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Assigning a Probability for Paternity in Apparent Cases of Mutation

EDWARD D. ROTHMAN,' JAMES V. NEEL,2 AND FRED M. HOPPE'

SUMMARY

Any direct estimator of mutation in a human population is subject to error
due to nonpaternity. This paper deals with the quantification of this error
by producing, under certain assumptions, the probabilityfor paternity. In
addition, a new direct estimator of the mutation rate is introduced.

INTRODUCTION

In studies of human mutation rates, a standard complication has been the possibili-
ty that some among the apparent mutations result from the discrepancy between
legal and biological parentage customarily referred to as "nonpaternity." This
possibility has been largely ignored in studies in which the apparent mutant is an
individual with one of the dominantly inherited diseases on the dual grounds that
affected individuals who might be a source of the allele in question are so rare
(population frequency usually < 10-4) and/or so stigmatized that, compared to
mutation, this possibility was relatively unlikely. When, however, the mutant
phenotype is a variant protein, the possibility assumes a larger dimension. Now the
frequency of the phenotype on which studies of mutation will be based is usually
approximately 20 per 10,000 persons, and there are usually no external stigmata.

Here, we will develop an appropriate statistical framework for treating this
complication when the study of mutation is based on protein variants. There are a
number of protocols that such a study can pursue. That which we are currently
employing-and which undoubtedly is one of the most representative-is as follows
[ 1]: Subjects are screened for rare variants of a defined series ofproteins. In the event
of a variant, the parents are also examined for presence of this variant. Periodically,
as the study progresses, a subset of the parents and children are subjected to the
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genetic typings employed in questions of parentage to establish a baseline for
"nonpaternity" in the series. Any child found to exhibit an apparent mutation and
his or her parents will also be subjected to the aforementioned typings. Such an
approach enables us, first, to develop an estimate of the mutation rate and, second,
to rank apparent mutations on the basis of the odds that the legal father is the
biological father.

THE GIVENS AND THE ASSUMPTIONS IN THIS TREATMENT

We now state in precise form exactly what are the "givens" and the "assump-
tions" in the treatment we will develop.

The Givens

(1) The prior probability of nonpaternity will have been established through the
appropriate studies. This is an important distinction from the situation obtaining in
medico-legal questions, where the prior probability is usually unknown. (2) The
apparent mutation in question will be characterized by the gain of a rare attribute,
rather than in the loss of an attribute that might under the usual circumstance be
expected to be present in a child. Thus the study will not be obfuscated by the
occurrence of inherited "null" variants, as illustrated by the situation in which a
father who is phenotypically haptoglobin type 2 (but genetically 2/0) could, when
married to a type 1 woman, legitimately father a type 1 child. (3) Paternity studies
will be performed on every apparent mutation in the series, with a battery of tests
whose combined probability of detecting nonpaternity can be calculated. (4) The
frequency in the population under study of the types of "rare" variants being
employed as possible indicators of mutation is known, both from the study itself
and the literature. For these purposes, we will define a rare variant as one with an
allele frequency not greater than .01. In fact, for most of the genetic systems to be
employed in studies of this type on civilized populations, the combined gene
frequency for the various types of rare variants that are detected approximates 10-3
(reviewed in [2]).

The Assumptions

(1) Nonpaternity, when it occurs, is at random with respect to those traits on
which the detection of nonpaternity is based. LetN denote the size of the population
of potential fathers and let X,, i = 1, 2, . . . N, represent a complete listing of the
multilocus genotype for which observations are available. So X1, X2, . .. XN then
represents the genetic structure of this male population. Further, let F, C, M, and T
represent the genotypes, respectively, of the legal father, the child, the mother, and
the biological father. We have assumed that a male affine or consanguine of the
mother of the child is no more likely to be the true father than any other male from
the population of potential fathers. In our notation, we express the probability that
F is the true father as

{ FF=Xil < i.N
P(FIXl, .,XN) =

i0 else
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(2) Within the population of potential, nonlegal fathers of the child, there is no bias
increasing (or decreasing) the probability of paternity because of ethnic extraction,
religion, etc. While this assumption is not strictly correct, it is necessary to the
treatment. In our notation,

a ifF = TandT = Xi forsomei

P(TIXI,. ,XN';F) = ifF = TandT = Xi forsomei,

0 else

where a is the prior probability ofpaternity. (3) The results of the genetic determina-
tions are accurate, or, if there is error, its magnitude can be specified. (4) The
identity of the mother is certain. (5) The genetic markers involved in the detection of
nonpaternity occur in Hardy-Weinberg equilibrium and segregate independently of
one another. As the number of markers that can be brought to bear on the question
increases (see DISCUSSION), this assumption will certainly be violated, but for the
present it is reasonable.
So,P(CIX1,. .. , XN,F, I) is determined by independent Mendelian segregation at

each locus. This conditional probability thus depends only on Tand the genotype of
the motherM, which is, of course, implicit in the above probabilities. It will turn out
that the precise value ofN is relatively unimportant since it enters only through a
multiplicative factor [(N - 1)/N], and we may therefore consider it to be fixed at
some large unknown level.

STATISTICAL METHODOLOGY

Two procedures are involved in the extraction of information concerning muta-
tion from the study. Step 1 simply estimates the mutation rate, whereas step 2
generates a probability statement for each presumptive mutant, from which one can
rank apparent mutants as to the probability they are truly mutants.

Step 1

This method, originally suggested by Neel [3], will be extended here by a discus-
sion of the statistical errors inherent in the methodology. Let I = frequency of
nonpaternity, W = average frequency at the loci under consideration of alleles
responsible for rare private variants, andD = probability ofdetecting nonpaterni-
ty with the available laboratory tests. Then the frequency with which undetected
nonpaternity results in an apparent mutation is

IW(I - D) . (1)

The corrected mutation rate (MEST) is derived from the apparent mutation rate
(MOBS) simply by subtracting this term, that is,

AEST = AOBS - IW (1 - D) * (2)

D, computed from the allele frequencies of the genetic polymorphisms used for
paternity exclusion, is customarily treated as a fixed probability. W. in any proper
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study, will have been established on the basis of at least 2 X 105 determinations,
and can also be treated as a fixed probability with small error. I, however, will be
based on a relatively small sample, of several hundred determinations, and the error
term must be taken into consideration.
An expression for the standard error of MEST can be obtained from the formula for

the variance of the sum of two random variables. This yields

AOS -SD (MEST) =X/var(/oes) + [W(1 - D)]2V(I) - 2X(1 - D)cov(/AOBS, I) (3)

To obtain an upper bound for the standard error (SE), we use EST of var(/AOBS)
= [OBS (1 - hOBS)]/NOBs and EST of var(I) = [1(1 - I)]/N1, and take the
correlation to be zero. Here NOBS and N. refer to the number of observations
available for the calculation of MAOBS and I, respectively.

Let us assume that MAOBS is 2 X 10-5 on the basis of 5 X 105 locus tests, that I
based on 10 systems studied in 500 randomly selected trios is 2 X 10-2, that on the
basis of the study from which mutation rates are being estimated as well as an
extensive literature, W = 1 X 10-3, and that the battery of tests available together
will detect .8 of all instances of nonpaternity in the population. Then our estimate of
mutation rate is MEST = 1.6 X 10-, and the upper bound of the SE of the estimate
is found to be .64 X 10-5. Since the random variable MOBS is likely to be highly
correlated with the random variable I, this SE may be quite conservative.
As stated, the mutation rate is the average across all the loci under investigation.

Eventually, data may accumulate to the point where specific locus rates can be
obtained, although, with average rates as low as they appear to be [2], this situation
will not be obtained for some years. When, however, such data are available, Wnow
applies to the frequency of variants of specific proteins. Observed variant frequen-
cies for specific proteins (excluding polymorphisms) thus far are usually in the range
Ito 50 X 10-4 (e.g., [2, 4-6]). It is apparent from equation (1) that the probability
that an apparent mutation is not due to nonpaternity is directly proportional to the
frequency of variants at that locus. At first thought, this would suggest that a study
could to some extent avoid the complication of nonpaternity by concentrating on
proteins for which variants are rare, but this practice would probably bias the study
toward the choice of loci where mutation is less common than average.

Step 2

This method assigns a probability that the legal father is the biological father for
each case of suspected mutation, based on extensive genetic typings of child,
mother, and putative (nonexcluded) father. The rationale for this approach is made
clear by a simulated example in which a child with a rare protein variant not present
in either (nonexcluded) parent also possesses two other rare variants that are
present in the father but not in the mother. This is too much for coincidence-we are
intuitively persuaded of the validity of the legal relationship (and of the occurrence
of the mutation).
The approach we have developed quantifies this intuition by obtaining a value for

P(legal father is the biological father data). It is more convenient to consider odds
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rather than probabilities, so we define a parameter

P(T =C = c,F =f,M = m)
P(T #]JC = c,F =fMM = m)

This is computed by treating C as random and applying Bayes' theorem. X is
therefore the posterior odds in favor of the event that the genotype of the biological
father is identical with that of the legal father.
Under conditions made precise below, X may be factored into a product of terms

having distinct probabilistic import,

A I * 2H+J+l* (S
X K(m, c) '(5

where A0 is the prior paternity odds; H. an integer measuring the amount of
homozygosity; IandJ, related integers; and K(m, c), a "rarity factor" determined by
the genotype frequencies in the population. We begin with the following proposi-
tion: Supposef # g are two genotypes. Then

P(TJ=]F= J) a (6)

and P(T = gIF = f) = [(1 - a)/(N - 1)][P(g exists in population f exists in
population)], where P(F = f) is taken to be different from 0.

Before giving the proof, we observe that the second equality depends on the
population being finite. If the population is large (effectively infinite), then the
conditioning (fexists) is irrelevant. On the other hand, in the more realistic case of a
finite population, the mere fact that a genotypef is the putative father implies that
this genotype exists in the population, and thus the probabilities of existence of
other genotypes must be changed. According to our assumptions, we see that the
information (F = f) is equivalent to the information (f exists) as regards the
updated (conditional) probabilities of existence of other genotypes. Although this
may appear obvious, we note that such a result depends upon our assumptions.
Other assumptions would not necessarily lead to expressions so appealing.

Proof of Proposition

P(T = flF = f) = YP(T = fX1,. . .,X,F = f) P(X,. . .,XNIF = ),where
: extends over all genetic structures (Xl,... , XN) = aY.P(X1,.. .,XNIF = J) = a
[byassumption(2)]andP(T = gIF =J) =l P(T = gIX1 ... . XN, f;= f) P(X1,
. . . , XNIF = J) = [(1 - a)/(N - 1)]YP(XI,... , XNIF = f). The foregoing is
equivalent to [(1 -a)/(N - l)]P(f and g exist IF = J) [by assumption (2)]. But
because the event (F = J) is contained in the event (f exists), this reduces to

P(T gIF = f) = N l P(g exists F = j) . (7)
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Next we claim that

P(F = f) = N P(f exists) (8)

This follows immediately from P(F = f) = XP(F = flx1,.. , XN) P(XI,.. , XN)
and invoking assumption (1). Finally, we compute P(g exists IF = f) =YP(XI,
. . ., XNI F = f), where the sum is taken over all (XI,... , XN) containing bothfand
g. But P(g existslF = f) = YP(XI, ..X , F = f)/P(F = f) = YP(F = flXI * . . ,

XN) P(X19 ...* XN)/P(F = f) = YI[P(X1, . , XN)]/[N P(F = f)]} [by Assump-
tion (1)] = XP(XI, . . . , XN)/P(f exists) = P(f and g exist)/P(f exists) = P(g
exists Vexists) [by equation (8)]. Hence, P(g exists Lfexists) = P(g exists IF = J) and
substitution into equation (7) gives the second assertion of display (6).

It is possible to begin the foregoing derivation with equation (6). The advantage in
deriving them from more primitive assumptions is in mathematical hygiene. A
probabilistic model requires the specification of the joint distribution of (X1,.
XN, F, T, C). Assumptions (1) through (5) give precisely such data.

Returning to the expression for X, P(T = JC = c,F = f,M = m) = P(T =
C = c, F = f, M = m)/P(C = c, F = f, M = m) = [P(C = cIT = f, F =,
M = m)P(T = JfF = f, M = m)]/[P(C = cIF = fM = m)]. Similarly,

P(T fJ]C = c,F =fM = m) =

P(C = cIT = g,F =fM = m)P(T = gjF =fM = m)
g0f P(C = cIF =f,M = m)

Using assumption (5) and equation (6)

=1 a (N- 1)P(C = cIT fM = m)
1 - a JYP(C = cIT = g,M = m)P(gexists fexists)

where the sum in the denominator is taken over all possible genotypesg # f. As we
are interested only in a suspected mutation, we restrict attention to those cases in
which the child possesses at least one rare electromorph not present in either parent.
Moreover, because the mutation rate is so small and because ofthe rarity of existing
but as yet undetected genes, we may further delimit considerations to those cases in
which the child possesses such a gene or genes at a single locus (see below). Anything
more corresponds to definite nonpaternity within the accuracy of our assumptions
and calculations.
Our next goal is to transform X into a suitable computational form on the basis of

our model. First we take into consideration Hardy-Weinberg equilibrium and
independent segregation of the genetic markers at different loci. Consider, there-
fore, the possible combinations at a single locus. Suppose the mother to be given by
AAj and the biological father given by AkA,. We denote a mutant gene by AO. The
mutation probability (,u) for electromorphs will have been estimated in step 1;
assume for now an order of magnitude of 10-5. Therefore, double mutations at
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homologous loci occur with a negligible frequency and this possibility will be
ignored. This is equivalent to ignoring terms of the order of M2 and smaller.
The probabilities for the genotype of the child are summarized as: AiA,,Ak, AjAk'

AjA k, each with probability (1 - 2j)/4;A A09AAJAkA0A0,A A , each with probabili-
ty Mu/2.
When we examine what happens with a totality ofL loci, and invoke independent

segregation, it becomes clear that the probability of a child having r mutations (at all
L loci) is KIAr, where K is a constant such that KM is still much smaller than 1.
Consequently, as we have already agreed to ignore terms of order 2 and smaller, it
is consistent to ignore multiple mutations at the L loci taken as a whole. Thus, only
those males in the population who are at most one allele from consistency withM
and C can be considered as potential biological fathers. Two or more inconsisten-
cies constitute absolute nonpaternity. These considerations lead to the following
cases:

Case A

If C is completely consistent with M and T (in the sense of Mendelian segrega-
tion), then

Lv
P[CITM] = (1 - 2LI) L 'i + 0(M2).i=1 4

Case B

If C is one allele short of consistency, then

L v

P(CITAM) = 2,uI +I(I2)
j=1 4

Here o(M2) represents terms the order Of IA2, and the vi are combinatorial factors
resulting from independent Mendelian segregation and are defined as follows: At a
locus i where no mutation occurs, vi is the number of distinct combinations of the
mother's alleles and the father's alleles that could produce the child's genotype. At a
locus i where a presumptive mutant allele appears, vi is the number of times the
other allele at this locus appears in both parents. A check of all possible cases shows
that the product

L

Pil

can be very simply represented. In case A,

L
II v = 2H+J
i=1

In case B.
L

II v. = 12H+J
i= 1
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Here, H = the combined number of homozygous loci in the union of parental sets
at those loci where no mutation appears; J = the number of heterozygous loci in
the child at which both parents are identical with the child; I = the number of
alleles that the mother and father have in common with the child at a mutant locus.
The following example displays this formula in operation. Example: L = 4

A1A2 A2A21 A1A2 1

M B1B21 T. B3B31 C BOB3
C1C1 CI C2 C = il

D1D2 DL D1D4

P(CIT,M)
I

(
21 +

I
'

jA J
+ 1AI ~2M + 1 2M )

( 4 4 )(2 2 )( 4 4 )

1 34~2)~3164+ l++ + lowerorderterms
(4 , 16 8 4 2 16

The combinatorial factors are as follows: v, = 2 because the mother's A, can
segregate with either of the father's two A2's; v2 = 2 because the allele B3 appears
twice (in the father); V3 = 2 because the father's C1 can segregate with either of the
mother's two C1's; and v4 = 1 because only the mother's single D, can segregate
with the father's single D4. Thus

2M H = 2=I 16
28~ 1 4 1 (4 )(4 )(4 )(4 ) 16

which of course is consistent with the above. Finally, we find that I = 2, H = 2,
J = 0, giving (2M I 2H+J)/44 = [2,u(2) (22)]/44 = A"16 as before.

In the numerator of X, the term P(C = cIT = f,M = m) corresponds to case B
and equals IA I 2H+J+', which accounts for the presence of these factors in the
numerator of equation (2). In the denominator, the offspring probabilities will
depend on whether or not C is a mutation. It is therefore necessary to divide the set
of potential biological fathers into two subsets reflecting the two cases above. To
this end, let R denote the subset of genotypes g satisfying case A. For such g, the
triplet (C = c, T = g,M = m) is completely consistent, and since C has a suspect-
ed mutation, R represents the rare potential biological fathers. If g e R then

L v. v(g
P(C = cIT = g,M = m) = (1 - 2LI) II ' = (1 - 2L~u) 4L)

i=-1 4 4

Let NR denote those genotypes satisfying case B. For such g, the triplet (C = c,
T = g, M = m) is one allele inconsistent and thus

L = =(g
P(C=cIT=g,M=m)=21A H-1' =2j 4

i=14
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Finally, setting X0 = a/(1 - a) and P(g if) = P(g exists If exists), we get

1uX0I2H+J+1
9

(1 - 2LM) X P(gif)v(g) + 2MA X P(glf)v(g) (9)
geR gOAfeNR

For computational purposes, equation (9) may be adapted for use with a numerical
algorithm. However, it is worthwhile to make some approximations.

First, we replace P(g exists Ifexists) by P(g exists). This is not always a legitimate
approximation, but it will do to demonstrate our methodology. Typically, the two
sums occurring have on the order of 2L terms, so that unless the functions that
appear have a form that can be exploited, X can be computed only numerically. Our
approximation gives us an analytical grasp on the problem and permits a simplifica-
tion of the computation.

Let rr(g) denote the probability that a single individual selected at random is type
g, that is 7r(g) = P(X1 = g). However, P(g exists) = 1 - P(g doesn't exist) =
1 - P(X1 #t gX2 -# .. . .* XN : g) = 1 - [1 - 7r(g)]N[byassumption(5)]. If
7r(g) is sufficiently small, then this expression can be replaced with N7r(g). We do this
but note that each individual case must be checked.

Next we consider the sum on g # feNR in the expression for X. Since the sum is
premultiplied by ,u and j, is small, little error is introduced ifwe permit g = fin this
sum. Again, this must be checked in each case. Thus the dependence on f, the
genotype of the legal father, is eliminated from the denominator of X.
Assumption (5) induces a factorization of rr(g) into a product of terms 7rr(g), gi

being the genotype at locus i, and 7ri, the corresponding sampling probability at
locus i. Bearing this in mind, together with the recollection that v(g) itself is a
product, we observe that both the sum on R and on NR can be factored into a
product

L

H Ki = K,
i=1

where Ki is the expectation of vi but only on the part of the sample space that satisfies
R or NR, respectively, K(R) and K(NR).

This gives an expression for X penultimate to assumption (5)

- N -\I I2H+J+1
x N 2(I-42Lt)K(R) + 21.K(NR)

Quite generally, 2jAK(NR) << (1 - 2L1u)K(R); and if, therefore, we ignore
2MAK(NR) and replace (N - 1)/N and also 1 - 2L1u by 1, we obtain the very simple
expression (2), where we have replaced K(R) by K(m, c) to indicate that it depends
only on the genotype of the mother and child. The term K(m, c) is a "rarity factor" in
the following sense: it is made up ofproducts ofgene frequencies and combinatorial
factors for permissible potential biological fathers. If there are several loci at which
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the child has an uncommon gene not present in the mother, the corresponding
factors in K will be small, boosting the odds, as expected.
Example. We give an example with 20 loci, two alleles at each locus except for

three alleles at locus 1, the extra allele to account for the possibility that the child has
inherited this rare variant from someone other than the legal father. The assumed
gene frequency distribution is given in table 1. These values have been selected to
correspond in general to the distribution of allele frequencies in the various genetic
systems commonly used in studies of nonpaternity. The example thus approximates
reality. Let the 20 loci be represented by LI, L2, . . ., L,9, L20and let the subscripts 0,
1, and 2 refer to the alleles having frequencies given by the same subscripts in table 1.
The genotypes of the mother and father at these 20 loci were obtained using 40
pseudorandom numbers, the gene frequencies given in table 1, and assumption (5).
After endowing the child with a rare variant allele at locus 1, 39 pseudorandom
numbers were used in conjunction with Mendelian laws [assumption (5)] to deter-
mine the genotype of the child. The results of this straightforward Monte Carlo
simulation are presented in table 2.

In this example, the value ofHis 26 since bothFandMhave 13 homozygous loci
(excepting the "mutant" locus). The value of J is seen to be 1 (B locus), while the
value of I is found to be 4. Using a value for Au of 1.6 X 10-5 and taking X0 =
49(.98/.02), the approximate posterior odds based on formula (5) are 246:1.
The only somewhat tedious part of this calculation involves the denominator of

the odds ratio. However, the calculation of this term is facilitated by our earlier
comments on the use of assumption (5). To assist the reader with this calculation, the
following explicit illustration based on our example may be helpful. First, we note
that

7r(g)vP(g) 1-=r(, ,ggeR L-l [ g i ]

where I on gi is taken over all gi consistent withM and C at locus i. Now for each
locus, the possible genotypes for a father are listed along with the relative frequen-
cies and the iP(g,) factor. For example, at the D locus, we have

Potential father 7r(g) v
D D2................. . 42 2
D2D2 .49 4

This gives a value for ..i7rkgi)v,(gl) of 2.80 for this locus. A similar calculation based
on the remaining 19 loci is then obtained and all factors multiplied together. The
result of this computation in our example is 594.45.
With this factor at hand, the calculation of the posterior odds for any other

potential father of this child, given this mother, is quite straightforward. The
contribution toH + J from the B, K, and L loci is always 3 for any potential father
and this mother and child. Therefore, the posterior odds for any potential father is a
function of only I and H', where HI is the number of homozygous loci in the father
at loci other than A, B, K, and L. The posterior odds are (I X 2H' X 2'7 X
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TABLE 1

ILLUSTRATIVE ALLELE FREQUENCIES FOR THE CALCULATION OF A PATERNITY
PROBABILITY BY THE METHODOLOGY OF THIS PAPER

No. loci with indicated allele frequencies 1 1 4 6 8

PI* ........................... .4 .4 .3 .2 .05
P2 .......................... .599 .6 .7 .8 .95
PO.0. .001 0 0 0 0

* P0 is the r frequency of a potential mutant allele, whereas Pi and P2 are the recognized alleles in a two-allele
system.

,u)/594.45 for potential fathers who are one allele short of consistency. A father with
HI = 0 and I = 2 would yield the minimum odds ratio in our example of 7.05 X
10-3. On the other hand, the maximum odds ratio results from an HI = 16 and
I = 4, giving us an odds ratio of 9.47 X 105:1.

Although the numerator in the odds ratio does not depend on gene frequencies,
the denominator does. It is apparent that loci N and S contribute to a smaller
denominator in our example because of the presence of a relatively uncommon
allele in the child. The presence of several uncommon alleles in the child greatly
enhances our ability to make an inference about a potential father.

TABLE 2

GENOTYPES ASSIGNED AT 20 LoCI IN MOTHER, FATHER, AND CHILD
FOR PURPOSES OF A WORKED EXAMPLE

Father Mother Child

L12L1 2 . ... 1-1.2 L10L1.2
L21L22 ........................1L22 L21L2.2
L 3.1 L 3.2 ..... - 3-1 - 3-2 - --------L31L 3.1

L42L42 L4.2L4.2
LL52 L52 L 5.2
L 6.1 I 6.2 .......... - 6 - 6-2- -6- - - - ------1-----L 6.2
L 7.2 L7... ... 72 72 L7.2 L 7.2

L82L82 L8.2L 8.2

L91L92 ........ - 9-1 L L92L 9.2

L 2 L10.2 ........ ............... L10.2 L10.2 L10.2 L10.2
L1 2 L112 ....................... L11.1 L11 2 L111. L11.2
122 122 .........-.--.-..-.--.--.-..-.-- .- 121 L 122 L12.1 L 12.2

L 13.2 L 13.2 ....................... L 13.2 13.2 L 13.2 L 13.2

L,4 L 14.2...-......... .......... L 14. 2 L141 L 14.2
L15.2 1.2......2-. - 15 L52 L152 L15.2
L16.2 L16.2.L.- 16.2 L16.2 L16.2 L 16.2

L 172 2.2 .. L17.2 L17.2 L17.2 L 17.2

L18.2 L18.2 ........- - L 1 .2L 12 8.2 L 18.2
L 9.1 L19.2 ....................... L19.2 L19.2 L191 L 19.2
L20.2 L 20.2 ........................ L20.2 L20.2 L202 L 20.2

NOTE: For further explanation of table, see text.
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DISCUSSION

We have attempted here to provide a more rigorous basis than currently exists for
evaluating the role of "nonpaternity" in apparent examples of mutation in our
species. To this end, formulas have been provided for subtracting the contribution
of nonpaternity from an apparent mutation rate and for ordering specific examples
of possible mutation on the basis of the odds for paternity. The calculation of the
odds ratio for paternity rests on five assumptions that are certainly not all literally
true. Although the effects of departure from these assumptions would be difficult to
determine in any generality, we believe that for our purpose (the ranking of
potential mutations) they provide us with a suitable robust framework, since
substantial changes in an odds ratio produce small changes in a probability scale.
On the other hand, these assumptions could justifiably be questioned in the legal
arena and are thus limited to our context.

Finally, it is worthwhile to note how the odds ratio formula may be used to obtain
an independent direct estimator of the mutation rate. If P1(MA) is the probability for
paternity for fathers i, of mutant children, i = 1, 2,. . , Z, and each father is "one
short of consistency" with the respective genotypes of mother and child, then an
estimator of mutation rate is found by solving for ,2, where

z
E Pik A)

^ ~~~~~~i=1

= No. locus determinations

This calculation would provide a check on the crude value obtained in step 1.
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