James (1971) also indicated that Cov(X1 ,X2) can be
written in terms of the additive genetic variance VA
and of the dominance variance VD of the penetrances.
Specifically, if CR is twice the kinship coefficient and
UR is the probability the two relatives share two alleles
identical by descent, then

XR = 1 + (1/K2)(CRVA +URVD)

(kM-1) - 4(ks-1) + 2(X1-1) = O, or (5)
kM = 4ks - 2X1 - 1 .

In addition, if VD = 0, then kM - 1 = 2(ks -1), and
Xs = xi.
The implications of these formulas are as follows:

If a single disease-susceptibility-locus model applies
(with any number of alleles), then the parameter XR
- 1 should decrease by a factor of 2 for each decreas-
ing degree of unilineal relationship, using the parent-
offspring relationship for the first-degree relative. If the
dominance variance is zero (e.g., ifparent-offspring risk
is the same as for sibs), then the above also holds for
MZ twins (as "zero"-degree relatives) and sibs (first-
degree relatives). Also, formula (5) must be applicable
to any disease for which the familial aggregation is at-
tributable to a single locus.

Two-Locus Models

Now assume that two unlinked loci are involved in
disease susceptibility; again I allow for an arbitrary
number of alleles and genotypes at each locus. Denote
the genotypes at the first locus by Gi, i = 1, . . ., n
with corresponding population frequencies pi and
those at the second locus by Hj, j = 1, . . ., m with
corresponding population frequencies qj. For a pair of
relatives of a certain type R, define Tkl as the condi-
tional probability that the relative has genotype I given
that the proband has genotype k (i.e., the genotype tran-
sition probability). Further, let wi be the penetrance
of genotype GiHj; hence, an n x m matrix W of
penetrances can be defined. K, KR, and XR are as
defined previously. Then

K = E Epiqjwijiiand
(6)

and
XR - 1 = (1/K2)(CRVA+URVD) .

Define the relationship subscripts as follows: M
MZ twin; S = sibling (or DZ twin); 1 = parent
offspring); 2 = second-degree relative; 3 = third-deE
relative. ThenkM - 1 = (1/K2)(VA+VD), XS - 1
(1/K2)(½/2VA+1/4VD); X1 - 1 = (1/K2)(1/2 VA); X2
1 = (1/K2)(1/4VA); %3 - 1 = (1/K2)(1/8 VA). Thi

Xi - 1 = 2(X2-1) = 4(X3-1).

Also,

(3)

(or

K x KR = L)PiqjWijETjikrjlWklk.
Multiplicative Model

(7)

gr~re~e The first two-locus model I consider is a multiplica-
I= tive model. In this case, the n x m matrix W can be

2 - determined by n + m parameters. Specifically, assume
us, that values xi, . . ., Xn and yi, . . ., ym can be defined

such that the penetrance wij = xiyj. Refer to the x's
(4) and y's as "penetrance factors" for loci 1 and 2, respec-

tively. This type of model has been described elsewhere
by Hodge (1981). It represents interaction (or epistasis)
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between genotypes at two loci. For example, suppose
two rare dominant alleles at two distinct loci are re-
quired for development of disease; all other combina-
tions of genotypes are at no risk. This situation can
be modeled byX1 = x2 = y1 = Y2= 1, X3 = Y3 =
0, where the genotypes at locus 1 are GI = D1D1, G2
= Didi, G3 = didi, and similarly for locus 2; Di is
the high-risk allele and d1 the low-risk allele at locus
1. The multiplicative model leads to simple recurrence-
risk formulas. Specifically, formula (6) becomes

K = piqjxiyj = (pix )qjyi) = K1 X K2,
j 1(8)

where K1 = >pixi and K2 =Eqjyj are the "prevalence
factors" defined in terms of the penetrance factors. Simi-
larly, formula (7) becomes

K x KR = EZEpiqjXiyjEtEikTjyXkY1

= E jPiXiTikXkZZqjYj-Tiyi

= K1 X K1R X K2 X K2R, (9)

where K1R and K2R are defined analogously to the
single-locus case but by using the penetrance factors
xi and yi, respectively. Dividing equation (9) by equa-
tion (8), we obtain KR = K1RK2R, and again dividing
by equation (8) we get

XR = XlR X X2R . (10)

In other words, for a multiplicative model, the risk ra-
tio XR is the product of "risk ratio factors" defined in
terms of the penetrance factors for the two contribut-
ing loci.

Notice that for this type of model, formulas (4) and
(5) no longer hold. In fact, the values XR - 1 decrease
more rapidly than by a factor of two for each decreas-
ing degree of relationship. Because formula (4) applies
to each of the contributing loci, we have instead

X2 = X12X22 = 1/2(ll+1)1/2(X2l+l)
= 1/4(X11 +1)(X21 +1)

X2 = 6.25, and X3 3.06. Notice that (X2 -1)/(X1 -1)
= .35 and that (X3-1)/(X2 -1) - .39.

Additive Model

For this two-locus model, it is assumed that values
xi, i = 1, ..., n andy,j= 1, . . ., m can be defined
so that the penetrance wi = xi + yj. In this case, the
x's and y's are referred to as "penetrance summands."
I assume that the x's and y's are restricted to the range
[0,1]. This model may appear unrealistic because, for
certain combinations of genotypes, it can lead to
penetrances greater than one; however, I will show in
the next section that it gives an excellent approxima-
tion to a model of genetic heterogeneity. Define the
"prevalence summands" K1 = Zipix, and K2 = Zjqjyj.
When the additive relationship is used, formula (6) for
prevalence becomes

K = Eipiqj(xi+yj) = Epixi + Eqjyj = K1 + K2 .J (12)

The recurrence-risk formula (7) becomes

K x KR = EZLpiqj(xi+yj) Ad tikTjl(Xk+yl)

= E- EPiXi`TikXk + EE qjyjTjiyji k j I

+ LE qjTjty/E piXiETikji i k

+ E LPi`ikXkEqjYjTj1i k ji I

= KiK1R + K2K2R + 2K1K2, (13)

where K1R and K2R are defined analogously to KR but
by using the penetrance summands xi and yI, respec-
tively. Both the fact that the allele frequencies sum to
one and the following equalities were used to obtain
formula (13):

ETik= = 1
k I

EZ qlyl = Lqyj = K2,qjn
and

E YpjiTikXk = KI .
i kand

3 = 1A6(lii +3)(X21 +3) (11)

For example, suppose Xii = X21 = 4. Then Xi = 16,

Dividing equation (13) by K2, I obtain

XR = K(KiKlR+K2K2R+2KIK2)
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= 1 + h (KjKlR-Ki)

+ K2(K2K2R-K2)

= 1 + (& )2 lR-1)

( K)22

or

XR - 1 = - (XlR-l) + (K2 (X2R-1),

(14)

where X1R = K1R/K1 and X2R = K2R/K2. In other
words, for an additive model, XR - 1 is a weighted
sum of similar terms for each contributing locus, where
the weight is the square of the proportion of total prev-
alence attributable to that locus. Note also for this
model that formulas (4) and (5) still hold because they
hold for each contributing locus; that is,

K = E piqj [1-(1-xi)(1-yj)]

= 1 - E E pi (1-xi)qj(l-yj)

= 1 - (1-Ki)(1-K2)

=Ki + K2 - KiK2, (15)

where K1 and K2 are the prevalence summands when
one uses xi and yj, respectively, as they have been
defined above. The recurrence-risk formula (7) is given
by

K x KR = EEpiqjjikrjl[l-(l-Xi)(l-yj)I x

[1-(l-Xk)(1-Y1)]
= 1 - 2(1-Kl)(1-K2)

+ (1-2K1 +K1K1R)(1-2K2+K2K2R) ,
(16)

where K1R and K2R are defined analogously to KR by
using the penetrance summands xi and yj, respectively.
In the Appendix, it is shown that formula (16) reduces to

- 1 = 2K) (X11_1) + 2K (X21-1)

= 2( K)(X2-1) + 2 K2 (X22-1)
= 2(X2-1)

and, similarly, Xi - 1 = 4(X3 -1). Therefore, for this
type of model the predicted pattern of recurrence risks
in relatives is identical to that of the single-locus model.

Genetic Heterogeneity Model

For this two-locus model, I assume that loci 1 and
2 are independent causes of disease; an individual can
be affected through possessing a predisposing genotype
at either locus. I again define for the two loci marginal
penetrances xi, i = 1, ..., n andyj, j = 1,...,
m whose values range from 0 to 1. The penetrance wj
is defined as 1 - (1-xi) (1-y1) = xi + yj - xiyj; that
is, the probability that an individual is affected is the
probability that he or she becomes affected through ei-
ther locus mechanism. This model is more realistic than
the additive model because penetrances greater than
one are not possible. The prevalence formula (6) now
becomes

XR - 1 = (Ki)(2R-) +
K (%2R-1)

- (K)(K2) [2K1(XlR -1)

+ 2K2(X2R-1)-KlK2(X1RX2R-1)] .

(17)

In general, the last term is small compared with the
first two, especially when the prevalence summands K1
and K2 are small. Hence, formula (17) for the genetic
heterogeneity model is well approximated by the addi-
tive-model formulation given in the previous section.

Extension to Additional Loci

The formulas given in the previous sections for the
two-locus multiplicative and additive models can be
readily extended to include an arbitrary number of loci.
For example, assume there are L loci. For the multiplica-
tive model, the prevalence formula (8) becomes

K = K1K2...KL, (18)

where Ki is the prevalence factor for the ith locus. Simi-
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larly, the recurrence-risk formula (10) can be general-
ized to L loci to give

XR = X1RX2R... .XLR , (19)

where XiR is defined using the penetrance factor for the
ith locus. Also, formula (11) generalizes to

2=(2) iII(= 1+),

X3= (-) f (Xil+3),

and so on.
Consider a model where each of the xil's is near

unity. Then

L= (kil+1) = I[ (k1+ i-1)

ex L J

ponents and tth-order interaction of dominance com-
ponents (Kempthorne 1957). Then, for a type R rela-
tive of an affected individual,

XR - 1 = K2 [ E E (CR)s(UR)t VsAtDI (20)

When UR = 0, or under strict additivity within loci,

1=K2L (cR)s- sA] (21)

Formula (21) shows that XR - 1 decreases by greater
than a factor of two with each degree of relationship
if and only if epistatic variance components are pres-
ent. The rate of decrease depends on the number of
underlying loci and on the degree of epistasis. In general,
the lower-order variance terms are larger than the
higher-order ones. Dempster and Lerner (1950) showed
that large epistatic variance components are obtained
only when heritability is high and when prevalence is
low (equivalently, large XR values).

Similarly,

Both of the above approximations hold for kil -1 near

zero for each i. Therefore, X2 X1½/2. Similarly, X3
x1i¼, and so on. If VD = 0, then XM X2. In other
words, in a multiplicative model with a large number
of loci each with small effect, the risk ratios decrease
by a power of one-half with each degree of relation-
ship. For example, if the risk ratio for parents/offspring
is 10, the ratio for second-degree relatives (e.g., half-
sibs) is 3.16 and that for third-degree relatives (e.g., first
cousins) is 1.78.

General Multilocus Model

The multiplicative and additive models were consid-
ered for their mathematical simplicity and relevance to
real biological situations. However, for a given trait,
neither of these models may be appropriate. A general
formulation was given by James (1971) that applies to
any number of loci and any number of alleles. For this
case, one needs to define epistatic sources of variance
of the penetrances. Specifically, define VsAtD as the
variance due to an sth-order interaction of additive com-

Example-Schizophrenia

There is currently considerable interest in understand-
ing the genetic component in major psychiatric illness,
particularly for severe conditions such as schizophre-
nia. The advent of numerous polymorphic markers
(RFLPs) in humans offers the possibility of using link-
age analysis to detect loci which contribute to suscepti-
bility to schizophrenia. However, it is important to know
at the outset the power that is likely to obtain for such
an analysis. An assessment can be made based on
familial recurrence patterns. For schizophrenia, recur-
rence risks have been estimated for a range of first-,
second-, and third-degree relatives, as well as for MZ
and DZ twins. A summary of the different studies has
been given by McGue et al. (1983). When a population
lifetime incidence of 0.85% was assumed, risk ratios
were derived from the age-adjusted risks presented by
McGue et al. (1983) for offspring, sibs, MZ and DZ
twins, half-sibs, nieces/nephews, grandchildren, and
first cousins. The numbers are given in table 1. The
risk to sibs is consistently lower than that to offspring;
this can be partially explained by a reproductive disad-
vantage of affected individuals, which tends to dimin-
ish the recurrence risk for sibs (Risch 1983). Also, the
DZ twin concordance is generally higher than sibling
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Table I

Multilocus Multiplicative Models for Schizophrenia

MODEL PREDICTIONb

RISK RATIOa OBSERVED I II III IV V VI VII

Xo ......... 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
Xs .......... 8.6
km ............ 52.1 19.0 100.0 75.0 55.6 43.8 56.3 42.2
XD ......... 14.2
XH ......... 3.5
XN ......... 3.1
XG----.............. .3.3
(X2)-........ 3.2 5.50 3.16 3.35 3.65 3.95 3.56 3.77
XC.......... 1.8 3.25 1.78 1.87 2.03 2.20 1.96 2.07

a Definitions of subscripts: 0 = offspring; D = DZ twins; H = half-sibs; N = niece/nephew; G
= grandchild; C = first cousins. All other subscripts are as defined in the text.

b Definitions of models: I-one locus, X10 = 10.0; II-infinite loci, each with small effect; III-X1O
= 2.0, infinite other loci; IV-X10 = 3.0, infinite other loci; V-X10 = 4.0, infinite other loci; VI-X,0
= X20 = 2.0, infinite other loci; VII-X10 = X20 = 30 = 2.0, infinite other loci.

risk, which may reflect either an environmental impact,
which is more similar for twins than for sibs, or alter-
natively an ascertainment bias in twin series of schizo-
phrenia. In any event, because sib risk is not higher than
that for offspring, there is no evidence for a VD com-
ponent for this disease. Therefore, only a single param-
eter (kO = Xs = Xi) is necessary to predict all relative
types. Predictions for various multiplicative multilocus
models are given in table 1. A compromise value of Xi
= 10.0 was chosen to correspond to the value XO =
11.0 for offspring and Xs = 8.6 for sibs. The X values
for the three types of second-degree relatives are quite
similar, and a weighted average value (X2) of 3.2 was
used.

Predictions for a single-locus model with X1 fixed at
10.0 are given in table 1 under column I. A clear pat-
tern emerges -the MZ twin ratio is seriously underes-
timated and the ratios for second- and third-degree
relatives are overestimated. This pattern suggests an in-
teraction of multiple loci (epistasis) that leads to a faster
decrease in X with increasing distance of relationship.
Predictions for a multiplicative model specifying an
infinite number of loci with small effect is given in table
1 under column II. White consistency is seen for second-
and third-degree relatives, theMZ ratio is overestimated.
In an attempt to determine the largest plausible single-
locus contribution and the possible number of loci in-
volved, the following additional models were examined
for consistency with the data: III-one locus with X1o
= 2.0, the remaining loci all of small effect; IV- one

locus with X1o = 3.0, the remaining loci of small
effect; V-one locus with X1o = 4.0, the remaining loci
of small effect; VI-two loci with X1i = X2. = 2.0,
all other loci of small effect; VII-three loci with X1i
= k20 = X30 = 2.0, the remaining loci of small effect.
While the models with one major locus and with other
minor loci improve the correspondence with observed
ratios, a value of Xio = 4.0 (model V) begins to show
a sizeable discrepancy from the observed ratios in the
same direction as does the single locus model; there-
fore, one locus with a value of X greater than 3.0 is
unlikely. Models specifying a single locus with a X value
of 3.0 and with all other loci of small effect or models
with two or three loci with X values of 2.0 (models VI
and VII) appear to be most consistent with the observed
data.
Although a multiplicative model may not strictly ap-

ply for schizophrenia, formula (21) for the general mul-
tilocus model also suggests that significant epistatic vari-
ance components are necessary to explain the observed
drop in risk with degree of relationship. If only two
loci are involved, then (XM -1):(Xo-1):(X2-1):(Xc-1)
= (VA +VAA):( /2VA + 1/4VAA):(/4VA +6VAA):(1/8 V
A + Y64 VAA). A very high ratio of VAA to VA (intense
epistasis) would be necessary to obtain the observed
descent by degree of relationship given in Table 1. With
three or more loci, the required intensity of epistasis
would be less.
While it might be argued that the steep decline in

risk with degree of relationship is attributable, at least
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in part, to nongenetic familial determinants, such an
argument has little impact on the conclusion regarding
the magnitude of contributing loci. Even if some of the
familial determinants are not genetic, a single locus ac-
counting for a large proportion of the familial aggrega-
tion of schizophrenia is not compatible with the ob-
served family data.

Discussion

In this first paper of the series, I have described
parameterizations of single- and multiple-locus models
of inheritance of disease susceptibility. Attention was
focused on ratios of risk for relatives compared with
population prevalence; it will be shown that these risk
ratios are the essential parameters for determining power
to detect linkage by using affected relative pairs.
When, compared with population prevalence, there

is a high ratio of risk to first-degree relatives (say, greater
than fivefold), there is the potential for evaluating the
consistency of recurrence-risk patterns with single-locus
inheritance. However, it has been shown that genetic
heterogeneity models lead to predictions identical to
those of single-locus models; therefore, when using such
data, it is impossible ever to conclude that only one
locus is involved in disease risk. However, when recur-
rence patterns are not consistent with single-locus in-
heritance, it is possible to suggest the presence of mul-
tiple contributing loci. For diseases characterized by a
relatively lower risk to first-degree relatives (say less than
fivefold), compared with population prevalence, a dis-
criminatory analysis of this type will not, in general,
be possible, because all genetic models will give similar
predictions, even when epistatic variance components
are present. In this case, and in general, consideration
of larger constellations of relatives may offer additional
insight into the number of contributing loci; however,
as will be shown in the subsequent paper, power to de-
tect linkage by using relative pairs depends only on sim-
ple recurrence risks.
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Appendix
From formula (16),

K x KR - K2 = (1-2K1+K1K1R)(1-2K2+K2K2R)
- (1-Kl )2(1-K2)2

= [(1-K1)2 +Kj2(X1R -1)] X

[(1-K2)2 +K2(X2R-1)]
- (1-K1)2(1-K2)2

= (1-K2)2K2(XR -4)
+ (1-Kj)2K2(X2R -1)

+ KlK2(XR -1)(X2R -1)

- (1-2K2)K2(X1R -1)

+ (1-2Kj)K2(2R -1)

+ K 2K2(X1RX2R -1)
= K 2(X1R-1) + K2(X2R-1)

- KlK2[2Kl(1lR -1)+2K2

(D2R-1)-KdK2(XbRml2R-1)]

Dividing both sides by K2 gives formula (17).
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