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SUMMARY

A multivariate path model parameterizing the sources of familial ag-
gregation and coaggregation of systolic blood pressure and weight, as
well as their tracking across time, is applied to longitudinal data collected
in Muscatine, Iowa. Genetic, common household, and individual en-
vironmental effects, pleiotropy, and a direct regression effect of blood
pressure on weight are parameterized. The sample consisted of 998
individuals distributed in 261 families of whom 601 were measured on
four successive occasions. The data were divided with times 1 and 2
forming group 1, and times 3 and 4, group 2. Model fitting and estimation
was performed using group 1, followed by testing the model and estimates
using the data in group 2. Heritability estimates for systolic blood pressure
and weight were .15 and .54, respectively. The genetic correlation be-
tween these traits was nonsignificant, but there was a significant direct
regression effect. The results indicate that 30% of the full-sib correlation
for systolic blood pressure is attributable to the aggregation of weight.
In terms of tracking, 59% and 60% of the predicted systolic blood
pressure and weight correlations, respectively, were attributable to genetic
effects. Testing the model from group 1 in group 2 indicates that the
qualitative relationships between blood pressure and weight are stable
with time.
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INTRODUCTION

The familial aggregations of blood pressure and weight (each considered separately)
have been well documented in population studies that have included several age
groups (for blood pressure, see [1-5]; for weight, see [6, 7]). A consistently
significant correlation between blood pressure and weight has also been dem-
onstrated [8-12]. Furthermore, it has been shown that blood pressure and weight
track over time [13], where tracking refers to the correlation within individuals
of measures of a trait over time. While several investigators estimated the genetic
and environmental contributions to familial aggregation of each of these traits,
there have been no studies that systematically investigate the causes of correlation
between blood pressure and weight and that assess the extent to which the ag-
gregation of weight can explain the aggregation of blood pressure. Nor have
there been any studies that have separated the tracking correlations of these traits
into genetic and environmental components. To address these questions, we have
applied a class of multivariate models recently developed by Hanis and Sing [14]
to longitudinal data collected in Muscatine, Iowa. Here we, examine only the
bivariate case and consider the aggregation, coaggregation, and tracking of systolic
blood pressure and weight.

Studies to date have demonstrated that genetic and environmental factors both
contribute significantly to the separate familial aggregations of blood pressure
and weight. Annest et al. [15] reported a heritability for systolic blood pressure
in a sample from Montreal of .34 and the proportion of variability attributable
to common household environmental variability to be .11. In terms of the cor-
relations between full-sibs, this translates to 61% of the correlation being attrib-
utable to shared genes and 39% to shared environments. Other published herit-
abilities for systolic blood pressure include: .41 in a sample from northeastern
Brazil [16] and .24 in Japanese-Americans [17], and heritabilities of .12 to .28
in Tokelau Islanders [18]. Similarly for weight, Annest et al. [7] report a her-
itability of .43 in Montreal and Rao et al. [19] report .44 in pedigrees from
northeastern Brazil. We begin by accepting these studies as prior evidence that
both genetic and environmental factors contribute to the separate aggregations
of blood pressure and weight, and now turn to a consideration of factors that
lead to their coaggregation in households and tracking over time.

Hanis and Sing [14] modeled coaggregation and tracking by parameterizing
the correlation between two traits within and across time in terms of: (1) the
pleiotropic action of genes, that is, genes that jointly affect weight and blood
pressure; (2) environments that affect both traits; and (3) a direct regression
relationship between the phenotypes of the two traits. We hypothesize that each
of these sources may contribute to the correlation between blood pressure and
weight. Such a parameterization assumes a class of mechanisms that determine
the direct regression relationship between blood pressure and weight irrespective
of the correlated genotypic and environmental effects; that is, those genetic and
environmental effects contributing to the regression act on weight directly and
only secondarily contribute to blood pressure variability through the regression.
In a recent review of the association between obesity and hypertension, Dustan
[20] suggested several mechanisms that could cause a directional relationship
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(measured by regression) between blood pressure and weight throughout their
distributions. The mechanisms proposed include the following possible alterations
associated with higher weights: (1) increased cardiac output, (2) increased blood
volume, (3) dietary differences across the weight distribution (particularly sodium
intake), (4) changes in steroid production, and (5) alterations in receptors associated
with various pressor substances. Other effects may include: increased capillary
resistance and increased vascularization associated with higher weights. Through
such a regression effect, variability in genetic and environmental factors that
affect weight only are "translated" into sources of variability of blood pressure
in addition to those factors that directly affect blood pressure. Thus, the familial
aggregation of weight may contribute to the aggregation of blood pressure even
in the absence of a genetic correlation and/or environments shared by individuals
within households that affect both traits.

MATERIALS AND METHODS

Sample

The data used in this study represent a subset of that collected as part of the "Muscatine
Study," an ongoing longitudinal survey beginning in 1970 of cardiovascular risk factors
in children aged 5 to 19 attending school in Muscatine, Iowa. Among other variables,
systolic blood pressure and weight were determined at approximately 2-year intervals.
Detailed demographic information about the reference population has been published [21 ].
Clarke et al. [13], Lauer et al. [22], and Schrott et al. [23] summarized the measurement
procedures employed, have given a statistical description of the variables measured, es-
timated the degree of tracking of variables, and related risk factor levels in children to
cardiovascular disease experience in adult relatives.
The Muscatine Study has served further to identify individuals as index cases for the

Muscatine Hyperlipidemia Family Study (MHFS). We used the pedigree information obtained
in the course of the MHFS to identify the sample of genetically related children that had
participated in the longitudinal study. Because the longitudinal study was limited to school-
age children, the sample obtained included very few second-degree relatives (uncles,
aunts, nephews, and nieces of the index cases). Consequently, we limited our sample to
families consisting of full-sibs (residing in the same household) and first cousins. Those
included had been measured on up to nine different occasions (some individuals were
included in random recalls or were otherwise measured more frequently than 2-year intervals),
but only results from the first four examinations (hereafter referred to as times 1 through
4) for each individual were used because of the small number measured more than four
times. The sample used consisted of 998 individuals distributed in 261 families at time
1, of which 601 were measured on all four occasions. We assume that ascertainment of
these families on the basis of an index case's lipid phenotype was independent of the
distribution of weight and blood pressure in these families.

Model

The model used to address the sources of coaggregation and tracking of systolic blood
pressure and weight is given in two parts by the path diagrams presented in figure 1. In
both diagrams, the measured phenotypes,yij and xi>, represent systolic blood pressure and
weight, respectively. The subscript, i, identifies an individual as either an index (I), sib
(S), or cousin (C), while the second subscript,j, denotes time. Note that under the assumption
that ascertainment is independent of weight and blood pressure, the assignment of an
index case is purely arbitrary. In the diagrams, only two times are represented for an
index and sib pair. In the upper diagram, additive genetic effects (Gy and Gx) and residual
effects (Ey and Ex) are parameterized with appropriate path coefficients as indicated alongside
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Fig. 1.-Path diagrams for the correlation between y and x in an index and relative for a longitudinal
sample. Upper diagram presents the genetic, regression, and residual sources of variability, while
lower diagram parameterizes the household and individual environmental effects.



the paths leading to the measured phenotypes. The direct regression effect is represented
by 13, and the correlation of additive gene effects is indicated by Pyx, In the lower diagram
are household and individual environmental effects. ECH represents those environments
that are shared by all individuals within a household and that vary randomly among
households. ECH is constant in time and affects both blood pressure and weight, but the
magnitude of the effect on each is measured by a different path coefficient. Ec1Y and EC1,
represent environments that are unique to an individual yet are constant through time. We
have assumed that Ecly and EcIx are uncorrelated.
When the two diagrams are combined into a "complete" model, one can obtain expressions

for the expectations 6f all possible correlations in terms of eight parameters.(a total of 38
correlations when considering sibs and cousins at two times). Many of the 38 correlations
have equivalent expectations. In fact, each correlation falls into one of 10 equivalence
classes as detailed in table 1. In table 2, the expectations of these correlation classes are
given. Although other bivariate path models have been presented for multivariate data
[24-26], none have dealt with longitudinal data and the parameterization of a direct
regression effect as defined here.

Estimation

As reviewed in Hanis and Sing [14], estimation of the parameters in path analysis
generally, although not necessarily, employs two steps. First, the correlations between
measured phenotypes are estimated. Second, the relationships of these estimates to their
expectations (table 2) are submitted to a numerical analysis to obtain estimates of the
parameters. Correlations within individuals (between variables and across time) are estimated
as product-moment correlations, while all sib-sib correlations are calculated as intraclass
correlations. Cousin correlations were estimated as product-moment correlations based
on a random pair from each family. The minimum chi-square procedure outlined in Annest
et al. [5] is used to obtain parameter estimates from the set of equations that relate the
correlation statistics to their expectations.

TABLE 1

EQUIVALENCE OF EXPECTED CORRELATIONS (y = SYSTOLIC BLOOD PRESSURE,
X = WEIGHT)

Class

E[cor(yl ,YI2)]
E[cor(yll ,YSl)]
E[cor(yll ,YCl)]

E[cor(y1l ,x1l)]

E[cor(yl ,X12)]

E[cor(yll ,xsI)]

E[cor(yll ,XCl)]

E[cor(xl ,XI2)]
E[cor(x1l ,XsI)]
E[cor(xjlxl,C)]

E[cor(ycl ,YC2)]
E[cor(yl ,YS2)]
E[cor(yl ,YC2)]
E[cor(yI2,YC2)]
E[cor(yI2,X12)]
E[cor(yC2,xC2)]
E[cor(yI2,xl1)]
E[cor(yC2,xcI)I
E[cor(y11,XS2)]
E[cor(yI2,xS2)]
E[cor(y11,XC2)]
E[cor(yI2,xC2)]
E[cor(x1 ,YC2)]
E[cor(xI2,YC2)]
E[cor(xcl,XC2)]
E[cor(x11,XS2)]
E[cor(x11,XC2)]
E[cor(xI2,XC2)]

.. .. . ... .. . .. . ... .. .. .. .. .. .. .. .

= E[cor(y2,Y2)].. .................

= E[cor(yI2,Ycl)]
...................................

= E[cor(yCl,xCl)]
. ... . .. . ... .. . .. .. .. . ... .. .. .. .. .. .

= E[cor(ycl,xC2)]
...................................

= E[cor(yI2,xs1)]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

= E[cor(yI2,xcI)]
= E[cor(xIl,ycl)]
= E[cor(xI2,YCl)]

(1)
(2)

(3)

(4)

(5)

(6)

................................... ............(7)

................................... (8)
= E[cor(x,2,xs2)] .................... (9)
= E[cor(xI2,xcl)]
....................................(10)
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TABLE 2

FORMULAS FOR EXPECTED CORRELATIONS (y = SYSTOLIC BLOOD PRESSURE, X = WEIGHT)

Class

E[cor(yI1,Y12)] = hy + eCI2 + eCH 2 + p2h 2 + p2eCI 2 + 132eCHx2
+ 2PhyPy~hx + 2peCHYeCHx ........................................ (1)

E[cor(y11,yS1)] = ½/2hy2 + eCHY2 + 1/22hX2 + p2eCHX2 + 2IeCHyeCHX
+ PhYPYXh . (2)

E[cor(yIl,yCl)] = 1/8hy2 + '/8132hX2 + ¼14hBYPYXhX ...... ................. (3)
E[cor(yI1,x11)] = 1 + hYPYXhx + eCHYeCHX ..(4)

E[cor(y1 ,x12)] = P(eCHx2 + eCIX2) + hypyhx + eCHYeCHx + PhX2 . .(5)

E[cor(y11,xs1)] = 1/2hypyxhx + eCH eCHX + ½1P2hx2 + PeCHx2.(6)
E[cor(yI1,xC1)] = '18hypyxhx + 1/2.hx.(7)
E[cor(x11,XI2)] = hX2 + eCHX2 + eCIX.(8)
E[cor(x11,xs1)] = 1/2h2 + eCHX2 .......... .. ............. (9)
E[cor(XI2,XCl)] =.1x................................(10)

Analytical Strategy

The availability of data measured on four different occasions provides considerable
flexibility in choosing an analytical strategy. Our first step was to adjust for concomitant
variability using standard analysis of covariance techniques [27]. Age, sex, and examination
number were treated as concomitants. The ascertainment group to which each family was
assigned as part of the MHFS was also treated as a concomitant. Families were assigned
to an ascertainment group based on the lipid level criteria specified in the MHFS (e.g.,
twice high cholesterol, middle cholesterol, high triglycerides, or low triglycerides). Fol-
lowing adjustment for concomitants, we divided the data into two sets (times 1 and 2
comprising set 1 and times 3 and 4 comprising set 2), calculated the 38 observed correlations
for each set, and followed the three steps detailed below. First, a test of the homogeneity
of the correlations within each equivalence class (table 2) was carried out separately for
the two sets of data and a pooled estimate for each class obtained. Inasmuch as the
equivalence relationships are defined by the model in figure 1, these homogeneity tests
provided an initial test of whether the parameterization of the equivalence class was
consistent with the data. Heterogeneity within an equivalence class would indicate either
random variability (in which case one would not expect the pattern of heterogeneity to be
repeated in the second set of data) or it would indicate a departure from the assumptions
under which the model was formulated. In the latter case, it would be necessary to alter
one or more of the assumptions and reformulate the model accordingly. The second step
of the analysis consisted of estimating the parameters of the complete model and a selected
subset of reduced models using the 10 pooled correlations from times 1 and 2. To test
whether one or a combination of parameters was significantly different from zero, we
used the difference between the chi-square measure of poorness of fit of the reduced model
and the chi-square measure of poorness of fit of the complete model as discussed by Hanis
[28]. Based on these results, a parsimonious model was chosen. A parsimonious model
was defined as having the fewest parameters (when compared to the complete model or
other alternatives), yet which did not fit the data significantly poorer than the complete
model. Third, we tested the hypothesis that the model from times 1 and 2 could explain
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the data from times 3 and 4. For this comparison, we set the heritabilities for the analysis
of times 3 and 4 at those obtained from times 1 and 2 and allowed all other parameters to
float.

RESULTS

Table 3 summarizes the descriptive statistics for the unadjusted age, weight,
and systolic blood pressure data at the four examinations considered in this study.
The average age, in years, increases from 9.2 years at time 1 to 13.3 years at
time 4 by increments of 1.7, 1.3, and 1.1 years, respectively. That these are not
2-year intervals is due to the study's loss of older individuals who became ineligible
for further participation through graduation from high school. Coupled with this
is the absence of an influx of new individuals at the lower ages who were sub-
sequently measured on four occasions. Overall, the data appear consistent with
a group of children undergoing growth as indicated by mean changes with time
in the variables that reflect size. The pattern of mean changes is similar to that
observed in the United States Health Survey [29]. There is no general pattern of
change in the blood pressure means across time, nor are there any obvious trends
or inconsistencies in the measures of variation, skewness, and kurtosis.

The relationships among systolic blood pressure, weight, and the two variables
on which ascertainment was based are summarized in the correlation matrices of
table 4. These correlations are based on individuals within each time period that
have all four variables measured. Correlations greater than .08 at time 1 (no. =

962) are significant at the .01 level, while for times 2-4 (nos. = 842, 706, and
491, respectively), the .01 significance levels are .09, .1 1 and .13, respectively.
Of particular relevance to the analysis presented here is the consistency of the
correlation between systolic blood pressure and weight within each time: .60,
.59, .63, and .57, respectively. This indicates that even though the mean of each
variable is increasing with time, there is little evidence to suggest that the rela-
tionship between these variables is not homogeneous across time. As seen, the

TABLE 3

DESCRIPTIVE STATISTICS OF THE UNADJUSTED DATA: TOTAL SAMPLE

No. Mean SD Skewness Kurtosis

Age (yr):
Time 1 ......... 998 9.24 2.639 0.524 -0.463
Time 2 ......... 930 10.89 2.880 0.418 -0.681
Time 3 ......... 805 12.19 2.622 0.208 -0.814
Time 4 ......... 601 13.27 2.441 0.050 -0.800

Weight (lb):
Time 1 ......... 993 76.62 29.446 1.191 1.205
Time 2 ......... 875 92.34 34.705 0.889 0.445
Time 3 ......... 765 105.80 35.552 0.827 0.790
Time 4 ......... 599 117.65 35.232 0.701 1.023

Systolic blood pressure (mm Hg):
Time 1... 992 .106.97 13.801 0.500 1.139
Time 2... 785 108.18 13.804 0.514 0.939
Time 3... 768 109.19 13.495 0.446 0.201
Time 4... 598 112.12 13.074 0.497 0.584

1202 HANIS ET AL.



MULTIVARIATE MODELS

L0

0

0(1>

m . o1

z

X )

m H

z

w

0

Q

0

CL

0.
OA

M00 ll~

. .

: : Cs

* nC
* 0on

m

.
r-

Cl

-_ C

eo 0003 CO_ <,

(A

-U U:

0

W)

C)

.02
0

U:

0.

11

mo

1203



1204 HANIS ET AL.

correlations of weight and systolic blood pressure with cholesterol and triglycerides
are not homogeneous in time, and although their magnitudes are generally small,
several are significantly different from zero. That the correlation between blood
pressure and weight is stable across time while their correlations with cholesterol
and triglycerides are unstable is taken as justification for the assumption that
ascertainment on the latter did not affect the relationship between blood pressure
and weight. Ascertainment of the families was not limited to only one tail of the
cholesterol or triglycerides distribution, but, rather, involved sampling throughout
their distributions, which further supports the assumption that ascertainment was
independent of blood pressure and weight.
The primary variables of interest in this analysis, systolic blood pressure and

weight, were adjusted by covariance analysis to remove the effects of age, age2,
age3, sex, time (i.e., examination number), and ascertainment class. All two-
way interaction effects were also removed and the residuals obtained used for
all subsequent analysis. The concomitants accounted for 69% and 28% of the
variability of weight and systolic blood pressure, respectively. Several transfor-

TABLE 5

CORRELATION STATISTICS CALCULATED FROM THE ADJUSTED DATA OF TIMES
1 AND 2 (y = SYSTOLIC BLOOD PRESSURE, X = WEIGHT)

No. No.

Interclass correlations

r(y1,.Y12) = .4044 ...... 513 r(yI2,X11) = .3618 ...... 514
r(ycl,YC2) = .2274 ...... 353 r(YC2,XCI) = .1974 ...... 353
r(y1l,x1l) = .3672 ...... 577 r(Y12,XI2) = .4125 ...... 515
r(ycIxcl) = .3387 ...... 410 r(yC2,xc2) = .3179 ...... 355
r(yIj,XI2) = .3305 ...... 513 r(xu,,XI2) = .9123 ...... 514
r(yCl,XC2) = .2639 ...... 353 r(xcl,XC2) = .8575 ...... 353

Intraclass correlations-within sibships

r(yII,ysi) = .1567 ...... 577 r(YI2,XS0) = .1932 ...... 514
r(yIJys2) = .2485 ...... 516 r(yI2,xs2) = .1730 ...... 515
r(y11,YS2) = .2197 ...... 513 r(x11,xs1) = .3035 ...... 578
r(yn1,xso) = .1682 ...... 577 r(xI,,XS2) = .3321 ...... 514
r(ylxS2) = .1250 ...... 513 r(xI2,xs2) = .3445 ...... 516

Interclass correlations-cross relatives (i.e., sib-cousin)

r(yIy,yci) = -.0023 .......88 r(xIIyci) = .0229 ...... 88
r(yi,,yc2) = -.0175 ...... 84 r(xI1,yc2) = -.1377 ...... 84
r(yM2.yCl) = -.0453 ...... 85 r(x12,yc) = -.1675 ...... 84
r(YI2,YC2) = .0881 ...... 81 r(XI2,YC2) = -.0633 ...... 79
r(yI1,xC1) = -.0402 ...... 88 r(xIIxCI) = .0440 ...... 88
r(yI,,xC2) = .1961 ...... 84 r(xll,xc2) = .1538 ...... 84
r(Y2,xC0) = .1501 ...... 85 r(xI2,xcI) = .1583 ...... 84
r(yI2,xc2) = .2564 ...... 81 r(xI2,xc2) = -.0106 ...... 80
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TABLE 6

CORRELATION STATISTICS CALCULATED FROM THE ADJUSTED DATA OF TIMES
3 AND 4 (y = SYSTOLIC BLOOD PRESSURE, X = WEIGHT)

No. No.

Interclass correlations

r(y11,YI2) = .4270 ...... 357 r(YI2,XII) = .4072 ...... 355
r(ycl,YC2) = .4812 ...... 203 r(YC2,XCI) = .3997 ...... 203
r(y1l,xl1) = .4386 ...... 474 r(yI2,XI2) = .4732 ...... 387
r(yCi,xCt) = .3804 ...... 288 r(YC2,XC2) = .4312 ...... 209
r(y11,XI2) = .4491 ...... 357 r(xl1,XI2) = .9194 ...... 355
r(yclXc2) = .3613 ...... 204 r(xCIXc2) = .9269 ...... 204

Intraclass correlations-within sibships

r(y11,ysj) = .2470 ...... 476 r(yI2,XsI) = .1111 ...... 355
r(y12,YS2) = .1658 ...... 387 r(YI2,XS2) = .1323 ...... 387
r(yl, YS2) = .1180 ...... 357 r(xlxsl) = .3885 ...... 474
r(y11,xsj) = .2052 ...... 474 r(x11,XS2) = .3958 ...... 355
r(y11,XS2) = .1895 ...... 357 r(XI2,XS2) = .4214 ...... 387

Interclass correlations-cross relatives (i.e., sib-cousin)

r(yjl,ycl) = -.1120 ...... 74 r(xjl,ycl) = -.1064 ...... 74
r(yIl,YC2) = .0157 ...... 64 r(xIlYC2) = .2232 ...... 64
r(YI2,YCI) = -.0737 ...... 69 r(XI2,YC) = -.0389 ...... 69
r(yI2,yc2) = .0869 ...... 60 r(xI2,yc2) = .1021 ...... 60
r(yIj,xCj) = -.0204 ...... 74 r(xmlxcl) = .0818 ...... 74
r(yjlxc2) = .2400 ...... 64 r(xljxc2) - .1125 ...... 64
r(yI2,xcl) = .1747 ...... 69 r(xI2,xcl) = .2326 ...... 69
r(yI2,Xc2) = .0337 ...... 60 r(xI2,Xc2) = .2821 ...... 60

mations were made on each variable to study the effects of nonnormality on the
outcome of the analysis. These transformations included a series of power trans-
forms and an inverse normal transform based on ranks (see [30]). The within-
individual, within-time correlation coefficients between systolic blood pressure
and weight under these various transformations remained stable [28]. For example,
the inverse normal transformation (INORM) removed all skew and kurtosis for
each variable, yet the correlation between the untransformed and transformed
systolic blood pressure and weight differed by only .0061. For this reason, we
calculated all correlations based on the adjusted, but nontransformed data.
The 38 correlation coefficients for each set of data are given in tables 5 and 6.

Unlike the correlations in table 4, these take into account the family and longitudinal
structure of the sample and quantify the aggregation, coaggregation, and tracking
of systolic blood pressure and weight. Significant heterogeneity (at the .01 level)
was indicated for only two of the equivalence classes in table 1. These were the
comparisons of the tracking correlations (within individuals across time) computed
from siblings and those computed from cousins at times 1 and 2. Additionally,
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the correlation between blood pressure and weight in cousins showed marginal
heterogeneity at times 1 and 2. Because these effects were not detected in the
data from times 3 and 4 and because of the number of tests performed, they were
interpreted as random findings.

In table 7 we present the parameter estimates, their standard errors, and the
chi-square poorness-of-fit criterion for the parsimonious model obtained from
times 1 and 2. Also presented are the results of fitting this model to the data of
times 3 and 4 (recall that the heritabilities were fixed in this analysis). In the
parsimonious model, Pyx and eciy2 have been eliminated (i.e., set to zero). The
magnitude of the common household environmental parameters (eCHy2 and eCHx2)
and their standard errors suggest that they might also be nonsignificant; however,
testing each separately yields a 1 df chi-square (when compared with the parsi-
monious model) that is significant for each: 7.87 and 3.97, respectively.
As seen in table 7, the fit of the parsimonious model obtained to the data of

times 3 and 4 (fixing the heritabilities) is significant at the .05 level. Although
there is significant heterogeneity between the set of correlations estimated in set
1 and the set estimated for set 2, their rank ordering and the rank ordering and
magnitudes of the parameters estimated for each set are very similar. Returning
to the results from times 3 and 4, we note that the estimates of the heritabilities
used (those from 1 and 2) were subject to rather large standard errors; hence, we
did a grid search about these values using the times 3 and 4 data. Changing h 2
from .151 to .170 and keeping hX2 at .538 results in a nonsignificant test of
poorness of fit of this model to the data of times 3 and 4. Thus, we conclude that
while the quantitative relationships among variables have changed significantly,
the qualitative relationships are the same as evidenced by the model from times
1 and 2 explaining the data at times 3 and 4. Note also the similarities in the
magnitude of the parameter estimates and their rankings when comparing the
two sets of data.

TABLE 7

PARAMETER ESTIMATES, STANDARD ERRORS,
AND POORNESS OF FIT OF PARSIMONIOUS MODEL TO TIMES

1 AND 2 AND OF MODEL TO TIMES 3 AND 4 HOLDING
HERITABILITY CONSTANT

Parameters Times 1 and 2 Times 3 and 4

hy2 ......... .151 .077 .151
hx ......... .538 .177 .538
a.......... .285 .039 .395 ± .030
eCH2 ..071 .056 .023 ± .018

eCH......... .061 . 083 .111 ± .023
eCix ........ .293 .099 .273 ± .023

Poorness of fit:
df ......... 4 6

X2.......... 1.73 14.67*

* .01 < P < .05.
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We now turn to the interpretation of these results in terms of the proportion of
the familial aggregation of systolic blood pressure that can be explained by the
aggregation of weight and the contributions of genetic and environmental effects
to the tracking of systolic blood pressure and weight across time. For this discussion,
we consider only the results from times 1 and 2, although it is apparent that
similar results are obtained from the times 3 and 4 data as well. The predicted
full-sib correlation for systolic blood pressure is .21 (observed is .21), of which
30% is attributable to the aggregation of weight. Forty-six percent is attributable
to shared genes. Of this 46%, 78% is directly attributable to genes affecting
systolic blood pressure and 22% to genes that affect weight directly and blood
pressure secondarily through the regression effect. Failure to consider the separate
contribution of weight would result in overestimation of the direct effect of
genetic variation on blood pressure variation.

In terms of tracking, 59% of the predicted tracking correlation of systolic blood
pressure (.33) is attributable to genetic effects. Thirty-two percent is explained
by weight. In a similar fashion, 60% of the predicted weight tracking across time
(.89) is attributable to genetic effects and 40% to environmental effects.

DISCUSSION

This study represents the first application of a multivariate model that includes
genetic, environmental, and regression sources of correlation and employs lon-
gitudinal family data. For this reason, we have discussed the major methodological
considerations as we have developed the results. We now turn to a discussion of
the implications of this research as it relates to the coaggregation, aggregation,
and tracking of systolic blood pressure and weight. First, the interpretation of
the analysis is model dependent. The model used here represents our best effort
to parameterize mathematically the known biological relationships between blood
pressure and weight. The model is consistent with biological information and
provides an adequate explanation of the data. This, of course, does not imply
that it is the only model having such properties. In spite of these caveats, however,
the results obtained should prove valuable in: (1) establishing the utility of applying
multivariate models that explicitly parameterize the sources of correlation among
variables, (2) identification of sources of coaggregation and tracking, and (3)
establishing directions for future work on the risk factors of common diseases.
The application of multivariate models is limited by the number and power of

the contrasts in the data for estimating values and testing hypotheses about a
multiplicity of parameters. For a given set of effects and an appropriate design,
the inclusion of additional variables results in an increase in the number of pa-
rameters that must be estimated. For the bivariate analysis presented here, im-
plementation and convergence of the estimation algorithm (a Newton-Raphson
procedure) was relatively straightforward. As more variables are added with an
accompanying increase in the dimension of the parameter space, it is not clear
that such will continue to be the case. Even in this case, there were initial starting
values that did not lead to convergence. For this reason, we agree with Lange
and Boehnke [31] that this class of analysis will likely be most applicable to
bivariate situations, at least with present algorithms. Also, the computational
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power required for such expanded analyses may prove prohibitive. We believe
that these models will prove useful in hypothesis testing and making inferences
about the postulated relationships among variables and that such analyses are
practical in at least longitudinal bivariate data.
The inferences about coaggregation, aggregation, and tracking of blood pressure

and weight from the analysis presented here are of particular interest. Briefly,
the results suggest three major points. First, the coaggregation of blood pressure
and weight (defined by the sib-sib correlation and the within-individual-between-
traits correlation) is explained in these data without inclusion of a genetic cor-
relation. We must qualify this conclusion because the test for a genetic correlation
determines whether it is significantly different from zero given the presence of
a regression effect. Hanis and Sing [14] point out that these two parameters are
parametrically correlated. An exact expression for the expected correlation between
parameters has not been formulated. The computed correlation is -.98 when the
complete model is fit to the data of times 1 and 2. Consequently, there may have
been insufficient independent information in the data to reject the hypothesis;
H:py, = 0, and inclusion of either the regression (P) or correlation (Pyx), will
result in essentially the same results. However, testing the significance of 13 with
Pyx in the model resulted in a significant chi-square (8.61 on 1 df), indicating
that the regression effect is required in the final model. The second point is that
a large percentage of the aggregation and tracking of systolic blood pressure can
be explained by weight. The third and final point is that the tracking of variables
measured by correlations across time can be partitioned into genetic and envi-
ronmental components in the same fashion as the sources of aggregation and
coaggregation.

Inferences from this study are limited to statements about the population from
which the sample was drawn. This kind of information has utility in the development
of public health measures that are designed to alter a risk-factor distribution.
When genetic factors predominate in determining risk-factor variability, it is
necessary to formulate specific intervention schemes that account for family
structure in the population and that exploit the interaction of genes and environ-
ments. A relatively low genetic contribution implies that environmental and be-
havior modification may be applied without regard for genetic information in the
population. This study extends these concepts further to prediction of a response
that intervention on one trait will have on a second correlated trait. The study
conducted here represents a valuable step in a hierarchy of questions that lead
to a full understanding of the etiology of risk-factor variability and its association
with disease endpoints [32]; that is, after establishing. that a variable is a risk
factor for some disease, it'is then of interest to establish whether it aggregates
in families or, as in this case, whether multiple traits coaggregate in families. If
so, an apparent next step is to partition the sources of the aggregation and/or
coaggregation into genetic and/or environmental components.

In conclusion, this study represents the first general treatment simultaneously
of the aggregation, coaggregation, and tracking of two traits.'The results indicate
that a large proportion of the aggregation and tracking of systolic blood pressure
is explained by weight. This implies that a study of systolic blood pressure
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ignoring weight leads to estimates of the contributions of genetic and environmental
variability to population varibility, which, in actuality, are largely measures of
the contributions of these factors to weight variability. We would hope that the
results presented will provide impetus for further research to identify and define
specific causative factors that mediate the relationships between systolic blood
pressure and weight. With the identification of such factors, inferences and pre-
diction will shift from the populaion level to a level of identifying and intervening
on high-risk individuals and families that have the potential for profoundly reducing
the burden of common complex diseases.
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