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Estimation of Mutation Rate from Rare Protein Variants

MASATOSHI NEI1

Knowledge of the mutation rate for protein loci is essential in resolving the current
controversy over the adaptive significance of protein polymorphisms in natural
populations. At the present time, we know very little about this rate, particularly in
higher organisms. Thus, any attempt to estimate the mutation rate is worthy of special
attention. Recently, Neel [1] used Kimura and Ohta's formula [2] for the expected
number of segregating codons in an equilibrium population to estimate the mutation
rate for protein loci. This approach is new and interesting, but there are some
problems. In this paper, I shall comment on Neel's approach and present a
mathematical formula which seems to be more useful than Kimura and Ohta's. Using
this formula, I shall also estimate the mutation rate for protein loci in man and Japanese
macaques.
The first problem I would like to discuss is whether all segregating alleles or only

rare alleles should be used for estimating mutation rate. Kimura and Ohta's original
formula refers to neutral mutations and is given by

I = 2Nv?, (1)

where I = the expected number of different codons segregating in a population at a
locus, N = effective population size, v = mutation rate per locus, and To is the average
extinction time of a mutant allele (codon) and given by 2 loge (2N). Here it is assumed
that the effective population size is the same as the actual number of breeding
individuals (the actual size in Kimura and Ohta's terminology, not the census size
including all age groups). It is also assumed that N is large, say more than 100.
Therefore, if we know I, N, and To, we can estimate the mutation rate. In practice, it is
difficult to determine the number of segregating codons at each locus, so that this
number is estimated by the number of variantalleles (number of segregating alleles
minus one).

It is instructive to know that equation (1) can be obtained by integrating Wright's
formula [3] for the allele frequency distribution under irreversible mutation, that is,
¢1(x) = 4Nv/x. In this case (I,(x)dx represents the expected number of neutral alleles

Received October 4, 1976; revised January 10, 1977.

This work was supported by grants from the National Institutes of Health and the National Science
Foundation.

1 Center for Demographic and Population Studies, University of Texas at Houston, Houston, Texas
77030.

© 1977 by the American Society of Human Genetics. All rights reserved.

225



or codons whose frequency is in the range between x and x + dX. Thus, if N is large,
the total number of segregating codons is

1-112N

I = f 4Nvx-1dx - 4Nv loge(2N), (2)
1/2N

which is identical with equation (1). Furthermore, when n individuals are sampled
from the population (1 << n s N), the expected number of segregating codons in the
sample is given by

1 2n 1

I, =>F1(x)[ -X2n - (1 - x)2n]dx = 4Nv l1/r
0 r= 1

[4], which may be written as

I, = 4Nv[log,(2n - 1) + y] (3)
approximately, where y is Euler's constant, 0.577. The expected number of segregat-
ing codons in the sample can also be computed by

II = f (D,(x)dx = 4Nvloge (2n) (3')
112n

approximately. This is very close to equation (3) when n is large.
From the definitions of equations (1) and (2), it is clear that I should include all

segregating codons irrespective of their frequencies in the population. Because of this
property, Neel used not only rare ("private" in his terminology) alleles but also
polymorphic alleles to estimate the number of segregating codons. In practice,
however, the number of segregating alleles is not always equal to the number of
segregating codons, since there may be more than one codon difference between a pair
of alleles. Mathematically, the model used in deriving equations (1) (3') is called the
infinite sites model [5]. In this model, a gene is regarded as a long sequence of codons,
and at each codon site, a pair of codons, the mutant and its original type codons, are
considered. When the identification of codons is impracticable, however, it is more
appropriate to use the so-called infinite alleles model. In this model an infinite series of
multiple alleles (codon sequences) is considered at a locus, and every new mutation is
assumed to result in a novel allele. With this model, the expected number of different
alleles in a sample of n individuals is given approximately by

Ia = f 4Nv(1 - x)4Nv-lx-ldx (4)
1/2n

[6]. Clearly, the expected number of segregating alleles obtained from this formula (Ia
- 1) is different from I, in equation (3'). Strictly speaking, therefore, equation (1) or

(3') cannot be used for estimating mutation rate from the number of segregating alleles.
However, if we use only rare alleles, the problem of identifying the segregating

codons can be avoided. Let q be a small quantity, say 0.01. Then, with the infinite sites
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model, the expected number of rare alleles (codons) whose frequency is less than q in a
sample of n individuals (½/2n < q) is given approximately by

q

is= f 4(x)dx = 4Nv loge (2nq). (5)
112n

On the other hand, if we use the infinite alleles model [7], the expected number of
alleles whose frequency is in the range between x and x + dx is given by 4) (x)dx =
4Nv(l - X)4Nv-1x- dx. Therefore,

q

J D(x)dx
I n(x112n

is again given approximately by equation (5), unless 4Nv is extremely large, which is
unlikely. Namely, as far as rare alleles are concerned, both the infinite sites and
infinite alleles models lead to the same formula. This is because rare alleles are mostly
of recent origin and differ from the high frequency allele or alleles only by one codon
difference.

There are some other advantages in using rare alleles in the estimation of mutation
rate. First, formula (5) is relatively insensitive to natural selection, so that it can be
used for estimating the frequency of all mutations resulting in mildly deleterious,
neutral, and advantageous effects. Let A' be a mutant allele and A be its original type
allele, and denote the fitnesses of AA, AA', and A'A' by 1, 1 + s, and 1 + 2s,
respectively. The allele frequency distribution under irreversible mutation is then given
by

= 4Nv 1 - e 4(lx (6)

[3]. It is clear that when x << 1, 4D,(x) is given approximately by 4Nvlx, the formula
for neutral mutations. In the above we considered the simplest case of genic selection.
In practice, however, for almost any kind of advantageous mutation (dominant,
recessive, or overdominant), D1(x) = 4Nv/x approximately holds, as long asx is small
[8]. For deleterious mutations, s takes a negative value, but the above statement
remains correct if 4NIsIq is small. When 4NIsIq > 1, however, 4)l(x) may become
smaller than 4Nv/x even for a small x. Therefore, if we exclude deleterious mutations
with 4NIsIq > 1, formula (5) applies to virtually all types of mutations. This is of
course not true with formula (1) or (4).

Second, the frequency of rare alleles reaches the equilibrium value faster than the
total number of alleles when population size changes. In the evolutionary process,
population size changes considerably, and thus it is often questionable whether the
equilibrium formulae given above really hold for a natural population. For example,
once a population goes through a bottleneck, it takes a long time for the genetic
variability of the population to reach the equilibrium level. This is particularly so with
respect to average heterozygosity; it takes about 4N/(4Nv + 1) generations for this
quantity to be close to the equilibrium value [9]. The number of alleles given by

227



equation (4) responds to the change in population size faster than average heterozygos-
ity, but still it takes some time for the equilibrium value to be attained. If we consider
the number of rare alleles alone, however, the equilibrium value is attained rather
quickly [10]. This is because many of the rare alleles are recently arisen mutations.
Therefore, formula (5) is likely to give a more reliable estimate of mutation rate than
the other formulae when a relatively short history of the population is known.

In the above discussion we used the infinite sites and infinite alleles models. One
might argue that Ohta and Kimura's [11 ] stepwise mutation model is more appropriate
to the current data on protein variants than the above models, since most of the data
have been obtained by electrophoresis. Recently, Kimura and Ohta [12] derived an
approximate distribution of allele frequencies for this model. This distribution is
somewhat complicated, but indicates that if 4Nv << 1, formula (5) is again
applicable. If 4Nv is not small, however, the expected number of rare alleles for a
given value of 4Nv is slightly reduced compared with that for the infinite sites or
infinite alleles model. This is because back mutation may occur with a certain
probability in this model. Therefore, if we apply formula (5) to electrophoretic data,
mutation rate may be underestimated to some extent even if we make a correction for
the detectability of new mutations by electrophoresis. In practice, however, an
appreciable portion of the mutational changes in electrophoretic mobility do not appear
to follow the stepwise mutation model, and the infinite alleles or infinite sites model
may be as realistic as the stepwise mutation model [13].

Another factor that would affect the above formulae is gene migration. Human
populations often consist of many loose units of random mating among which
migration occurs. For neutral genes, such a population can be treated approximately as
a single random mating population, disregarding the substructure of the population
[14]. This is particularly so with respect to the frequency of rare alleles (T. Maruyama,
personal communication, 1976). For deleterious genes, however, this is not true, and
the effective size of local populations is an important factor for determining the
frequency of the mutant alleles [15]. Therefore, if we use the effective size for the total
population in formula (5), the mutation rate obtained would be an underestimate. On
the other hand, if we use the effective size for local populations, it would be an
overestimate. If both estimates are available, the true mutation rate is expected to lie
between them. In practice, it appears that the most serious error is introduced by use of
an improper estimate of effective population size.
The second problem to be discussed is the effect of sample size on the number of

different alleles. Obviously, the number of alleles is highly dependent on sample size;
it is expected to be smaller when sample size is small than when this is large even ifNev
remains the same [6]. Neel used a formula in which sample size is equal to population
size, though his sample size was actually smaller than the total population. When
sample size is smaller than population size, formula (3) or (5) should be used.

Let us now estimate the mutation rate for protein loci using Neel's data from man.
He has presented all the necessary quantities except q for six Indian populations in
South America. In his estimation of mutation rate, however, only the data from the
Yanomama and Makiritare populations were used. Genetic and linguistic studies on
Indian populations in South America [16-18] suggest that the Yanomama population
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has been in relative isolation from other Indian tribes for a considerable period of time
(possibly 1,600 - 3,300 years). If we assume that there was no migration between the
Yanomama and its surrounding populations for the last several hundred years, the
mutation rate can be estimated from this population. Examining 17 genetic loci (15
proteins) by electrophoresis, Neel and his associates found three rare alleles (one
ceruloplasmin and two albumin variants) in an estimated sample of 1,206 adults.
Therefore, the estimate (I1) of I, is 3/17 = 0. 177. The relative frequencies of rare
alleles have not been determined critically, but q = 0.01 seems to be adequate for these
data [19]. On the other hand, the effective size of the Yanomama population has been
estimated to be 5,760. Therefore, the estimate of mutation rate per locus (v) is given by
i8,[4N loge (2nq)] = 0.177/(23,040 x 3.18) = 2.4 x 10-6.

The standard error of this estimate can be obtained from the variation of the number
of rare alleles among loci. The variance of the number of rare alleles for this set of data
is 0.2794, which is considerably larger than the mean (I,). Therefore, the standard
error of vi is 1.7 x 10-6. Note, however, that this standard error does not include the
error associated with the estimation of the effective population size. Therefore, this
value should be regarded as a minimum standard error.
To compare our estimate of mutation rate with Neel's (8 x 10-5), we must multiply

it by three to make a correction for undetectable mutations by electrophoresis. Even
this corrected value (7.2 x 10-@) is smaller than his estimate by one order of
magnitude. This difference occurred partly because of the difference in the method of
estimation and partly because he used both the Yanomama and Makiritare rather than
just the Yanomama. The language of the Makiritare is also considerably different from
the languages of other Indian tribes, but this tribe seems to have had gene exchange
with their neighbors more often than the Yanomama [17, 18]. Therefore, it is
questionable whether we can use this population for our purpose or not. However, to
make our estimate comparable with Neel's, I computed the mutation rate for these two
tribes combined, assuming that these tribes have been isolated from other Indian
populations for a sufficiently long time. The results obtained are given in table 1
together with those for the Yanomama. Here I again used Neel's data on N, I8, and n
and q = 0.01. It is seen that the estimate of mutation rate for the two tribes combined is
somewhat higher than that for the Yanomama but still smaller than Neel's estimate
even if we make the correction for undetectable mutations by electrophoresis.

TABLE 1

ESTIMATES OF THE MUTATION RATE PER LOCUS FOR PROTEIN LocI FROM NEEL'S [1] DATA FOR
INDIAN TRIBES IN SOUTH AMERICA. SEVENTEEN PROTEIN LocI WERE USED.

Estimated Estimated Estimated
Total Effective Adults Rare Alleles

Tribe Population Size (N) Sampled (n) per Locus (18) Mutation Rate

Yanomama ...... 12,000 5,760 1,206 0.177* 2.4 x 10-6 1.7 X 10-6
Yanomama and

Makiritare 13,500 6,480 1,474 0.2941t 3.4 x 10-6+ 2.7 X 10-6

* One variant in ceruloplasmin and two variants in albumin.
t One variant in ceruloplasmin and four variants in albumin.
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The second set of data we can use for estimating mutation rate is that of the Japanese
macaque, Macaca fuscata. Nozawa et al. [20] surveyed the allele frequencies at 29
protein loci in this island monkey species, examining about 1,000 individuals
distributed all over Japan. The results obtained from this survey and other supplemen-
tary data (K. Nozawa, personal communication, 1976) are presented in table 2. The
total census size of this species at present is 20,000 - 70,000. There is some evidence
that the size was somewhat larger than this about 40 years ago but probably not much.
This species apparently diverged from the continental macaque species 400,000 -

500,000 years ago when the Japanese Islands were separated from the Eurasian
continent [21]. Studies on the genetic distance between this species and the continental
macaque species support this view [22]. While we know nothing about the census size
of this macaque in old days, it is likely that it has been more or less stable for at least
several hundred years. The effective size of this species seems to be about one-third of
the census size [23]. In the following computation, therefore, we assume that the
effective population size of this species is 20,000. The average number of genes
examined per protein locus was 2n = 1,987. (Sample size varied with protein locus to
a small extent.) Therefore, loge (2nq) is 2.989 for q = 0.01. From the data in table 2,
the mean and variance of the number of rare alleles per locus with the cutoff point ofq
= 0.01 become 0.552 and 0.7562, respectively. Thus, the estimate of mutation rate is
v = 2.3 x 106 ± 0.7 x 10-6. This value is very close to that for the Yanomama
population.

In the above computations I used the cutoff point of q = 0.01. In practice, a small
change in q does not affect the estimate appreciably if n is large. For example, if we use
q = 0.05 in the data from Japanese macaques, the number of rare alleles per locus
increases to 22/29 = 0.759, but the estimate of mutation rate does not change very
much. Namely, it is 2.1 x 10-6 + 0.6 x 10-6. On the other hand, if we useq = 0.005,

TABLE 2

ALLELE FREQUENCIES FOR PROTEIN LocI IN JAPANESE MACAQUES

Proteins A, A2 A3 A4 A5

Loci with variant alleles:*
Protease inhibitor ........ .982 .016 .002 ...

Transferrin ............. .947 .031 .016 .004 .002
Phosphoglucomutase 1 .989 .009 .002 *-
Phosphoglucomutase 2 .999 .001 *-. ...
Hemoglobint ........... .989 .011 ... ... ...

Phosphohexose isomerase . .960 .036 .002 .0015 .0005
Carbonic anhydrase 1 .... .929 .071 ... ... ...

Acid phosphatase ........ .999 .001 ... ... ...

Malate dehydrogenase .... .983 .009 .008 ...

Lactate dehydrogenase A .985 .008 .007 . . . ...

Lactate dehydrogenase B .996 .004 . . . . . .

Esterase ............... .980 .016 .004 ...

NOTE.-Data obtained from Nozawa et al. [20] and K. Nozawa, personal communication, 1976. Ai = ith most frequent
allele at each locus.

* Loci with no variant alleles: albumin, haptoglobint 6-phosphogluconate dehydrogenase, cholinesterase, alkaline
phosphatase, leucine aminopeptidase, throxin-binding prealbumin, adenosine deaminase, NADH-diaphorase, glucose-6-
phosphate dehydrogenase, tetrazolium oxidase, isocitrate dehydrogenase, prealbumin, catalase, amylase.

t Controlled by two loci.
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the number of rare alleles per locus is now 0.3793. However, the estimate of mutation
rate is 2.1 x 10-6 + 0.7 x 10-6. Nevertheless, it is not right to choose q arbitrarily,
particularly after the survey of allele frequencies. Ideally, q should be determined
when the survey is planned.

It should be noted that the above estimates of mutation rates are subject to a rather
large standard error due to random genetic drift. To get a more reliable estimate, we
must screen a larger number of individuals for a larger number of loci. It is also
important to know the effective population size more accurately. In this connection,
one might ask whether it is preferable to survey more individuals or more loci when the
total number of genes to be examined is fixed. The answer to this question is "more
loci," unless one is interested in deleterious mutations. This is because the number of
different alleles in a sample increases as a logarithmic function of sample size.

Earlier, I mentioned that formula (5) does not apply to deleterious genes with 4NIs Iq
> 1. This does not mean that the rate of mutations to deleterious genes cannot be
measured by formula (5). Obviously, if we choose a small value of q and use a large
sample size, 4NIsIq becomes small, and thus the rate of deleterious mutations,
including other types of mutations, can be estimated. When q is relatively large,
however, formula (5) would give an underestimate in the presence of many deleterious
mutations. Therefore, it is important to use a small value of q if one is interested in
measuring the total mutation rate. On the other hand, if one is interested only in mildly
deleterious, neutral, and advantageous mutations, a relatively large value of q should
be used with a relatively small value of n. In general, however, I recommend that q =
0.01 be used.
The present method depends on the equilibrium theory of allele frequencies and has

a disadvantage similar to the indirect method of estimating mutation rate for deleterious
genes in human genetics. It is, however, simpler than the direct method of counting
mutant alleles. As long as a reliable estimate of effective population size is available, it
can be used fairly easily.

SUMMARY

A method for estimating the mutation rate for protein loci from the number of rare
alleles in the population is presented. It seems to have a number of advantages
compared with Kimura and Ohta's method. Applying this method to Neel's data from
American Indians in South America and to Nozawa's data from Japanese macaques,
the mutation rate for electrophoretically detectable alleles is estimated to be (2 - 3) x
10-6 per locus per generation. This estimate may not include many severely or
substantially deleterious mutations.
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