Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Mar 22;264(1380):431–436. doi: 10.1098/rspb.1997.0061

Motion deblurring in human vision.

D C Burr 1, M J Morgan 1
PMCID: PMC1688277  PMID: 9107056

Abstract

Under normal viewing conditions we are little conscious of blur in moving objects, despite the persistence of vision. Moving objects look more blurred in brief than in long exposures, suggesting an active mechanism for suppressing motion blur. To see whether blur suppression would improve visual discrimination of objects, we measured blur discrimination thresholds for moving Gaussian-blurred edges and bars. The observer's task was to decide which of two moving stimuli, presented successively, was the more blurred. It is known that for stationary objects the just-noticeable difference in blur increases with baseline blur; therefore, if motion increases blur, it would be expected to increase the just-noticeable difference in blur. An active deblurring mechanism, on the other hand, would be expected to counteract the detrimental effects of motion blur on discrimination performance. We found, however, that motion increased thresholds for blur discrimination, both for brief (40 ms) and for longer (150 ms) exposures. We conclude that motion deblurring is a subjective effect, which does not enhance visual discrimination performance. Moving objects appear sharp, not because of some special mechanism that removes blur, but because the visual system is unable to perform the discrimination necessary to decide whether the moving object is really sharp or not.

Full Text

The Full Text of this article is available as a PDF (272.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. H., Van Essen D. C. Shifter circuits: a computational strategy for dynamic aspects of visual processing. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6297–6301. doi: 10.1073/pnas.84.17.6297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson S. J. Visual processing delays alter the perceived spatial form of moving gratings. Vision Res. 1993 Dec;33(18):2733–2746. doi: 10.1016/0042-6989(93)90232-l. [DOI] [PubMed] [Google Scholar]
  3. Burr D. C., Ross J., Morrone M. C. Seeing objects in motion. Proc R Soc Lond B Biol Sci. 1986 Mar 22;227(1247):249–265. doi: 10.1098/rspb.1986.0022. [DOI] [PubMed] [Google Scholar]
  4. Burr D. C. Temporal summation of moving images by the human visual system. Proc R Soc Lond B Biol Sci. 1981 Mar 11;211(1184):321–339. doi: 10.1098/rspb.1981.0010. [DOI] [PubMed] [Google Scholar]
  5. Burr D. Motion smear. Nature. 1980 Mar 13;284(5752):164–165. doi: 10.1038/284164a0. [DOI] [PubMed] [Google Scholar]
  6. Derrington A. M., Goddard P. A. Failure of motion discrimination at high contrasts: evidence for saturation. Vision Res. 1989;29(12):1767–1776. doi: 10.1016/0042-6989(89)90159-4. [DOI] [PubMed] [Google Scholar]
  7. Hammett S. T., Bex P. J. Motion sharpening: evidence for the addition of high spatial frequencies to the effective neural image. Vision Res. 1996 Sep;36(17):2729–2733. doi: 10.1016/0042-6989(96)00009-0. [DOI] [PubMed] [Google Scholar]
  8. Levi D. M. Pattern perception at high velocities. Curr Biol. 1996 Aug 1;6(8):1020–1024. doi: 10.1016/s0960-9822(02)00647-4. [DOI] [PubMed] [Google Scholar]
  9. Morgan M. J., Benton S. Motion-deblurring in human vision. Nature. 1989 Aug 3;340(6232):385–386. doi: 10.1038/340385a0. [DOI] [PubMed] [Google Scholar]
  10. Morgan M. J., Castet E. Stereoscopic depth perception at high velocities. Nature. 1995 Nov 23;378(6555):380–383. doi: 10.1038/378380a0. [DOI] [PubMed] [Google Scholar]
  11. Morgan M. J., Cleary R. Ambiguous motion in a two-frame sequence. Vision Res. 1992 Nov;32(11):2195–2198. doi: 10.1016/0042-6989(92)90081-s. [DOI] [PubMed] [Google Scholar]
  12. Morgan M. J., Watt R. J., McKee S. P. Exposure duration affects the sensitivity of vernier acuity to target motion. Vision Res. 1983;23(5):541–546. doi: 10.1016/0042-6989(83)90129-3. [DOI] [PubMed] [Google Scholar]
  13. Schnapf J. L., Nunn B. J., Meister M., Baylor D. A. Visual transduction in cones of the monkey Macaca fascicularis. J Physiol. 1990 Aug;427:681–713. doi: 10.1113/jphysiol.1990.sp018193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Watson A. B., Pelli D. G. QUEST: a Bayesian adaptive psychometric method. Percept Psychophys. 1983 Feb;33(2):113–120. doi: 10.3758/bf03202828. [DOI] [PubMed] [Google Scholar]
  15. Watt R. J., Hess R. F. Spatial information and uncertainty in anisometropic amblyopia. Vision Res. 1987;27(4):661–674. doi: 10.1016/0042-6989(87)90050-2. [DOI] [PubMed] [Google Scholar]
  16. Watt R. J., Morgan M. J. The recognition and representation of edge blur: evidence for spatial primitives in human vision. Vision Res. 1983;23(12):1465–1477. doi: 10.1016/0042-6989(83)90158-x. [DOI] [PubMed] [Google Scholar]
  17. Westheimer G., McKee S. P. Visual acuity in the presence of retinal-image motion. J Opt Soc Am. 1975 Jul;65(7):847–850. doi: 10.1364/josa.65.000847. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES