Abstract
The sensitivity of a previously described assay (O. Selifonova, R. Burlage, and T. Barkay, Appl. Environ. Microbiol. 59:3083-3090, 1993) for the detection of bioavailable inorganic mercury (Hg2+) by the activation of a mer-lux fusion was increased from nanomolar to picomolar concentrations by reducing biomass in the assays from 10(7) to 10(5) cells ml-1. The increase in sensitivity was due to a reduction in the number of cellular binding sites that may compete with the regulatory protein, MerR, for binding of the inducer, Hg2+. These results show that (i) the sensitivity of the mer-lux assay is sufficient for the detection of Hg2+ in most contaminated natural waters and (ii) mer-specified reactions, Hg2+ reduction and methylmercury degradation, can be induced in natural waters and may participate in the geochemical cycling of mercury.
Full Text
The Full Text of this article is available as a PDF (173.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campbell J. L., Richardson C. C., Studier F. W. Genetic recombination and complementation between bacteriophage T7 and cloned fragments of T7 DNA. Proc Natl Acad Sci U S A. 1978 May;75(5):2276–2280. doi: 10.1073/pnas.75.5.2276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi S. C., Chase T., Bartha R. Metabolic Pathways Leading to Mercury Methylation in Desulfovibrio desulfuricans LS. Appl Environ Microbiol. 1994 Nov;60(11):4072–4077. doi: 10.1128/aem.60.11.4072-4077.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Condee C. W., Summers A. O. A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J Bacteriol. 1992 Dec;174(24):8094–8101. doi: 10.1128/jb.174.24.8094-8101.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nazaret S., Jeffrey W. H., Saouter E., Von Haven R., Barkay T. merA gene expression in aquatic environments measured by mRNA production and Hg(II) volatilization. Appl Environ Microbiol. 1994 Nov;60(11):4059–4065. doi: 10.1128/aem.60.11.4059-4065.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Halloran T. V. Transition metals in control of gene expression. Science. 1993 Aug 6;261(5122):715–725. doi: 10.1126/science.8342038. [DOI] [PubMed] [Google Scholar]
- Platt D., Abshagen U., Mühlberg W., Horn H. J., Schmitt-Rüth R., Vollmar J. The influence of age and multimorbidity on the pharmacokinetics and metabolism of spironolactone. Arch Gerontol Geriatr. 1984 Jul;3(2):147–159. doi: 10.1016/0167-4943(84)90006-2. [DOI] [PubMed] [Google Scholar]
- Ralston D. M., O'Halloran T. V. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc Natl Acad Sci U S A. 1990 May;87(10):3846–3850. doi: 10.1073/pnas.87.10.3846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selifonova O., Burlage R., Barkay T. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol. 1993 Sep;59(9):3083–3090. doi: 10.1128/aem.59.9.3083-3090.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver S., Phung L. T. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50:753–789. doi: 10.1146/annurev.micro.50.1.753. [DOI] [PubMed] [Google Scholar]
- Summers A. O. Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol. 1992 May;174(10):3097–3101. doi: 10.1128/jb.174.10.3097-3101.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]