Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Aug;63(8):3291–3293. doi: 10.1128/aem.63.8.3291-3293.1997

Cell-density-dependent sensitivity of a mer-lux bioassay.

L D Rasmussen 1, R R Turner 1, T Barkay 1
PMCID: PMC168629  PMID: 9251218

Abstract

The sensitivity of a previously described assay (O. Selifonova, R. Burlage, and T. Barkay, Appl. Environ. Microbiol. 59:3083-3090, 1993) for the detection of bioavailable inorganic mercury (Hg2+) by the activation of a mer-lux fusion was increased from nanomolar to picomolar concentrations by reducing biomass in the assays from 10(7) to 10(5) cells ml-1. The increase in sensitivity was due to a reduction in the number of cellular binding sites that may compete with the regulatory protein, MerR, for binding of the inducer, Hg2+. These results show that (i) the sensitivity of the mer-lux assay is sufficient for the detection of Hg2+ in most contaminated natural waters and (ii) mer-specified reactions, Hg2+ reduction and methylmercury degradation, can be induced in natural waters and may participate in the geochemical cycling of mercury.

Full Text

The Full Text of this article is available as a PDF (173.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell J. L., Richardson C. C., Studier F. W. Genetic recombination and complementation between bacteriophage T7 and cloned fragments of T7 DNA. Proc Natl Acad Sci U S A. 1978 May;75(5):2276–2280. doi: 10.1073/pnas.75.5.2276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Choi S. C., Chase T., Bartha R. Metabolic Pathways Leading to Mercury Methylation in Desulfovibrio desulfuricans LS. Appl Environ Microbiol. 1994 Nov;60(11):4072–4077. doi: 10.1128/aem.60.11.4072-4077.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Condee C. W., Summers A. O. A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J Bacteriol. 1992 Dec;174(24):8094–8101. doi: 10.1128/jb.174.24.8094-8101.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Nazaret S., Jeffrey W. H., Saouter E., Von Haven R., Barkay T. merA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization. Appl Environ Microbiol. 1994 Nov;60(11):4059–4065. doi: 10.1128/aem.60.11.4059-4065.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. O'Halloran T. V. Transition metals in control of gene expression. Science. 1993 Aug 6;261(5122):715–725. doi: 10.1126/science.8342038. [DOI] [PubMed] [Google Scholar]
  6. Platt D., Abshagen U., Mühlberg W., Horn H. J., Schmitt-Rüth R., Vollmar J. The influence of age and multimorbidity on the pharmacokinetics and metabolism of spironolactone. Arch Gerontol Geriatr. 1984 Jul;3(2):147–159. doi: 10.1016/0167-4943(84)90006-2. [DOI] [PubMed] [Google Scholar]
  7. Ralston D. M., O'Halloran T. V. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc Natl Acad Sci U S A. 1990 May;87(10):3846–3850. doi: 10.1073/pnas.87.10.3846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Selifonova O., Burlage R., Barkay T. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol. 1993 Sep;59(9):3083–3090. doi: 10.1128/aem.59.9.3083-3090.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Silver S., Phung L. T. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50:753–789. doi: 10.1146/annurev.micro.50.1.753. [DOI] [PubMed] [Google Scholar]
  10. Summers A. O. Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol. 1992 May;174(10):3097–3101. doi: 10.1128/jb.174.10.3097-3101.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES