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Effects of Reproductive Compensation and Genetic Drift on
X-Linked Lethals

K. LANGE,1 K. GLADSTIEN, 1'2 AND M. ZATZ 3

INTRODUCTION

The introduction of accurate tests for the detection of female heterozygotes in
Lesch-Nyhan disease has stimulated a revival of interest in Haldane's equilibrium
theory for X-linked lethals [1]. Francke et al. [2] applied these tests to 47 pedigrees
ascertained through male probands. Only four of their probands appear to represent
new mutations. Assuming an equal mutation rate in males and females and no selective
advantage or disadvantage of normal over carrier females, one would expect 1/3 of their
probands to be new mutations. Francke et al. [2, 3] argue that the data suggest a
mutation rate in males that increases with age and is on the average higher than the
mutation rate in females. Morton and Lalouel [4] contend that the excess of familial
cases is probably due to biased ascertainment. While agreeing with Morton and
Lalouel about the possibility of biased ascertainment, Vogel [5] emphasizes replication
dependent mutation as a biological explanation for a higher average mutation rate in
males.
None of these authors seriously entertains the idea of a selective advantage of carrier

females over normal females. In the present paper we wish to discuss this hypothesis in
some detail as well as comment on the possibility of genetic drift. We do not wish to
imply that either a higher mutation rate in males or biased ascertainment is an
unrealistic hypothesis. It may be that a combination of forces has produced the
Lesch-Nyhan pedigrees of Francke et al. [2].

REPRODUCTIVE COMPENSATION

Women have practiced various forms of contraception and induced abortion since
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classical Greek times. For instance, the medieval Islamic world governed coitus
interruptus by explicit law, and in the 17th century, birth control was common among
the bourgeoisie of Geneva and the peers of France [6]. But effective birth control has
probably not been widely used in industrial cultures for more than a few generations.
We will argue, however, that even a few generations of contraception and induced
abortion may be enough to shift the balance between selection and mutation for
X-linked lethals.
To be specific, if heterozygous women are willing to compensate for the birth of

defective sons, then they will inadvertently overproduce carrier daughters who can
further propagate the defective gene. Reproductive compensation will be particularly
effective in increasing the proportion of familial cases if selection against the affected
sons occurs in utero or affected sons show symptoms at an early age. In either case a
mother is more likely to have time during her childbearing years to reproductively
compensate. Thus one would expect reproductive compensation to have a greater effect
in Lesch-Nyhan disease than in, say, Duchenne muscular dystrophy.

There are two plausible family planning models that lead to reproductive compensa-
tion. The first model postulates that parents desire n phenotypically normal children.
Holloway and Smith [7] show that under this scheme normal females have a fitnessf
about 3/4 that of carrier females. This holds for all n. (See Appendix A for a different
derivation.)
The second family planning model postulates that parents desire at least b normal

boys and at least g girls. In Appendix A we explain how to compute fitness values
according to this second model. Table 1 records the fitnessf of normal females relative
to carrier females for various values of b and g. (We assume in our computations that
106 boys are born for every 100 girls.) Table 1 shows thatf is very sensitive to how
highly sons are valued compared to daughters.
The X-linked trait, testicular feminization (4) syndrome, presents an interesting

contrast to our conclusions so far. Affected boys are sterile and are perceived as
outwardly normal girls. Under the first family planning model, normal females will be
just as fit as tf carrier females. But under the second family planning model, affected
boys are counted as girls. This leads to the fitness values given in table 2. Note that
normals can actually be more fit than tf carriers when g is greater than b.

TABLE 1

FITNESS VALUES OF NORMAL FEMALES RELATIVE TO CARRIER FEMALES

\g 0 2 3 4
b\

0 ........ ... 1.00 1.00 1.00 1.00
1 ........... .50 .65 .79 .88 .93
2 ........... .50 .55 .64 .74 .82
3 ........... .50 .52 .57 .63 .70
4 ........... .50 .51 .53 .57 .63

NOTE. -The minimum number b of normal boys desired is listed in the first column and the minimum number g of girls
desired in the first row. Without reproductive compensation the fitness would be 1.
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TABLE 2

FITNESS VALUES OF NORMAL FEMALES RELATIVE TO TESTICULAR FEMINIZATION (Qf) SYNDROME CARRIER
FEMALES

\g 0 1 2 3 4
b\

0 1.53 1.53 1.53 1.53
1 ....... .50 .71 .95 1.14 1.27
2 ....... .50 .56 .68 .82 .97
3 ....... .50 .52 .58 .66 .76
4 ...... . .50 .51 .54 .58 .65

NOTE. -The minimum number b of normal boys desired is listed in the first column and the minimum number g of
girls desired in the first row. Without reproductive compensation the fitness would be 1.

BALANCE BETWEEN SELECTION AND MUTATION

It would be useful to know how rapidly reproductive compensation can shift the
balance between selection and mutation to a new equilibrium. The frequency of carrier
females at equilibrium is [2f/(2f - l)](A + v), where ,i and v are the female and male
mutation rates, andf is the fitness of normal females relative to carrier females [7]. In
Appendix B we show that equilibrium is approached at approximately the geometric
rate (2j)-1. Our explicit handling of the dynamics of approach to equilibrium
supplements the approximate method of Morton [8] based on linearized systematic
pressures. We also provide in equations (7) and (8) of Appendix B the necessary
formulas to predict the probability that the mother of an affected boy is a carrier. These
formulas can be compared to the treatment of Felsenstein [2].

Table 3 gives a specific numerical example to illustrate our mathematical develop-
ment. At generation 0, the population starts at the equilibrium determined by ,u = v =
10-5 andf = 1. However, parents at generation 0 and subsequent generations practice
reproductive compensation at a level specified byf = 3/4. In table 3, observe that both
the probability w,, and the frequency zn, are more than halfway to their new equilibria in

TABLE 3

APPROACH TO EQUILIBRIUM UNDER REPRODUCTIVE COMPENSATION

0 .......................... 4.00 x 10-5 .667
0 . .....4.67x 10-5 .727
2 .......................... .1 4X 10-5 .757
3 .......................... 5.41 X 1O-5 .773
4 .......................... 5.60 X 10-5 .783
4 .......................... 5.74 x 10-5 .789
6 .......................... 85.8 X 10-5 .793
7 .......................... 5.88 X 10-5 .795
8 .......................... 5.92X10-5 .797
9 .......................... 5.95 X 10-5 .798
10 .......................... 5.97 x 10-5 .799
X0

.......................... . ....6.00X 10-5 .800

NOi E. -1 is the generation number, z,, is the frequency of carrier females, and w,, is the probability that the mother of an
affected boy is a carrier. The mutation rates ,.c and v are 10 5, and the fitnessf of normal females is 3/4.
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just 2 generations. The speed of approach to equilibrium is simply a consequence of the
rapid turnover of lethals. In fact, the average X-linked lethal persists for fewer than 2
generations [9].

GENETIC DRIFT

Genetic drift is defined as the random fluctuation in gene frequencies caused by
Mendelian segregation in a finite population. For X-linked lethals, one is interested in
the frequency of carrier females. The mean of this frequency will be the equilibrium
frequency. For large populations which are neither declining nor growing, we show in
Appendix C that the standard deviation of the carrier frequency is

__ [(1V)+ V( -1)b21 (I [( 2)2 2 t)

Vit~~~~~ ( 2(

where n is the number of normal females, q is the probability of a female birth, and c2 is
the variance of the number of children produced by a carrier female. When n is quite
large, the carrier frequency is approximately normally distributed.
To illustrate the magnitude of the fluctuations possible, suppose g = v = 10-5,f =

1, n = 106, q = 1/2, and a-2 = 2. Then the carrier frequency has mean 4.00 x 10-5and
standard deviation .73 x 10-5. For this particular example, genetic drift cannot be
ignored. However, for n = 108 (i.e., about the number of females in the U.S.
population), the standard deviation is only .73 x 10-6.

DISCUSSION

Vogel [5] has summarized the human data bearing on Haldane's theory of the
balance between selection and mutation in X-linked lethals. For Duchenne muscular
dystrophy, most of the empiric evidence cited by Vogel lends support to Haldane's
theory. The Brazilian study of Zatz et al. [10, 11 ] and the Italian study of Danieli et al.
[12] add further support. We agree with Vogel's suggestion that the data should be
reexamined when a precise carrier detection method is perfected. Vogel does not
mention testicular feminization syndrome. This X-linked genetic lethal may provide
data comparable to the Lesch-Nyhan data if the carrier detection of Meyer et al. [13]
proves practical.
Our discussion of reproductive compensation has been frankly speculative. It may

be that some carriers are deterred from having further children by the birth of affected
sons. The reproductive behavior of carriers is certainly governed in part by the
perceived severity of each disease, by its duration, and by the support provided by the
surrounding community. Furthermore, genetic counseling will surely influence the
balance between selection and mutation for the X-linked lethals, although it may be too
early to tell in which direction this influence will operate.

If more population studies on Lesch-Nyhan disease are conducted as suggested by
Morton and Lalouel [4] and Vogel [5], certain cautions should be borne in mind. First,
the studies should definitely be large scale. Genetic drift can be substantial in
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Scandinavian size populations. Second, the population under study may not be in
equilibrium due to the recent introduction of reproductive compensation or a drastic
change in mutation rates. If a new equilibrium is being approached, then the frequency
of carrier females should lie between the old and the new equilibria. Third, if
Haldane's theory cannot account for the data, then one should follow the lead of
Francke et al. [2] and pay careful attention to the proportion of carriers among
grandmothers of probands. As pointed out in Appendix B, this proportion near
equilibrium will be independent of the female and male mutation rates and will
approach (2J)-1. If one observes only the proportion of carriers among mothers, then
fitness and differences in mutation rate will be confounded.

SUMMARY

A revival of interest in Haldane's equilibrium theory for X-linked lethals has been
stimulated by the introduction of accurate tests for the detection of female heterozy-
gotes in Lesch-Nyhan disease. Application of these tests appears to indicate an excess
of familial cases. This excess can be attributed to ascertainment bias, a difference in
female and male mutation rates, genetic drift, and reproductive compensation.
Reproductive compensation will be particularly effective in increasing the proportion
of familial cases if (1) birth control is widespread; (2) selection against affected males
acts in utero; (3) affected sons show symptoms at an early age; and (4) sons are more
highly valued than daughters. We demonstrate how only a few generations of
reproductive compensation are sufficient to achieve an approximate equilibrium
between selection and mutation showing a high proportion of familial cases. We also
discuss the random fluctuations around equilibrium caused by genetic drift.
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APPENDIX A

Here we derive the formulas necessary to calculate fitness values for the two family planning
models discussed in the text. In the simpler model, a husband and wife desire n phenotypically
normal children. If Gn is the number of girls born to such parents, and p and q are the
probabilities of their getting a boy or girl at any given birth, then the expected number of girls is
EG n = nq if the mother is normal. If the mother is a carrier, then the first child is an affected boy
with probability p/2, a normal boy with probability p/2, and a girl with probability q. Since we
count only girls,

EGn PEGn+22EGn-1+q(I +EGn-1).

Rearrangement gives the recurrence relation

EGn = EGnl1 +
2 - 2nq

1h+q 1+q (1
The fitnessf is by definition the ratio
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nq 1 +q 3
2nq = 2 4
l~~q ~ 2 4'1+q

which is the result in reference [7].
In the more complex family planning model, parents desire at least b normal boys and at least

g girls. Let G bo be the number of girls born to such parents. To calculate EG b,, we first examine
the boundary terms EGbo and EGO, Writing recurrence relations similar to equation (1), one
finds

[ bq for normal mothers
EGb0= 2bq

for carrier mothers
P

It is also clear that EG 00 = g except for mothers carrying the tf gene. In this case EG og turns out
to be the smaller quantity 2gq/(l + q) since half the sons are counted as girls.
To calculate EGbg for b,g > 0, one can use the boundary terms and the following recurrence

relations for normal mothers

EGbg = pEGb- 1g-q(1 + EGbg);

for carrier mothers

EGbg = EGbg + '2EGb-ig0+q(l +EGbl ),

which reduces to

EGbg= 1 +q EGblg +
I q EGbg*, + I q and

for mothers carrying the tf gene

EG bg P EG b +§ EGbg+q(1 +EGbg-1)

which reduces to

EGbg= EGb-1,g + EGb- + q

The above recurrence relations lead directly to the results in tables 1 and 2. Note, however,
that one can equivalently calculate fitness based on the ratio of expected number of boys. This
equivalence is a consequence of the Optional Sampling Theorem ([14], Chap. 6, corollary 3.3).
For a given mother, one need only observe that the ratio of her expected number of girls to her
expected number of boys is q/p, regardless of the family planning model which she follows.

APPENDIX B

Letf > 1/2 denote the fitness of normal females relative to carrier females, and let ,u denote the
female and v the male mutation rate. If xn and yn are the frequencies of normal and carrier
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females at generation n, then it suffices for our purposes to follow the ratio z n = ynlxn. (In
practice, y and Z n will be virtually the same.) We can derive a simple recurrence relation for z n
under the assumptions of (1) discrete generations; (2) infinite population size; (3) random mating
of normal males with normal and carrier females; (4) no back mutation; and (5) neglect of
migration effects. This recurrence relation can be written as

xn Lfh/(1 T) + (1 -A)V]+Yn i[ (1 -i) + 2 (1 -v) + 1 /v]
Zn-

Xn-LJ(1 - )(l v) +Yn (1 2 A)

f(L + v, -2 v) + (2 + 2-A(n-)
f(1 - )(1 -i) + ( 2- M -v)Zn-

_ a +bZn- (2)
c + dZn-1

where the constants a, b, c, and d are defined in the obvious way.
Functions of the kind T(z) = (a + bz )I(c + dz) are known as linear fractional transformations

[14]. Iteration of equation (2) yields Zn = Tn(Zo), where Tn is the n-fold composition of T with
itself. Fortunately, T'(zo) can be explicitly expressed as

Tn(Zo) -s0 = Kn (so -s(zo -so) (3)
Zo -Si nZO-

where

c +ds, (4)
c +dso

and so and s1 are the roots of the quadratic 0 = dz2 + (c - b)z - a. We take so to be the larger
root, so = [(b - c) + V (c - b)2 + 4ad]/2d, and s1 to be the smaller root.

Our aim is to show that regardless of the initial value Z0, the iterates Zn tend to s0 at the
approximate geometric rate (2ff1. Let us first find a good approximation to s0. If we note that

V/(c -b)2 + 4ad = (c -b) 1 +4adI(c-b)2

b){l+ (c 2ad +a[((c

it follows that

a-b + 0(a2)

= f2t '+v) + 0(W (5)
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where w = max(4i,v), and 0(t) means a quantity such that 0(t)lt remains bounded in absolute
value as t-wo. In a similar manner

sl= 1 - 2f + 0(w) (6)
Substitution of equations (5) and (6) in (4) yield K = 1/(2J) + O(w). The root so is the approxi-
mate equilibrium frequency of carrier females previously found by Holloway and Smith [7 ]. Since
0 < K <1, 50-s1 > 0, and (z0 - S1) - Kn(ZO-sO) > min(so-s 1,z o- s ) > 0, it can now
be seen from equation (3) that z n tends monotonically to zo and that the explicit estimate
lzn -Sol C Knlo -solmax[l,(so - sl)(zo -s1l)-]holds.
Next let us consider an affected boy and calculate the probability that his mother is a carrier.

Given that the boy belongs to generation n, this conditional probability is

Yn-(I + )
Wn

Xn f +Yn(2 +2

(1 +/)Zn-1 (7
2ftL +0( + U)Zn-l

The sequence wn tends monotonically to a limit w. If we assume ,i and v are of comparable size,
then

/L +1! +0(w). (8)2f. +v*

In a similar vein the mother of a carrier daughter is herself a carrier with a probability that tends
monotonically to 1/(2f) + 0(X). Felsenstein considers the casef = 1 in reference [2].

APPENDIX C

Certain results from the theory of branching processes are necessary to establish our assertions
about genetic drift [14, 15]. In particular, we wish to consider the equilibrium distribution for a

subcritical branching process with immigration. The entities in our branching process are carrier
females. Carrier females can produce further carrier females, which in turn can produce even
further carrier females and so forth. Eventually, however, every line of carrier females goes
extinct. This would spell the end of the branching process if the population of carrier females
were not continually replenished by mutants produced by the population of normal females.
Assuming that the population of normal females is large and of constant size, the number of
carrier females eventually reaches an equilibrium between extinction and immigration [13, 14].
The generating function Q3(S) for the equilibrium number of carrier females satisfies the

functional equation

QAQ2(S)]Ql(S) = Q3(S), (9)

where Q2(S) and Q 1(s) are the generating functions for the number of carrier females produced in
a single generation by a carrier female and the whole population of normal females, respectively.
Let cowi and o-r2 be the mean and variance of Qj~s). We wish to find W3 and 032. Differentiating
equation (9) and setting s = 1 yields

(03 1~2 (10)

Differentiating equation (9) a second time and setting s = 1 gives an equation for the second
factorial moment of Q3(S). Straightforward algebra then shows
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2 o' 2(1 -w0)) +Wi47102 (11
3= (1 -o2)2(l + &)2)

Skellam [16] gives these formulas when Q 1(s) and Q2(s) both follow Poisson distributions.
Our task now is a more careful specification of equations (10) and (11) in terms of the

mutation rates g and v, the probability q of getting a girl at each birth, the fitnessf of normal
females relative to carrier females, and the number n of normal females in the underlying
population. But we first need a simple result about generating functions. Suppose Q(s) is a
generating function with mean c and variance 0-2. Then the generating function Q(1 - a + as)
has mean ax and variance a20i2 + a(1 - a)w. For a near 0, this variance is virtually the same as
the mean aw.

Next let Q(s) be the generating function for the number of children born to a normal female.
(Q(s) still has mean c and variance o.2.) Since the population of normal females is stable, qw =
1. (This equality and those that follow are only approximate.) One can also show that the
generating function Q 1(s) of equation (9) satisfies Q 1(s) = Q'(l - a + as) with a = q(p. + v). It
follows that o1 = cr12 = n(it + v). Now let Q(s) be the generating function for the number of
children born to a carrier female. In this case, the mean number of daughters is qw = f-1, and
Q2(s) = Q(1 - a + as) with a = hq. Thus (02 = (2f)- and cr22 = ( q)2o-2 +
(1 - Jq) (21)-1, where (72 is the variance if the number of children born to a carrier female. Sub-
stituting directly into equations (10) and ( 11) shows that the frequency of carrier females has mean

(0C3_ 2f (t+V) (12)
n 2f-1I

and standard deviation

3 1 [ (L )[l 2+ ( 2)B (13)

Equation (12) is the same as equation (5) in Appendix B.
One final remark is in order. Ifn and the mean number of carrier females Ct3 are both large, then

the frequency of carrier females will be approximately normally distributed. This conclusion
follows from the Central Limit Theorem for independent, identically distributed random variables
[14] and from the following observation. Let n = mn', where m is a moderately large integer.
Create m blocks of n' normal females each and m independent branching processes which are fed
by the mutant immigrants from each of these blocks. Then each branching process eventually
reaches the same equilibrium distribution. The overall equilibrium distribution is just the sum of
these m smaller distributions.
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