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Abstract

The main goal of the motif finding problem is to detect novel, over-represented unknown signals
in a set of sequences (e.g. transcription factor binding sites in a genome). The most widely used
algorithms for finding motifs obtain a generative probabilistic representation of these over-
represented signals and try to discover profiles that maximize the information content score.
Although these profiles form a very powerful representation of the signals, the major difficulty
arises from the fact that the best motif corresponds to the global maximum of a non-convex
continuous function. Popular algorithms like Expectation Maximization (EM) and Gibbs sampling
tend to be very sensitive to the initial guesses and are known to converge to the nearest local
maximum very quickly. In order to improve the quality of the results, EM is used with multiple
random starts or any other powerful stochastic global methods that might yield promising initial
guesses (like projection algorithms). Global methods do not necessarily give initial guesses in the
convergence region of the best local maximum but rather suggest that a promising solution is in
the neighborhood region. In this paper, we introduce a novel optimization framework that searches
the neighborhood regions of the initial alignment in a systematic manner to explore the multiple
local optimal solutions. This effective search is achieved by transforming the original optimization
problem into its corresponding dynamical system and estimating the practical stability boundary of
the local maximum. Our results show that the popularly used EM algorithm often converges to sub-
optimal solutions which can be significantly improved by the proposed neighborhood profile search.
Based on experiments using both synthetic and real datasets, our method demonstrates significant
improvements in the information content scores of the probabilistic models. The proposed
method also gives the flexibility in using different local solvers and global methods depending on
their suitability for some specific datasets.

| Introduction binding sites are highly conserved throughout the
Recent developments in DNA sequencing have allowed  sequences and the discovery of the location of such bind-
biologists to obtain complete genomes for several species.  ing sites plays an important role in understanding gene
However, knowledge of the sequence does not imply the  interaction and gene regulation.

understanding of how genes interact and regulate one

another within the genome. Many transcription factor
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We consider a precise version of the motif discovery prob-
lem in computational biology as discussed in [1,2]. The
planted (I, d) motif problem [2] considered in this paper
is described as follows: Suppose there is a fixed but
unknown nucleotide sequence M(the motif) of length 1.
The problem is to determine M, given ¢ sequences with ¢;
being the length of the i sequence and each containing a
planted variant of M. More precisely, each such planted
variant is a substring that is M with exactly d point substi-
tutions (see Fig. 1). More details about the complexity of
the motif finding problem is given in [3]. A detailed
assessment of different motif finding algorithms was pub-
lished recently in [4].

Although there are several variations of the motif finding
algorithms, the problem discussed in this paper is defined
as follows: without any previous knowledge of the con-
sensus pattern, discover all the occurences of the motifs
and then recover a pattern for which all of these instances
are within a given number of mutations (or substitu-
tions). Despite the significant amount of literature availa-
ble on the motif finding problem, many do not exploit
the probabilistic models used for motif refinement [5,6].

We provide a novel optimization framework for refining
motifs using systematic subspace exploration and neigh-
borhood search techniques. This paper is organized as fol-
lows: Section 2 gives some relevant background about the
existing approaches used for finding motifs. Section 3
describes the problem formulation in detail. Section 4 dis-
cusses our new framework and Section 5 details our
implementation. Section 6 gives the experimental results
from running our algorithm on synthetic and real data-
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sets. Finally, Section 7 concludes our discussion with
future research directions.

2 Relevant Background

Existing approaches used to solve the motif finding prob-
lem can be classified into two main categories [7]. The first
group of algorithms utilizes a generative probabilistic rep-
resentation of the nucleotide positions to discover a con-
sensus DNA pattern that maximizes the information
content score. In this approach, the original problem of
finding the best consensus pattern is formulated as find-
ing the global maximum of a continuous non-convex
function. The main advantage of this approach is that the
generated profiles are highly representative of the signals
being determined [8]. The disadvantage, however, is that
the determination of the "best" motif cannot be guaran-
teed and is often a very difficult problem since finding glo-
bal maximum of any continuous non-convex function is
a challenging problem. Current algorithms converge to
the nearest local optimum instead of the global solution.
Gibbs sampling [5], MEME [6], greedy CONSENSUS algo-
rithm [9] and HMM based methods [10] belong to this
category.

The second group uses patterns with 'mismatch represen-
tation' which define a signal to be a consensus pattern and
allow up to a certain number of mismatches to occur in
each instance of the pattern. The goal of these algorithms
is to recover the consensus pattern with the most signifi-
cant number of instances, given a certain background
model. These methods view the representation of the sig-
nals as discrete and the main advantage of these algo-
rithms is that they can guarantee that the highest scoring
pattern will be the global optimum for any scoring func-

GAATTCATACCAG&TCAdCGGATTCCCGAKTCCAAATGTGTCCCCCTCACAC

TCCOQCCGATTACCGTICTTCTGCTCTTAGACCACTCTACCCTATTCCCCACACT

CACCGGAGCCAAAGCCGCGGCCCTTCCGTTICCGATTACCGAJAAAGACCCCA

CCCGTAGGTGGCAAGCTAGCTTAAGTAACGCCACTIICGATTAACGAGGAAA

AATACATAACTGACCTATTATCGAGTTCAGATCAAGGTCAGGAACAAAGAA

ACA|CCGATTACCGTAACCGTAAGATARTGGTATCGATACGTAGACAGTTTA

Figure |

Synthetic DNA sequences containing some instance of the pattern 'CCGATTACCGA' with a maximum number of 2 muta-
tions. The motifs in each sequence are highlighted in the box. We have a (I 1,2) motif where |1 is the length of the motif and 2

is the number of mutations allowed.
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tion. The disadvantage, however, is that consensus pat-
terns are not as expressive of the DNA signal as profile
representations. Recent approaches within this framework
include Projection methods [1,11], string based methods
[2], Pattern-Branching [12], MULTIPROFILER [13] and
other branch and bound approaches [7,14].

A hybrid approach could potentially combine the expres-
siveness of the profile representation with convergence
guarantees of the consensus pattern. An example of a
hybrid approach is the Random Projection [1] algorithm
followed by EM algorithm [6]. It uses a global solver to
obtain promising alignments in the discrete pattern space
followed by further local solver refinements in continu-
ous space [15,16]. Currently, only few algorithms take
advantage of a combined discrete and continuous space
search [1,7,11]. In this paper, the profile representation of
the motif is emphasized and a new hybrid algorithm is
developed to escape out of the local maxima of the likeli-
hood surface.

Some motivations to develop the new hybrid algorithm
proposed in this paper are :

¢ A motif refinement stage is vital and popularly used by
many pattern based algorithms (like PROJECTION,
MITRA etc) which try to find optimal motifs.

¢ The traditional EM algorithm used in the context of the
motif finding converges very quickly to the nearest local
optimal solution (within 5-8 iterations).

¢ There are many other promising local optimal solutions
in the close vicinity of the profiles obtained from the glo-
bal methods.

In spite of the importance placed on obtaining a global
optimal solution in the context of motif finding, little
work has been done in the direction of finding such solu-
tions [17]. There are several proposed methods to escape
out of the local optimal solution to find better solutions
in machine learning [18] and optimization [19] related
problems. Most of them are stochastic in nature and usu-
ally rely on perturbing either the data or the hypothesis.
These stochastic perturbation algorithms are inefficient
because they will sometimes miss a neighborhood solu-
tion or obtain an already existing solution. To avoid these
problems, we introduce a novel optimization framework
that has a better chance of avoiding sub-optimal solu-
tions. It systematically escapes out of the convergence
region of a local maximum to explore the existence of
other nearby local maxima. Our method is primarily
based on some fundamental principles of finding exit
points on the stability boundary of a nonlinear continu-
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ous function. The underlying theoretical details of our
method are described in [20,21].

3 Preliminaries

We will first describe our problem formulation and the
details of the EM algorithm in the context of motif finding
problem. We will then describe some details of the
dynamical system of the log-likelihood function which
enables us to search for the nearby local optimal solu-
tions.

3.1 Problem Formulation

Some promising initial alignments are obtained by apply-
ing projection methods or random starts on the entire
dataset. Typically, random starts are used because they are
cost efficient. The most promising sets of alignments are
considered for further processing. These initial alignments
are then converted into profile representation.

Let t be the total number of sequences and S = {S;, S,...S,}
be the set of t sequences. Let P be a single alignment con-
taining the set of segments {P,, P,, ..., P,}. | is the length
of the consensus pattern. For further discussion, we use
the following variables

i=1..t --fortsequences
k=1..1 --forpositions within an [-mer
je {A, T,G, C} --foreach nucleotide

The count matrix can be constructed from the given align-
ments as shown in Table 1. We define C ;to be the overall
background count of each nucleotide in all of the
sequences. Similarly, G, ; is the count of each nucleotide
in the k' position (of the I - mer) in all the segments in P.

Q=Y (1)
Z Je{A,T,G,C} Co,
Ck S+ Db
Qi = o (2)
b+ ZIe{A,T,c,C} b

Eq. (1) shows the background frequency of each nucle-
otide. bj (and b)) is known as the Laplacian or Bayesian
correction and is equal to d * Q, ; where d is some con-
stant usually set to unity. Eq. (2) gives the weight assigned
to the type of nucleotide at the k% position of the motif.

A Position Specific Scoring Matrix (PSSM) can be con-
structed from one set of instances in a given set of ¢
sequences. From (1) and (2), it is obvious that the follow-
ing relationship holds:
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Table I: Position Count Matrix.
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j k=0 k=1 k=2 k=3 k=4 k=1

A Co.l G G G, Gy G

T Coz Ci2 % G Cin Ca

G Co3 Cis Gz Ga Ciz G

c Cos Cia Coa G4 Caa Cia
A count of nucleotides A, T,G,C at each position K = |..I in all the sequences of the data set. K = 0 denotes the background count.

3.2 Hessian Computation and Dynamical System for the
Z Qk,j =1 Vk=012..1 (3) Scorin Functionp ’ ’ f

jE{AT.G,C} 8

For a given k value in (3), each Q can be represented in
terms of the other three variables. Since the length of the
motif is [, the final objective function (i.e. the information
content score) would contain 3/ independent variables. It
should be noted that even if there are 41 variables in total,
the parameter space will contain only 3/ independent var-
iables because of the constraints obtained from (3). Thus,
the constraints help in reducing the dimensionality of the
search problem.

To obtain the information content (IC) score, every possi-
ble I - mer in each of the t sequences must be examined.
This is done so by multiplying the respective Q; ;/Q, ;dic-
tated by the nucleotides and their respective positions
within the I - mer. Only the highest scoring I - mer in each
sequence is noted and kept as part of the alignment. The
total score is the sum of all the best (logarithmic) scores in
each sequence.

¢ . ; '
AQ) =Y log(A); = Y log H%

i=1 i=1 k=1 <b

(4)

where Q, ;/Q, represents the ratio of the nucleotide prob-
ability to the corresponding background probability.
Log(A); is the score at each individual i sequence. In
equation (4), we see that A is composed of the product of
the weights for each individual position k. We consider
this to be the Information Content (IC) score which we
would like to maximize. A(Q) is the non-convex 3l
dimensional continuous function for which the global
maximum corresponds to the best possible motif in the
dataset. EM refinement performed at the end of a combi-
natorial approach has the disadvantage of converging to a
local optimal solution [22]. Our method improves the
procedure for refining motif by understanding the details
of the stability boundaries and by trying to escape out of
the convergence region of the EM algorithm.

In order to present our algorithm, we have defined the
dynamical system corresponding to the log-likelihood
function and the PSSM. The key contribution of the paper
is the development of this nonlinear dynamical system
which will enable us to realize the geometric and dynamic
nature of the likelihood surface by allowing us to under-
stand the topology and convergence behaviour of any
given subspace on the surface. We construct the following
gradient system in order to locate critical points of the
objective function (4):

QM =-VAQ) (5)

One can realize that this transformation preserves all of
the critical points [20]. Now, we will describe the con-
struction of the gradient system and the Hessian in detail.
In order to reduce the dominance of one variable over the
other, the values of each of the nucleotides that belong to
the consensus pattern at the position k will be represented
in terms of the other three nucleotides in that particular
column. Let Pydenote the k™ position in the segment P,.
This will also minimize the dominance of the eigenvector
directions when the Hessian is obtained. The variables in
the scoring function are transformed into new variables
described in Table 2. Thus, Eq. (4) can be rewritten in
terms of the 3] variables as follows:

¢ 1
AQ) =Y Y 108 fip (W3p—p W31, W31, ); (6)

i=1k=1

where f, can take the values {w;, ,, wy;, ;, Wy, 1 - (W3, +
Wy, + Wy,)} depending on the P, value. The first deriva-
tive of the scoring function is a one dimensional vector
with 3/ elements.

T
S T .
awl BW2 aW3 aW3l

and each partial derivative is given by
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Table 2: Position Weight Matrix. A count of nucleotides j € {A, T, G, C} at each position k = |..l in all the sequences of the data set. C, is
the kth nucleotide of the consensus pattern which represents the nucleotide with the highest value in that column. Let the consensus

pattern be GACT...G and b; be the background.

j k=b k=1 k=2 K=3 k=4 k=1
A b, v G w7 Wio W32
T by Wy Wy We Gy WaLi
G be G Ws Wy Wi G
c be W, We G Wiz Wy
o, ® Refinement phase where a local method is applied to the
p

0A

_ [ Jw,
awp i=1 i (W3pe—a  W3po_q, W3y,

Vp=1,2..3land k = round(p/3)+ 1

The Hessian V2A is a block diagonal matrix of block size
3 x 3. For a given sequence, the entries of the 3 x 3 block
will be the same if that nucleotide belongs to the consen-
sus pattern (C,). The gradient system is mainly obtained
for enabling us to identify the stability boundaries and
stability regions on the likelihood surface. The theoretical
details of these concepts are published in [20]. The stabil-
ity region of each local maximum is an approximate con-
vergence zone of the EM algorithm. If we can identify all
the saddle points on the stability boundary of a given
local maximum, then we will be able to find all the corre-
sponding Tier-1 local maxima. Tier-1 local maximum is
defined as the new local maximum that is connected to
the original local maximum through one decomposition
point. Similarly, we can define Tier-2 and Tier-k local
maxima that will take 2 and k decomposition points
respectively. However, finding every saddle point is com-
putationally intractable and hence we have adopted a
heuristic by generating the eigenvector directions of the
PSSM at the local maximum. Also, for such a complicated
likelihood function, it is not efficient to compute all sad-
dle points on the stability boundary. Hence, one can
obtain new local maxima by obtaining the exit points
instead of the saddle points. The point along a particular
direction where the function has the lowest value starting
from the given local maximum is called the exit point. The
next section details our approach and explains the differ-
ent phases of our algorithm.

4 Novel Framework
Our framework consists of the following three phases:

® Global phase in which the promising solutions in the
entire search space are obtained.

solutions obtained in the previous phase in order to refine
the profiles.

e Exit phase where the exit points are computed and the
Tier-1 and Tier-2 solutions are explored systematically.

In the global phase, a branch and bound search is per-
formed on the entire dataset. All of the profiles that do not
meet a certain threshold (in terms of a given scoring func-
tion) are eliminated in this phase. The promising patterns
obtained are transformed into profiles and local improve-
ments are made to these profiles in the refinement phase.
The consensus pattern is obtained from each nucleotide
that corresponds to the largest value in each column of the
PSSM. The 31 variables chosen are the nucleotides that cor-
respond to those that are not present in the consensus pat-
tern. Because of the probability constraints discussed in
the previous section, the largest weight can be represented
in terms of the other three variables.

To solve (4), current algorithms begin at random initial
alignment positions and attempt to converge to an align-
ment of [ - mers in all of the sequences that maximize the
objective function. In other words, the | - mer whose
log(A);is the highest (with a given PSSM) is noted in every
sequence as part of the current alignment. During the
maximization of A(Q) function, the probability weight
matrix and hence the corresponding alignments of I - mers
are updated. This occurs iteratively until the PSSM con-
verges to the local optimal solution. The consensus pat-
tern is obtained from the nucleotide with the largest
weight in each position (column) of the PSSM. This con-
verged PSSM and the set of alignments correspond to a
local optimal solution. The exit phase where the neigh-
borhood of the original solution is explored in a system-
atic manner is shown below:

Input: Local Maximum (A).

Output: Best Local Maximum in the neighborhood
region.

Algorithm:
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Step 1: Construct the PSSM for the alignments correspond-
ing to the local maximum (A) using Egs.(1) and (2).

Step 2: Calculate the eigenvectors of the Hessian matrix for
this PSSM.

Step 3: Find exit points (e;;) on the practical stability
boundary along each eigenvector direction.

Step 4: For each of the exit points, the corresponding Tier-
1 local maxima (a,;) are obtained by applying the EM
algorithm after the ascent step.

Step 5: Repeat this process for promising Tier-1 solutions
to obtain Tier-2 (a,;) local maxima.

Step 6: Return the solution that gives the maximum infor-
mation content score of {A, ay; a,;}.

Fig. 2 illustrates the exit point method. To escape out of
this local optimal solution, our approach requires the
computation of a Hessian matrix (i.e. the matrix of second
derivatives) of dimension (31)2 and the 3] eigenvectors of
the Hessian. The main reasons for choosing the eigenvec-
tors of the Hessian as search directions are:

e Computing the eigenvectors of the Hessian is related to
finding the directions with extreme values of the second
derivatives, i.e., directions of extreme normal-to-isosur-
face change.

¢ The eigenvectors of the Hessian will form the basis vec-
tors for the search directions. Any other search direction
can be obtained by a linear combination of these direc-
tions.

e This will make our algorithm deterministic since the
eigenvector directions are always unique.

The value of the objective function is evaluated along
these eigenvector directions with some small step size
increments. Since the starting position is a local optimal
solution, one will see a steady decline in the function
value during the initial steps; we call this the descent stage.
Since the Hessian is obtained only once during the entire
procedure, it is more efficient compared to Newton's
method where an approximate Hessian is obtained for
every iteration. After a certain number of evaluations,
there may be an increase in the value indicating that the
current point is out of the stability region of the local max-
imum. Once the exit point has been reached, few more
evaluations are made in the direction of the same eigen-
vector to ensure that one has left the original stability
region. This procedure is clearly shown in Fig 3. Applying
the local method directly from the exit point may give the
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original local maximum. The ascent stage is used to ensure
that the new guess is in a different convergence zone.
Hence, given the best local maximum obtained using any
current local methods, this framework allows us to sys-
tematically escape out of the local maximum to explore
surrounding local maxima. The complete algorithm is
shown below :

Input: The DNA sequences, length of the motif (1), Max-
imum Number of Mutations (d)

Output: Motif (s)
Algorithm:

Step 1: Given the sequences, apply Random Projection
algorithm to obtain different set of alignments.

Step 2: Choose the promising buckets and apply EM algo-
rithm to refine these alignments.

Step 3: Apply the exit point method to obtain nearby
promising local optimal solutions.

Step 4: Report the consensus pattern that corresponds to
the best alignments and their corresponding PSSM.

The new framework can be treated as a hybrid approach
between global and local methods. It differs from tradi-
tional local methods by computing multiple local solu-
tions in the neighborhood region in a systematic manner.
It differs from global methods by working completely in
the profile space and searching a subspace efficiently in a
deterministic manner. For a given non-convex function,
there is a massive number of convergence regions that are
very close to each other and are separated from one
another in the form of different basins of attraction. These
basins are effectively modeled by the concept of stability
regions.

5 Implementation Details

Our program was implemented on Red Hat Linux version
9 and runs on a Pentium IV 2.8 GHz machine. The core
algorithm that we have implemented is XP_EM described
in Algorithm 1. XP_EM obtains the initial alignhments and
the original data sequences along with the length of the
motif. It returns the best motif that is obtained in the
neighboring region of the sequences. This procedure con-
structs the PSSM, performs EM refinement, and then com-
putes the Tier-1 and Tier-2 solutions by calling the
procedure Next_Tier. The eigenvectors of the Hessian were
computed using the source code obtained from [23].
Next_Tier takes a PSSM as an input and computes an array
of PSSMs corresponding to the next tier local maxima
using the exit point methodology.
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Figure 2
Diagram illustrates the exit point method of escaping from the original solution (A) to the neighborhood local optimal solutions
(a;)) through the corresponding exit points (e;;). The dotted lines indicate the local convergence of the EM algorithm.
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Figure 3

A summary of escaping out of the local optimum to the neighborhood local optimum. Observe the corresponding trend of

A(Q) at each step.

Algorithm 1 Motif XP_EM(init_aligns, seqs, 1)
PSSM = Construct_PSSM(init_aligns)
New_PSSM = Apply_EM(PSSM, seqs)
TIER1 = Next-Tier(seqs, New_PSSM, 1)
fori=1to3ldo
if TIER1[i] < > zeros(41) then
TIER2[i][ | = Next_Tier(seqs, TIER1]i], 1)
end if
end for
Return best(PSSM, TIER1, TIER2)
Given a set of initial alignments, Algorithm 1 will find the
best possible motif in the neighborhood space of the pro-
files. Initially, a PSSM is computed using construct_PSSM

from the given alignments. The procedure Apply_EM will
return a new PSSM that corresponds to the alignments

obtained after the EM algorithm has been applied to the
initial PSSM. The details of the procedure Next_Tier are
given in Algorithm 2. From a given local solution (or
PSSM), Next_Tier will compute all the 3] new PSSMs in the
neighborhood of the given local optimal solution. The
second tier patterns are obtained by calling the Next_Tier
from the first tier solutions. Sometimes, New PSSMs
might not be obtained for certain search directions. In
those cases, a zero vector of length 41 is returned. Only
those new PSSMs which do not have this value will be
used for any further processing. Finally, the pattern with
the highest score amongst all the PSSMs is returned.

The procedure Next_Tier takes a PSSM, applies the Exit-
point method and computes an array of PSSMs that corre-
sponds to the next tier local optimal solutions. The proce-
dure eval evaluates the scoring function for the PSSM
using (4). The procedures Construct Hessian and
Compute_EigVec compute the Hessian matrix and the
eigenvectors respectively. MAX_iter indicates the maxi-
mum number of uphill evaluations that are required
along each of the eigenvector directions. The neighbor-
hood PSSMs will be stored in an array variable PSSMs] |.
The original PSSM is updated with a small step until an
exit point is reached or the number of iterations exceeds
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the MAX_Iter value. If the exit point is reached along a par-
ticular direction, some more iterations are run to guaran-
tee that the PSSM has exited the original stability region
and has entered a new one. The EM algorithm is then used
during this ascent stage to obtain a new PSSM. For the
sake of completeness, the entire algorithm has been
shown in this section. However, during the implementa-
tion, several heuristics have been applied to reduce the
running time of the algorithm. For example, if the first tier
solution is not very promising, it will not be considered
for obtaining the corresponding second tier solutions.
Algorithm 2 PSSMs| | Next_Tier(seqs, PSSM, 1)
Score = eval(PSSM)
Hess = Construct_Hessian(PSSM)
Eig[ | = Compute_EigVec(Hess)
MAX Iter = 100
fork=1to 3l do
PSSMs|[k] = PSSM Count = 0
Old_Score = Score ep_reached = FALSE
while (! ep_reached) && (Count <MAX_Iter) do
PSSMs|k| = update(PSSMs|k|, Eig[k], step)
Count = Count + 1
New_Score = eval(PSSMs|k])
if (New-Score > Old-Score) then
ep_reached = TRUE
end if
Old_Score = New_Score
end while
if count < MAX_Iter then
PSSMs[k| = update(PSSMs|[k], Eiglk], ASC)
PSSMs|k] = Apply_EM(PSSMs|k], Seqs)

else

PSSMs|k| = zeros(41)

http://www.almob.org/content/1/1/23

end if
end for

Return PSSMs| |

The initial alignments are converted into the profile space
and a PSSM is constructed. The PSSM is updated (using
the EM algorithm) until the alignments converge to a
local optimal solution. The Exit-point methodology is
then employed to escape out of this local optimal solu-
tion to compute nearby first tier local optimal solutions.
This process is then repeated on promising first tier solu-
tions to obtain second tier solutions. As shown in Fig. 4,
from the original local optimal solution, various exit
points and their corresponding new local optimal solu-
tions are computed along each eigenvector direction.
Sometimes two directions may yield the same local opti-
mal solution. This can be avoided by computing the sad-
dle point corresponding to the exit point on the stability
boundary [24]. There can be many exit points, but there
will only be a unique saddle point corresponding to the
new local minimum. However, in high dimensional prob-
lems, this is not very efficient. Hence, we have chosen to
compute the exit points. For computational efficiency, the
Exit-point approach is only applied to promising initial
alignments (i.e. random starts with higher Information
Content score). Therefore, a threshold A(Q) score is deter-
mined by the average of the three best first tier scores after
10-15 random starts; any current and future first tier solu-
tion with scores greater than the threshold is considered
for further analysis. Additional random starts are carried
out in order to aggregate at least ten first tier solutions. The
Exit-point method is repeated on all first tier solutions
above a certain threshold to obtain second tier solutions.

6 Experimental Results

Experiments were performed on both synthetic data and
real data. Two different methods were used in the global
phase: random start and random projection. The main
purpose of this paper is not to demonstrate that our algo-
rithm can outperform the existing motif finding algo-
rithms. Rather, the main work here focuses on improving
the results that are obtained from other efficient algo-
rithms. We have chosen to demonstrate the performance
of our algorithm on the results obtained from the random
projection method which is a powerful global method
that has outperformed other traditional motif finding
approaches like MEME, Gibbs sampling, WINNOWER,
SP-STAR, etc. [1]. Since the comparison was already pub-
lished, we mainly focus on the performance improve-
ments of our algorithm as compared to the random
projection algorithm. For the random start experiment, a

Page 9 of 14

(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:23 http://www.almob.org/content/1/1/23

GACCTACTGTAGCGA
A(Q)=164.42

GACCTACTATAGTGA
A(Q)=164.64

GACCTACTGTATAGA
A(Q)=159.8

GACCTACTATAGCGA
A(Q)=163.375

TACCTACAGTAGAGA
A(Q)=166.8

GACTTACAATAGAGA
A(Q)=167 .81

GACCTACCATAGTGA
A(Q)=164.79

TACCTACCGTAGTGA
A(Q)=166.11

Figure 4
2-D illustration of first tier improvements in a 3/ dimensional objective function. The original local maximum has a score of
163.375. The various Tier-| solutions are plotted and the one with highest score (167.81) is chosen.

total of N random numbers between 1 and (t -1+ 1) cor- 6.1 Synthetic Datasets

responding to initial set of alignments are generated. We  The synthetic datasets were generated by implanting some
then proceeded to evaluate our Exit-point methodology  motif instances into ¢ = 20 sequences each of length ¢, =
from these alignments. 600. Let m correspond to one full random projection + EM
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cycle. We have set m = 1 to demonstrate the efficiency of
our approach. We compared the performance coefficient
(PC) which gives a measure of the average performance of
our implementation compared to that of Random Projec-
tion. The PC is given by :

|KNP|

PC=1—"
|KuP|

(9)

where K is the set of the residue positions of the planted
motif instances, and P is the corresponding set of posi-
tions predicted by the algorithm. Table 3 gives an over-
view of the performance of our method compared to the
random projection algorithm on the (I, d) motif problem
for different I and d values.

Our results show that by branching out and discovering
multiple local optimal solutions, higher m values are not
needed. A higher m value corresponds to more computa-
tional time because projecting the I-mers into k-sized
buckets is a time consuming task. Using our approach, we
can replace the need for randomly projecting I-mers
repeatedly in an effort to converge to a global optimum by
deterministically and systematically searching the solu-
tion space modeled by our dynamical system and improv-
ing the quality of the existing solutions. We can see that
for higher length motifs, the improvements are more sig-
nificant. Fig. 4 shows the Tier-1 solutions obtained from a
given consensus pattern. Since the exit points are being
used instead of saddle points, our method might some-
times find the same local optimal solution obtained
before. As seen from the figure, the Tier-1 solutions can
differ from the original pattern by more than just one
nucleotide position. Also, the function value at the exit
points is much higher than the original value.

As opposed to stochastic processes like mutations in
genetic algorithms, our approach reduces the stochastic
nature and obtains the nearby local optimal solutions sys-
tematically. Fig. 5 shows the performance of the Exit-point
approach on synthetic data for different (I, d) motifs. The
average scores of the ten best solutions obtained from ran-
dom starts and their corresponding improvements in Tier-
1 and Tier-2 are reported. One can see that the improve-
ments become more prominent as the length of the motif
is increased. Table 4 shows the best and worst of these top
ten random starts along with the consensus pattern and
the alignment scores.

With a few modifications, more experiments were con-
ducted using the Random Projection method. The Ran-
dom Projection method will eliminate non-promising
regions in the search space and gives a number of promis-
ing sets of initial patterns. EM refinement is applied to
only the promising initial patterns. Due to the robustness

http://www.almob.org/content/1/1/23

of the results, the Exit-point method is employed only on
the top five local optima. The Exit-point method is again
repeated on the top scoring first tier solutions to arrive at
the second tier solutions. Fig. 6 shows the average align-
ment scores of the best random projection alignments
and their corresponding improvements in tier-1 and tier-
2 are reported. In general, the improvement in the first tier
solutions are more significant than the improvements in
the second tier solutions.

6.2 Real Datasets

Table 5 shows the results of the Exit-point methodology
on real biological sequences. We have chosen [ = 20 and d
= 2. 't" indicates the number of sequences in the real data.
For the biological samples taken from [1,12], the value m
once again is the average number of random projection +
EM cycles required to discover the motif. All other param-
eter values (like projection size k = 7 and threshold s = 4)
are chosen to be the same as those used in the Random
projection paper [1]. All of the motifs were recovered with
m = 1 using the Exit-point strategy. The Random Projec-
tion algorithm alone needed multiple cycles (m = 8 in some
cases and m = 15 in others) in order to retrieve the correct
motif. This elucidates the fact that global methods can
only be used to a certain extent and should be combined
with refined local heuristics in order to obtain better effi-
ciency. Since the random projection algorithm has out-
performed other prominent motif finding algorithms like
SP-STAR, WINNOWER, Gibbs sampling etc., we did not
repeat the same experiments that were conducted in [1].
Running one cycle of random projection + EM is much
more expensive computationally. The main advantage of
our strategy comes from the deterministic nature of our
algorithm in refining motifs.

Let the cost of applying EM algorithm for a given bucket
be f and let the average number of buckets for a given pro-
jection be b. Then the running time of the Exit-point
method will be O(cbf) where ¢ is a constant that is linear
in I-the length of the motif. If there were m projections,
then cost of the random projection algorithm using
restarts will be O(mbf). The two main advantages of using
Exit-point strategy compared to random projection algo-
rithm are :

¢ It avoids multiple random projections which often pro-
vide similar optimal motifs.

¢ [t provides multiple optimal solutions in a promising
region of a given bucket as opposed to a single solution
provided by random projection algorithm.

7 Concluding Discussion
The Exit-point framework proposed in this paper broad-
ens the search region in order to obtain an improved solu-
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Table 3: Improvements in the Performance Coefficient.

http://www.almob.org/content/1/1/23

Motif (1, d) PC obtained using Random Projection PC obtained using Exit-point method
(11,2) 20 20
(15,4) 14.875 17
(20,6) 12.667 18

The results of performance coefficient with m = | on synthetically generated sequences. The IC scores are not normalized and the perfect score is

20 since there are 20 sequences.

tion which may potentially correspond to a better motif.
In most of the profile based algorithms, EM is used to
obtain the nearest local optimum from a given starting
point. In our approach, we consider the boundaries of
these convergence regions and find the surrounding local
optimal solutions based on the theory of stability regions.
We have shown on both real and synthetic data sets that
beginning from the EM converged solution, the Exit-point
approach is capable of searching in the neighborhood
regions for another solution with an improved informa-
tion content score. This will often translate into finding a
pattern with less Hamming distance from the resulting
alignments in each sequence. Our approach has demon-
strated an improvement in the score on all datasets that it

was tested on. One of the primary advantages of the Exit-
point methodology is that it can be used with different
global and local methods. The main contribution of our
work is to demonstrate the capability of this hybrid EM
algorithm in the context of the motif finding problem.
Our algorithm can potentially use any global method and
improve its results efficiently.

From our results, we see that motif refinement stage plays
avital role and can yield accurate results deterministically.
We would like to continue our work by combining other
global methods available in the literature with existing
local solvers like EM or GibbsDNA that work in continu-
ous space. By following the example of [4], we may

200
o 180
| .
]
w —e— Original
T 160 < Tier-1
[ ]
E — Tier-2
o —k—
k=
< 140 /
120 : : : :
P o b o &)
N N w2 & &
Motifs
Figure 5

The average scores with the corresponding first tier and second tier improvements on synthetic data using the random starts

with Exit-point approach with different (/, d) motifs.
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Table 4: Improvements in the Information Content Scores.

(I, d) Initial Pattern Score First Tier Pattern Score Second Tier Pattern Score
(11,2) AACGGTCGCAG 125.1 CCCGGTCGCTG 147.1 CCCGGGAGCTG 153.3
(11,2) ATACCAGTTAC 145.7 ATACCAGTTTC 151.3 ATACCAGGGTC 153.6
(13,3) CTACGGTCGTCTT 142.6 CCACGGTTGTCTC 157.8 CCTCGGGTTTGTC 158.7
(133) GACGCTAGGGGGT 158.3 GAGGCTGGGCAGT 161.7 GACCTTGGGTATT 165.8
(15,4) CCGAAAAGAGTCCGA 147.5 CCGCAATGACTGGGT 169.1 CCGAAAGGACTGCGT 176.2
(15,4) TGGGTGATGCCTATG 164.6 TGGGTGATGCCTATG 166.7 TGAGAGATGCCTATG 170.4
(17,5) TTGTAGCAAAGGCTAAA 143.3 CAGTAGCAAAGACTACC 173.3 CAGTAGCAAAGACTTCC 175.8
(17.5) ATCGCGAAAGGTTGTGG 174.1 ATCGCGAAAGGATGTGG 176.7 ATTGCGAAAGAATGTGG 1783
(20,6) CTGGTGATTGAGATCATCAT 165.9 CAGATGGTTGAGATCACCTT 186.9 CATTTAGCTGAGTTCACCTT 194.9
(20,6) GGTCACTTAGTGGCGCCATG 2163 GGTCACTTAGTGGCGCCATG 2188 CGTCACTTAGTCGCGCCATG 219.7

The consensus patterns and their corresponding scores of the original local optimal solution obtained from multiple random starts on the synthetic
data. The best first tier and second tier optimal patterns and their corresponding scores are also reported.

200

190 /

180

—e— Original
170 Tier-1

—p—Tier-2

Alignment Score

150

140 . .

Figure 6
The average scores with the corresponding first tier and second tier improvements on synthetic data using the Random Pro-
jection with Exit-point approach with different (I, d) motifs.

Table 5: Results on real datasets. Results of Exit-point method on biological samples. The real motifs were obtained in all the six cases
using the Exit-point framework.

Sequence Sample Size t Best (20,2) Motif Reference Motif
E. coli CRP 1890 18 TGTGAAATAGATCACATTTT TGTGANNNNGNTCACA
preproinsulin 7689 4 GGAAATTGCAGCCTCAGCCC CCTCAGCCC
DHFR 800 4 CTGCAATTTCGCGCCAAACT ATTTCNNGCCA
metallothionein 6823 4 CCCTCIGCGCCCGGACCGGT TGCRCYCGG
c-fos 3695 5 CCATATTAGGACATCTGCGT CCATATTAGAGACTCT
yeast ECB 5000 5 GTATTTCCCGTTTAGGAAAA TTTCCCNNTNAGGAAA
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improve the chances of finding more promising patterns
by combining our algorithm with different global and
local methods.
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