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A Unified Model for Complex Segregation Analysis

J. M. LALOUEL,"12 D. C. RAO,2 N. E. MORTON,3 AND R. C. ELSTON4

SUMMARY

Various methods have been proposed for statistical inference of major
genes by segregation analysis of human familial data. An attempt is
made to resolve some divergences that have occurred in this context by
the consideration of a unified model, with some practical applications.

INTRODUCTION

The genetic analysis of common diseases and biological correlates of affection
has stimulated various developments for the detection of major genes by statistical
methods. Extending on classical methods for segregation analysis [1-5], the
strategies proposed differ with respect to genetic models, sampling procedures,
family structures, statistical methods of analysis, and algorithms for numerical
calculations (see [6-9] for reviews and references). Although it is unlikely that
one single strategy should prove optimal in all practical applications, it is reasonable
to expect that, as more experience accumulates with actual and simulated data,
some convergence should emerge in several respects.

This paper attempts to resolve divergences that have occurred with respect to
models for complex segregation analysis of familial data by discussing a unified
model in the light of some practical applications.

GENERAL TRANSMISSION SINGLE-LOCUS MODEL AND MIXED MODEL

In early attempts to interpret patterns of familial aggregation for common
diseases, clinical geneticists have argued convincingly for the need of a model
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bridging the gap between the classical biometrical approach and single-gene
Mendelian genetics, in effect supposing that familial patterns of transmission of
a disease exhibiting incomplete penetrance would result from the effect of a major
locus whose phenotypic expression could be modulated by both the rest of the
individual's genetic composition as well as by his living environment [10-12];
that is, rather than attempting to compare the goodness of fit of familial data to
polygenic and single-gene models in different parameter spaces, a general model
of inheritance should allow for a given phenotype to result from the joint effects
of a major locus, a polygenic component, and random environment.
Such a model was explicity considered by Elston and Stewart [13]. However,

for reasons of practical feasibility, they also proposed a more tractable general
transmission single-locus model under which one could test the agreement of
transmission probabilities to Mendelian expectations; ancillary tests were later
proposed [14] to safeguard against falsely asserting the segregation of a major
gene. Morton and MacLean [15] developed, and implemented for nuclear families,
a mixed model of inheritance that subsumed a major locus with Mendelian trans-
mission, a polygenic component, and random environmental effects; in addition,
they made allowance for common sibling environment in order to prevent such
an effect from simulating dominance variance at the major locus. With increased
attention being paid to cultural inheritance as well as to trends in variance com-
ponents with age that have recently come to light in genetics [16-19], this mixed
model of inheritance has been reformulated in terms of intergenerational differences
of multifactorial transmissible factors, reflecting both polygenic and cultural
inheritance [20].

Operational characteristics of both the mixed model and the general transmission
single-locus model have been investigated by simulation studies [14, 21]. Under
the mixed model, it appeared that skewness in the distribution of a quantitative
phenotype would in some instances lead to the false inference of a major gene
[21]; this prompted the need for investigations of distributions to resolve skewness
and commingling [22] and to perform segregation analysis after transformation
to eliminate skewness in an attempt to prevent such false inferences [23, 24].
Under the general transmission single-locus model, it was found that with some
combinations of skewness, polygenic inheritance, and common sibling environment
there was similarly a serious possibility of falsely detecting a major gene effect
[14]; these observations led to the elaboration of a number of criteria that should
be met before inferring segregation of major gene [14]. As a consequence, the
process of making inferences has become more elaborate and cumbersome in
practical applications. In one instance where both models have been used to
analyze the same set of data [25], mixed conclusions have been reached, which
emphasizes the need for a unified approach reconciling both models.

FORMULATION OF A UNIFIED MODEL

Under the mixed model, inference of a major gene proceeds by rejecting the
hypothesis of no major gene; for such a hypothesis, family resemblance is im-
puted to the multifactorial transmissible component, but this component cannot
account for commingling (i.e., mixture of normal distributions). Under the general
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transmission single-locus model, the hypothesis of no major gene coincides with
that of no parent-offspring resemblance. Hence, inference of a major gene proceeds
by: (1) rejecting the hypothesis of no transmission of the major effect, under
which no family transmission is possible; and (2) accepting the hypothesis of
Mendelian transmission when tested against a more general transmission model
of major effect. Clearly, in these two approaches, type I and type II errors play
different roles.

These two approaches can be reconciled into a unified model, for which we
shall make the following assumptions. A trait x results from the joint, additive,
unobservable contributions of a major transmissible effect, g, a multifactorial
transmissible component, c, and random, nontransmitted environment, e, with
x = g + c + e. These three factors are independently distributed. Factors c and
e are normally distributed, N(O, C) and N(0, E), respectively. The major effect
results under a genetic hypothesis from segregation at a single locus of two alleles
A, a, leading to three genotypic classes with prior probabilities expressed in
terms of binomial parameter q, the prior probability of allele a in the reference
population. Genotypic effects can either be expressed as three means, P.AA, ,UAa,
and baa, or, alternately, in terms of their mean effect, E(g) = u; the distance
between opposite homozygous mean effects on the scale of x, called displacement,
t, where t = -AA-aa, and the position of the heterozygous mean effect relative
to both homozygous classes expressed by the dominance parameter d = (FLAa -

Raa)(I.LAA - I.aa)- It follows that E(x) = E(g) = u, and, denoting G the variance
due to the major effect, the variance of x, denoted V, is such that V = G + C
+ E.

Specification of the general model requires the definition of mating and trans-
mission rules from parent to offspring. We shall assume random mating; an
additional parameter could be introduced to test deviations from such assumptions,
although power seems low. If Tl, T2, and T3 denote the probabilities of transmitting
allele A for genotypes AA, Aa, and aa, respectively, Mendelian transmission
obtains for T1 = 1, T2 = ½/2, T = 0, as assumed in [15, 20]. In a general model,
we shall keep these parameters unrestricted, following [7, 13]. Multifactorial
transmission can be specified through the parent-offspring correlation conditional
on major genotypes and random residuals; denoted r, it may be constrained to
r = ½/2 as expected in a classical polygenic model, or remain unrestricted [18,
19, 26].
Dominance at the major locus leads to greater correlation between sibs than

between parent and offspring. The latter observation may, however, result from
a variety of other factors such as common sibling environment [151, trends of
variance components with age [ 19], or deviations from assumptions about linearity
and additivity of effects. More generally, multifactorial transmission may concern
cultural as well as genetic effects, and one could account explicitly for cultural
and genetic transmission in terms of two latent variables, as in path analysis of
family resemblance [16, 18, 19]. However, identification of such variables requires
particular family structures [27, 28], and the power to resolve such effects, when
identified, may be small. As resolution of such effects is not essential when the
purpose of the investigator is to detect a major gene, one may, in such instances,

818



COMPLEX SEGREGATION ANALYSIS

resort to a simpler, parsimonious model. One approach consists in allowing for
intergenerational differences in the multifactorial variance components, as well
as general transmission through the parameter r. The data can be adjusted so that
V is the same in each generation; if CA and CK denote variance components due
to multifactorial transmission in adults and young, respectively, and r, the parent-
offspring correlation conditional on major genotypes and residuals, we may define
childhood "heritability" as H = CK/V, adult "heritability" as HZ = CA/V, where
Z = CA/CK, and parent-offspring and sib correlations as rHZ½/' and 2r2H, re-
spectively.

Identification of r, H, and Z requires availability of both adult and young
children in nuclear families, while pointers [20] or other more distant relatives
can contribute additional information on such parameters for more extended
family structures. Power to resolve r and Z may be low [18]; in the following
applications, multifactorial transmission is fixed to the value r = 1/2.

Affection status may be defined by a threshold either directly on the scale x,
or on a scale y related to x via an added random component, w, distributed
N(0,W), with y = x + w. The latter formulation allows handling both a disease
classification and a biological correlate; the correlation between disease liability,
y, and the biological marker is p = [V/(V +W)]/½ [15]. Such formulation adds
flexibility to the model by allowing the phenotype to be defined by affection
status and/or a quantitative trait, which, for example, allows for the treatment
of partial quantitation or for a disregard of the biological correlate among affected
in order to test whether elevation of the correlate is primary or secondary to
affection.

STATISTICAL INFERENCE UNDER THIS MODEL

In contrast to both the general transmission and the mixed models, this unified
model allows a more thorough investigation about the existence and the nature
of familial transmission.

Setting all parameters but mean and total variance to zero provides a test of
no transmission and no commingling of normal distributions. A test of no trans-
mission of both major effect and multifactorial component can be obtained by
imposing the restrictions T1 = T2 = T3 = T and H = 0. Subhypotheses of no
transmission of major effect or no multifactorial transmission can be tested by
setting T1 = T2 = T3 = T or H = 0, respectively. When there is no evidence of
transmission of major effect, one may test a hypothesis of homogeneity of com-
mingling in parents and offspring with the restriction T' = T2 = T3 = 1- q, the
prior probability of allele A among parents. A test of no major effect is provided
by the restriction q = 0. Test of the Mendelian transmission hypothesis is achieved
by the restriction rl = 1, r2 = ½/2, T3 = 0. One may suspect, however, that the
test of T2 = 1/2 is probably more relevant to segregation analysis. When a Mendelian
hypothesis is acceptable and the hypothesis of no transmission of major effect is
rejected, further tests concerning dominance (d = 0 or d = 1) can be carried
out against the mixed model with Mendelian transmission; in order to reduce the
number of alternatives to be tested.
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ILLUSTRATIVE EXAMPLES

Salient features of the analyses of three data sets with the computer program
POINTER [20, 29] appropriately extended for the present model are reported in
tables 1, 2, and 3. The first data set concerns immunoglobulin E (IgE) levels
previously analyzed by Gerrard et al. [23] and Rao et al. [24]. The second set
consists of a random sample of 68 nuclear families where the phenotype studied
was red blood cell magnesium concentrations (RBC Mg). The third data set is
Glueck's sample of 33 kindreds ascertained through probands with elevation of
both cholesterol and triglyceride levels; results presented here concern total cho-
lesterol levels. The last two analyses will be reported more extensively elsewhere.
Only those features of such analyses bearing on the prime topic of the present
paper will be discussed here. It should be clear that, although numerous hypotheses
are tested here primarily to evaluate the consequences of various assumptions,
such elaborate analyses may not be necessary in practical applications.
The analysis of IgE data [23, 24] epitomized some difficulties inherent to

segregation analysis of a quantitative trait. The distribution of the trait, In IgE,
departed from normality, exhibiting significant skewness. Such skewness may
be real, in the sense that it results from nonadditivity of numerous effects on the
measurement scale defined, or it may reflect a mixture of two or more underlying
distributions. Resolution of skewness from commingling may be attempted by
analysis of a control sample of unrelated individuals [22]; when such data are
lacking, as was the case for the present IgE data, one may use the familial data
themselves as a crude control sample provided that families were selected at
random, although there may be a slight loss of power in such a commingling
analysis. For the IgE data, there was evidence of commingling [23]. The analysis
was repeated four ways for two types of data transformation with the two types
of likelihood: data transformed under the assumption of one or two distributional
components, and conditional or joint likelihood. All analyses under the mixed
model, except one, led to rejection of the hypothesis of no major gene (q = 0):
analysis under the assumption of one component using the joint likelihood. This
last result was interpreted by these authors [24] as the consequence of an incon-
sistency induced between parents and sibs by the transformation to a symmetric
distribution.

Table 1 gives a summary of re-analyses of these data, four ways, under the
unified model. Apart from the analysis by joint likelihood under the assumption
ofone underlying component, for which the major effect does not reach significance,
we can make the following inferences (the quoted x2 is that for the analysis with
joint likelihood under the assumption of two components): (1) support is greater
for a generalized single-locus model than for a multifactorial model; (2) a mixed
model is yet better supported, with both major gene (X23 = 39.76 - 1.69 =
38.07) and multifactorial effect (X21 = 10.53 - 1.69 = 8.81) significant; (3) the
dominance parameter estimated equal to zero under the mixed model takes values
around 0.2-0.3 when multifactorial transmission is neglected [24], probably
indicating contamination of major gene parameters by neglected additive factors;
and (4) transmission of major effect is compatible with Mendelian expectations
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TABLE 3

ANALYSIS OF CHOLESTEROL DATA UNDER THE UNIFIED MODEL

Multifactorial effect Dominance One component Two components

d = 1 5.78 4.86
d = 0.5 5.94 2.97

No d = 0 2.85 2.68
d 6.23 2.80

d = 1 5.35 0.95
d = 0.5 5.40 0.19

Yes d = 0 2.07 1.79

d 5.65 0.10

NOTE: Test statistics (X2 with 1 df ) of the hypothesis: T2 = 0.5.

(X23 = 1.69 - 0.00 = 1.69); the hypothesis of no transmission of major effect
is rejected whether multifactorial transmission is considered (X23 = 15.94 -
0.00 = 15.94) or not (X23 = 75.41 - 10.47 = 64.94), but it is clearly quite
inflated in the latter case. The previous analyses and the present ones, in testing
transmission of major effects and their agreement with Mendelian expectations,
add support in favor of the hypothesis that a significant proportion of the familial
resemblance for the IgE levels results from segregation of a recessive major gene,
in addition to other sources of transmission.
A similar analysis was carried out on a random sample of nuclear family data

on erythrocyte magnesium concentrations (RBC Mg), which is reported in more
detail in [30, 31]; only the main results are discussed here. There was significant
evidence for commingling, and again segregation analysis was repeated four
ways. Here, however, a major gene effect reached similar significance levels,
under the assumption of one underlying component, whether the conditional or
the joint likelihood was used (table 2). A multifactorial model is better supported
than a generalized single-locus model, leading to a heritability estimate H = 1.
Here again, both major gene and multifactorial transmission are significant under
a mixed model. The dominance parameter is estimated as d = 0.3 when a mul-
tifactorial effect is considered; it is estimated as d = 0.4 when such effect is
absent. The hypothesis of no transmission of major effect is rejected, and trans-
mission agrees with Mendelian expectations. Note that the latter hypothesis would
have been rejected by a model neglecting multifactorial transmission when con-
ditional likelihood is used.
Some aspects of a re-analysis of cholesterol levels in 33 kindreds [32, 33] are

relevant to the present discussion. Only the conditional likelihood was used to
take sampling into account. Commingling being significant, segregation analysis
was repeated under assumptions of one and two underlying distributions. Tests
of the hypothesis T2 = .5 in both cases, for various values of the dominance
parameter, with or without multifactorial transmission, seem to indicate that here
this parameter is sensitive to distributional assumptions (table 3). This was not
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observed in the two other data sets, which may be due to the fact that the estimated
gene frequency was smaller by an order of magnitude for cholesterol levels.

CONCLUSION

We have shown how the general transmission single-locus model and the mixed
model can be reconciled into a single, unified approach. While straightforward,
this had not been done until now, although it was proposed by Boyle and Elston
[26]. This should help resolve some disagreement expressed with regard to meth-
odology in segregation analysis. The need for such a unified approach was implicit
in [25], and we feel the data analyses discussed here clearly emphasize this point.

Indeed, we have seen that no conclusion could be reached by comparing like-
lihoods of models in disjoint parameter spaces. This is illustrated by the fact that
while a generalized single-locus model is better supported than a multifactorial
model for IgE, the converse is observed for RBC Mg. Testing that the transmission
probabilities are equal to Mendelian expectations should help prevent falsely
inferring the segregation of a major gene under the mixed model. Testing that
they are equal is a test of no transmission of a major effect alone only under the
unified model, as this test, in the framework of the general transmission single-
locus model, is an overall test of no parent-offspring resemblance, whether due
to the transmission of a major effect or residual family resemblance.
While we feel this model will, in most instances, have sufficient generality,

segregation analysis has become more and more cumbersome. Perhaps some
simplification is in order. In particular, the task of analyzing data and presenting
and discussing them could be simplified if one could do away with the need for
repeated analyses with joint and conditional likelihood, or under various trans-
formations of the data.
The operational value of such alternative strategies should be tested with both

real and simulated data. While for nuclear family data a joint likelihood approach
is in theory more informative about population parameters such as a gene frequency,
a conditional likelihood approach is likely to be less sensitive to selection, temporal
trends, or other deviations from assumptions of the model that tend to induce
systematic differences between parents and offspring that may be relevant to the
parameters of the model that characterize the model of transmission.
The results presented in table 3 indicate that, at least for not too common traits,

using a scale of measurement that eliminates skewness in a trait may lead to
deviations from true Mendelian expectations. As it may be inconvenient in practice
to repeat the analysis under various transformations of the data, the relative
merits of at least two possible strategies need to be evaluated. One consists of
analyzing the data after a transformation to remove overall skewness. Although
this should reduce the risk of falsely inferring segregation of a major effect, it
also implies a systematic loss of power; moreover, such transformation may
affect transmission probabilities, as emphasized above. Another strategy would
consist of analyzing the data using a transformation that removes residual skewness
under the assumption of commingling, when the latter is significant. If commingling
results from a Mendelian factor, then transmission should be compatible with
Mendelian expectations; if not, one would hope that the hypothesis of Mendelian
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transmission will be rejected. This latter approach should in theory be more
powerful, but its robustness has yet to be examined. Indeed, there is little support
at the moment to favor this strategy. In any case, whenever the analysis results
in significant departure from Mendelian expectations, tests of heterogeneity among
partitions of the data, whenever feasible, allow further investigation of this matter.
No doubt more experience with real data as well as simulation studies will help
to clarify this issue. Whatever decision an investigator may make, he should
consider a test of T2 = 1/2 before accepting the mixed model.
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