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SUMMARY

The primary visual cortex (V1) is the ¢rst cortical area to receive visual input, and inferior temporal (IT)
areas are among the last along the ventral visual pathway. We recorded, in areaV1 of anaesthetized cats
and area ITof awake macaque monkeys, responses of neurons to videos of natural scenes. Responses were
analysed to test various hypotheses concerning the nature of neural coding in these two regions. A variety
of spike-train statistics were measured including spike-count distributions, interspike interval distributions,
coe¤cients of variation, power spectra, Fano factors and di¡erent sparseness measures. All statistics
showed non-Poisson characteristics and several revealed self-similarity of the spike trains. Spike-count
distributions were approximately exponential in both visual areas for eight di¡erent videos and for
counting windows ranging from 50ms to 5 seconds. The results suggest that the neurons maximize their
information carrying capacity while maintaining a ¢xed long-term-average ¢ring rate, or equivalently,
minimize their average ¢ring rate for a ¢xed information carrying capacity.

1. INTRODUCTION

It has been suggested that visual representations are
optimized to transmit the maximum information
about the images encountered in everyday life (Uttley
1973; Linsker 1987; Barlow 1989). This simple assump-
tion has proven su¤cient to account for the
characteristics of large monopolar cells in the £y
(Srinivasan et al. 1982; Van Hateren 1992; Laughlin
1981), the temporal characteristics of retinal ganglion
cells (Dong & Atick 1995), human spatial frequency
thresholds (Atick & Redlich 1992; Van Hateren 1993),
and the psychophysics of orientation perception for
short presentation times (Baddeley & Hancock 1991).
Maximization of information is a powerful theore-

tical principle that leads to testable predictions about
the ¢ring patterns of neurons. However, to generate
speci¢c predictions we must make some assumptions
about the nature of the neural code and the type of
constraint that limits its information carrying capacity.
To apply information maximization to neuronal spike
trains, we must identify which of their characteristics
carry information. In our analysis, we will consider
two possibilities: that ¢ring rates, or more precisely,
spike counts over discrete intervals of time, are the
information carrying elements; or that interspike inter-
vals play this role. Without any constraints on the rate
or precision of neuronal spiking, the information

carrying capacity of a spike train is in¢nite. Thus,
constraints play a crucial role in any information maxi-
mization procedure.We will consider three possibilities,
constraints on the maximum ¢ring rate, the average
¢ring rate, or a quantity known as the sparseness of
the ¢ring-rate distribution. Identifying the nature of
the constraint that limits information carrying capacity
has important implications for the biophysical mechan-
isms that underlie neural coding.
Assuming the ¢ring rates carry information,

Laughlin (1981) proposed a constraint on the
maximum ¢ring rate for neurons in the insect eye, and
noted that the optimal ¢ring-rate distribution in this
case is £at (¢gure 1a). A di¡erent proposal, that the
distribution of ¢ring rates should be sparse (Field
1994; Olshausen & Field 1996), has led to predictions
for the receptive ¢eld properties of neurons in V1
similar to those seen in the data (Olshausen & Field
1996). An example of a sparse distribution is shown in
¢gure 1b. Here, the number of àctive' neurons, neurons
with signi¢cantly elevated ¢ring rates, is small. A third
proposed constraint is that the average ¢ring rate of the
neuron is held ¢xed while the information carrying
capacity is maximized (Levy & Baxter 1996; Baddeley
1996). If information is carried by ¢ring rates, this
predicts that the distribution of ¢ring rates should be
exponential as in ¢gure 1c (Shannon & Weaver 1949;
Levy & Baxter 1996; Rieke et al 1997). If, instead,
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information is encoded by interspike intervals, this
constraint predicts an exponential distribution of inter-
spike intervals, that is, a Poisson distribution (DeWeese
1996; Rieke et al 1997). Simulation results suggest that
maximizing information transmission for a ¢xed
average ¢ring rate also leads to receptive ¢elds qualita-
tively similar to those found in V1 (Harpur & Prager
1996).
To investigate the nature of the constraints relevant

for neural coding, we measured ¢ring-rate distributions
and other spike-train statistics of neurons in two visual
areas. We chose visual areas at opposite ends of the
cortical visual processing stream, V1 and IT, to
compare coding strategies. Since the distribution of the
images used to generate the spike trains a¡ects the
statistical properties we study, we used videos that
resemble, as nearly as possible, the normal visual envir-
onments of the animals from which the neurons were
being recorded.

2 . METHODS AND STIMULI

To stimulate the natural visual environment of a cat as
closely as possible, we recorded three videos by `walking' a
video camera 30 cm above the ground in locations where
cats are commonly found. The mixed video contained both
natural and man-made features (length of video, 10 minutes;
number of cells, 22). The natural video consisted almost
entirely of natural vegetation (10min, 6 cells), and the indoor
video was shot in the laboratory and contained only man-
made features (5min, 4 cells). For comparison, a subset of
the neurons was also tested with high contrast white-noise
stimuli generated by removing the video input form the
video player (10min, 16 cells). The stimuli were recorded
using a high quality video camera, using VHS format and
displayed on a black and white monitor (14 inch for the V1
cells, 20 inch for the ITcells).

While recording from two macaques, we presented three
di¡erent videos: a laboratory video (5min, 26 cells), a colony
video taken of a wild monkey colony (5min, 4 cells), and an
arti¢cial video of a popular Australian soap opera (5min, 2
cells). Again for comparison we recorded cells while the
monkeys were watching a blankscreen (5min, 19 cells).

Details of the recording and anaesthesia (for the cats) can
be found elsewhere for cat V1 (Sengpiel et al. 1994), and for
macaque IT (Rolls & Tovee 1995). After characterizing the
neurons using standard techniques (optimal orientation,

spatial frequency, and direction tuning forV1; face and object
selectivity for IT), the monitor was positioned 57 cm away
from the cats and 1m away from the monkeys, and spikes
were recorded while a given video sequence representative of
natural scenes was played. Data were collected from three
cats, and two macaques. The cats were anaesthetized and the
macaques were awake and free viewing. Only visually respon-
sive cells were used.

(a) Calculating spike-count distributions

We computed spike-count distributions by sliding a
window of size T along the recorded spike trains, in steps of
T=6 (to minimize the e¡ects of window boundaries), and
counting how many spikes occurred within the temporal
window for each window position. The normalized spike-
count frequency distribution provides an estimate of the prob-
ability distribution of spike counts for a given window size.
This is equivalent to a ¢ring-rate distribution up to a factor
of T. To facilitate comparison of cells with di¡erent average
¢ring rates and to assure that all cells were analysed with the
same resolution, many of the results shown used a window size
adjusted so that the average number of spikes per window was
¢xed.To do this we used a window size of N=f , where N is the
desired average number of spikes per window, and f is the
average ¢ring rate of the cell.

3. ANALYSIS AND RESULTS
(a) Firing rates

We ¢rst measured the average ¢ring rates of the cells.
ForV1 of the anaesthetized cats, the ¢ring rates for the
video-stimulated neurons were low (mean�3.96Hz,
s.d.�3.61Hz). This was lower than has been previously
reported (Legëndy & Salcman 1985) for the
unanaesthetized cat (mean�8.9Hz, s.d.�7.0Hz), but
was signi¢cantly higher than when the cells were stimu-
lated with high contrast white noise (mean�2.45Hz,
s.d.�2.18Hz). It is proposed that the low average rates
were partly due to the e¡ect of the anaesthetic (which
could be tested by systematically varying its level). For
the macaque ITcells, generally in the upper bank of the
superior temporal sulcus at sites similar to those in
(Rolls & Tovee 1995), the average rate was higher for
both video stimulation (mean�18Hz, s.d.�10.3Hz),
and blank screen viewing (mean�14Hz, s.d.�8.3Hz.
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Figure 1. Three proposals for optimal ¢ring-rate distributions. All distributions are plotted on log-linear axes so that an
exponential distribution appears as a straight line. (a) If the maximum ¢ring rate is constrained, the information carrying
capacity of ¢ring rates is maximum for a £at distribution. (b) An example of a sparse distribution. (c) If the constraint is on
the average ¢ring rate, the optimal distribution is exponential.



These rates are low compared to the ¢ring rates
observed when these cells are stimulated with optimal
stimuli. For instance, when theV1 neurons were stimu-
lated with optimally oriented high contrast sinusoidal
gratings the ¢ring rates were on average 37.0Hz
(s.d.�33.9Hz). The low ¢ring rates observed are prob-
ably attributable to the fact that natural video
sequences rarely contain visual structures that are
optimal for activating the cells, and also due to the
inhibitory e¡ects that arise when cells respond to
complex natural scenes (Gallant 1996).

(b) Spike-count distributions

Examples of the spike-count distributions computed
with a window size of T � 250ms, are shown in ¢gure
2. Like the neurons shown, the majority of neurons
measured had spike-count distributions that were
approximately exponential. The graphs in ¢gure 2 use
log-linear axes so an exponential appears as a straight
line.
An exponential distribution was found for the

majority of cells when rate was computed using a
250ms time window. To test the generality of this
result, we calculated spike-count distributions while
varying the window size over one order of magnitude.
Figure 3 shows the spike-count distributions, averaged
over all neurons, for window sizes chosen for each cell
so that there were an average of one, two, or ten spikes
per window. Choosing the window size corresponding
to a ¢xed average number of spikes rather than a ¢xed
time, allowed us to average results from cells with
di¡erent ¢ring rates. Except for the low spike-count
regions of the distributions corresponding to ten spikes

per window, all the distributions are well approximated
by an exponential. The fact that the same distribution
applies for a wide range of window sizes, except for a
change of scale, indicates `self-similarity' (Teich 1989;
Teich et al 1997). This is not a property of most distribu-
tions, for instance the shape of the Poisson spike-count
distribution is highly dependent on the time scale.
Next, we investigated whether the distribution

depended on which video sequence was used to elicit
the responses. Figure 4 shows that the form of the
distribution was essentially independent of the parti-
cular video used to stimulate the neuron. Indeed,
exponential distributions even appeared for the white
noise and blank screen viewing conditions, even
though they resulted in lower average ¢ring rates. The
similarity of the distributions for video and non-video
viewing conditions might suggest that the neurons
were not responding to speci¢c features of the videos.
However, a study of the neural responses in relation to
the video images showed that this was not the case. For
example, IT neurons known to respond to face images,
¢red vigorously when a face appeared in the video.

(c) Interspike intervals

In addition to spike-count distributions, a number of
other statistics provide information about the nature of
neural coding. The ¢rst is the distribution of interspike
intervals (ISIs) which can be used to identify a Poisson
distribution, for example. We computed the ISI distri-
bution (shown in ¢gure 5a,b after normalizing to the
mean interspike interval for each cell and averaging
across cells). The ISI distributions do not appear to be
Poisson and are described better by a power-law
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Figure 2. A representative collection of ¢ring-rate distributions. The spike-count probability distributions for six di¡erent
cells computed using a sliding window of 250ms. (a), (b) and (c) show three cat V1 cells, and (d), (e) and (f ) three macaque
IT cells. The thick lines correspond to di¡erent replays of the same natural video sequence. The thin lines are for responses to
either high contrast white noise (V1) or a blank screen (IT). The vertical axis is logarithmic. Other than the noise condition
for (d ) and (f ), the results are well approximated by exponential distributions.



relation.This is indicated in ¢gure 5a,b by the approxi-
mately straight lines appearing on a log^log plot.
The coe¤cient of variation, CV, measures the

normalized variability of interspike intervals, and has
been the subject of much theoretical interest (see, for
instance, Softky & Koch 1993; Holt et al. 1996). This
measure can be used to identify a stationary Poisson
process for which CV � 1. CV for N interspike inter-
vals of duration Tj is given by

CV � �

hTi , (1)

where

hTi � 1
N

XN
j�1

Tj, (2)

and

� �
��������������������������������������������
1

N ÿ 1

XN
j�1

(Tj ÿ hTi)2
vuut : (3)

Using this measure, neither the V1 nor the IT spike
trains are well characterized by a Poisson process. The
coe¤cients of variation were, on average, 1.91 for V1
cells (s.d.�0.42, p(CV41) < 0:005)) in the video
condition. For IT neurons the mean CV was 1.84
(s.d.�0.49, p(CV41) < 0:005)).
CV is most useful if the spike train is stationary, but

this is not the case for most in vivo recordings. A local
version of CV , CVn, has been proposed in this case, to

determine whether groups of n spikes can be described
as arising from a Poisson process (Holt et al. 1996). To
compute CVn, we de¢ne the mean ISI between inter-
spike interval i and interspike interval i� n as

hTini �
1
n

Xi�nÿ1
j�i

Tj, (4)

and the local standard deviation as:

�ni �
����������������������������������������������
1

nÿ 1

Xi�nÿ1
j�i

(Tj ÿ hTini )2
vuut : (5)

The local coe¤cient of variation is then

CVn � Kn

XNÿn�1
i�1

�ni
hTini

, (6)

where Kn is a value chosen so that CVn is equal to one
for a Poisson process. The computed values of CVn as a
function of n are shown in ¢gure 5c. The values are
always greater than one. CVn values for the IT spike
trains with small n are closer to the Poisson value,
which may re£ect the persistence time of the images
IT is sensitive to (faces, objects). Images that make V1
neurons respond vigorously (oriented lines at particular
locations) are likely to have shorter persistence times in
the videos.The relationship between CVn and n appears
approximately power law implying that it does not
de¢ne any particular spike or time-scale.
An additional non-Poisson feature we found was

positive correlation between successive interspike
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Figure 3. The average spike-count distributions for the V1 (a, b, c) and IT (d, e, f ) neurons is relatively insensitive to the
window size used to calculate the rate. To display the average distributions for all the video-stimulated cells (each with a
di¡erent average ¢ring rate), we used a window size adjusted so that the average number of spikes per window was the same
for all the cells, either one (a, d ) two (b, e) ten (c, f ) spikes per window. Error bars are standard errors. Spike-count distribu-
tions for six di¡erent video conditions and two noise conditions. In each case the window size was chosen so that the average
number of spikes per window was one. Near exponential spike count distributions were found for all three video conditions:
mixed (a), natural (b), indoor (c), laboratory (e), colony (f ) and arti¢cial (g). More surprisingly, the white noise (d), and blank
screen (h) conditions also produced approximately exponential distributions. Error bars correspond to standard errors.



intervals. Pearson's product moment correlations, r,
between adjacent interspike intervals took average
values for the V1 cells under video conditions of 0.11
(s.d.�0.1, p(r40) < 0:005), and, under noise condi-
tions, 0.08 (s.d.�0.12, p(r40) < 0:025). For IT the
correlation for the video conditions was 0.194
(s.d.�0.050, p(r40) < 0:001).

(d) Power spectra

ISI distributions only characterize pairwise relations
in ¢ring patterns. A more powerful measure is the
Fourier power spectrum of the spike train. Power
spectra were computed using a sampling frequency of
100Hz (with a resulting Nyquist frequency of 50Hz),
based on overlapping samples of 2.56 s, after
windowing with a Bartlett window (Press et al. 1992).
The results for three V1 cells and three ITcells, shown
in ¢gure 6, are reasonably typical of the entire collec-
tion of neurons. For a Poisson process, the power
spectrum is £at, but this was found for only four of the
99 cells. The vast majority of cells (92/99) had the
greatest power at low frequencies (0^5Hz), with the
power decreasing monotonically for higher frequencies.

For three cells the peak power was not at the low
frequency end. For 52 out of the 99 cells, the plot of
power for frequencies between 1 and 10Hz was straight
on log^log scales, another indication of self-similarity.
This low frequency bias contrasts with lateral
geniculate-nucleus cells stimulated with natural scenes
(Dan et al. 1996), and may re£ect a di¡erence in the
correlation times of the objects coded for (e¤ciently
coded intensity versus the presence of faces and line
segments).

(e) Fano factor analysis

Fano factors (Teich et al 1997) provide a convenient
statistic for describing spike count variability over a
range of di¡erent time scales. The Fano factor, F(T) is
the ratio of the variance to the mean of the spike-count
distribution computed using a window of size T.
For a Poisson process, F(T) � 1 for all T, and if the

system is fractal, the Fano factor is a power-law func-
tion of T , F(T) / T�, where � is the fractal or
scaling exponent (Teich et al 1997). Fano factors for our
data are shown in ¢gure 7a. None of the cells appeared
Poisson. Instead, a power law provides a very good
approximation for the average Fano factors indicating
the fractal nature of the ¢ring patterns. The exponents
for the ITcells (¢gure 7c) are consistently higher than
those for the V1 cells (¢gure 7b), indicating more low
frequency variation and con¢rming the analysis using
CVn. For V1 cells, the average � was 0.29 (s.d.�0.165),
and, for IT neurons, 0.53 (s.d.�0.12).

(f) Sparseness

BothV1 and IT neurons had sparse ¢ring-rate distri-
butions as measured using Olshausen & Field's
de¢nition (Olshausen & Field 1996). A possible inter-
pretation of the sparseness idea is that successively
sparser representations should be generated at higher
levels of the visual pathway. Indeed, the raw input is
less sparse than the representation in LGN, which in
turn is less sparse then in V1 (Field 1994). We ¢nd no
evidence for increasing sparseness as we move from the
representations in V1 to IT. As seen in ¢gure 8, the
degree of sparseness is not dramatically di¡erent for
the two cortical areas and which area has the higher
sparseness depends on the particular measure used.

4 . DISCUSSION
(a) The empirical ¢ndings

The main empirical contribution of this study is to
extend various statistical analyses of neural spike-train
data performed on arti¢cially stimulated neurons, to
neurons stimulated with naturalistic video sequences.
Our main results are:

1. The average ¢ring rates of the cells were low
compared to those typically reported for neurons
responding to optimal stimuli. Low ¢ring rates have
previously been reported for naturally stimulated cells
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Figure 4. Spike-count distributions for six di¡erent video
conditions and two noise conditions. In each case the
window size was chosen so that the average number of
spikes per window was one. Near exponential spike count
distributions were found for all three video conditions:
mixed (a), natural (b), indoor (c), laboratory (e), colony (f ) and
arti¢cial (g). More surprisingly, the white noise (d ), and
blank screen (h) conditions also produced approximately
exponential distributions. Error bars correspond to stan-
dard errors.
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in V1 (Legëndy & Salcman 1985) and in other visual
areas (Gallant 1996).
2. The ¢ring patterns for naturally stimulated cells are
far from Poisson. This is indicated by ISI statistics,
power spectra, Fano factors, and spike-count distribu-
tions. Non-Poisson characteristics of spontaneous and
stimulus-induced ¢ring have been reported by Teich et
al. (1997) and Bair et al. (1994).
3. The spike trains show evidence of self-similarity as
demonstrated by the Fano factor analysis, by the spike-
count distributions, and also by the approximately
power-law form of the ISI distribution and some of the
power spectra. Self-similarity has been reported
previously for arti¢cially stimulated V1 neurons (Teich
et al. 1996), but this is the ¢rst report for naturally
stimulated neurons.
4. The spike-count distributions are approximately
exponential over a large range of window sizes. This
has been suggested for theoretical reasons (Levy &
Baxter 1996; Baddeley 1996), but has not been reported
previously as an experimental ¢nding.

(b) Implication for coding

The statistics of the spike trains that we observe are
consistent with an optimized rate code. The observed
spike-count distributions are of nearly maximum
entropy if the average ¢ring rate is constrained (see
¢gures 9a,b). Over a two and a half order of magnitude
variation in the window size used for spike counting,
the entropy is approximately constant and near its
maximum possible value. An alternative way to
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of the same entropy (again the thin line corresponds to a
Poisson process). The ¢ring rate is near minimal for the
given output entropy over two orders of magnitude of
window size. Error bars represent standard errors. the
`time' indicated on the horizontal axis is the spike counting
window size.



express this result is that for a given entropy, the code
minimizes the average ¢ring rate. This is seen in ¢gure
9c,d and D which compare the actual average ¢ring
rate to the minimum rate consistent with the observed
spike-count entropy.
This interpretation assumes that ¢ring rate is the

appropriate variable to consider when studying coding
issues. The output of a neuron presents a potentially
severe bottleneck to communication. Using each inter-
spike interval to carry information, rather than spike
counts over discrete time intervals, might appear to be
a more e¤cient coding method. The optimal distribu-
tion for such a code is a Poisson distribution and this is
not consistent with our results. Psychophysical experi-
ments indicate that visual (Watt 1987), and auditory
(Viemeister 1996) resolution for many tasks increases
over a period of up to a second. For a representation-
based on interspike intervals, a complicated mechanism
for integrating over successive interspike intervals
would be required to display such behaviour. A rate
code would naturally show an increase of resolution
over time.
The proposal that average ¢ring rate is being

constrained while information is being maximized has
many similarities to the s̀parsity' proposal (Field 1994;
Olshausen & Field 1996). Since one of the de¢nitions of
sparsity equates with average ¢ring rate (hjxji),
networks that maximize information transmission for
¢xed average ¢ring rate result in V1-like receptive
¢elds when trained to represent collections of natural
images (Harpur & Prager 1996; Olshausen & Field
1996). However, rather than restricting the number of
active elements, we suggest that the code is designed to
maximize information transmission at a ¢xed average
rate with all rates conveying information, not just the
most active neurons.
The visual cortex has among the highest oxygen

consumption of any part of the brain and accounts for
10% of brain volume in a typical sighted animal
(Diamond 1996). In children the brain can account for
up to 50% of the resting oxygen consumption (Sokolo¡
1989). Therefore a code that minimized the average
¢ring rate, and hence metabolic activity, could make a
signi¢cant di¡erence to the energy consumption of an
animal. Assuming that the code in these visual areas is
a rate code, the measurements presented here show that
information carrying capacity is near its maximum
value for a given average ¢ring rate over a large range
of time scales, and at two opposite poles of the cortical
visual pathway.
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