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Arti¢cial neural networks have become useful tools for probing the origins of perceptual biases in the
absence of explicit information on underlying neuronal substrates. Preceding studies have shown that
neural networks selected to recognize or discriminate simple patterns may possess emergent biases toward
pattern size or symmetryöpreferences often exhibited by real femalesöand have investigated how these
biases shape signal evolution. We asked whether simple neural networks could evolve to respond to an
actual mate recognition signal, the call of the tüngara frog, Physalaemus pustulosus. We found that not only
were networks capable of recognizing the call of the tüngara frog, but that they made remarkably accurate
quantitative predictions about how well females generalized to many novel calls, and that these predictions
were stable over several architectures. The data suggest that the degree to which P. pustulosus females
respond to a call may often be an incidental by-product of a sensory system selected simply for species
recognition.
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1. INTRODUCTION

Research in animal communication has long sought an
explanation for the extraordinary diversity of signal form.
Strategic analyses employing game theory have been
successful in predicting the contexts in which an animal
will convey particular information, and in predicting the
general forms signals ought to take, but ultimately say
more about the content of signals than about their struc-
ture (Krebs & Dawkins 1984; Dawkins & Krebs 1978;
Cheney & Seyfarth 1991; Hauser 1996). Signal detection
theory describes the sorts of signals that may propagate
successfully through a noisy world, predicting general
attributes of signal structure, like the colours and contrasts
of pigments (Endler 1992), or some temporal and
frequency attributes of songs and calls (Brenowitz 1982;
Littlejohn 1977; Ro« mer & Bailey 1986). Nevertheless, the
question remains: why so many intricate forms? Is the
diversity and complexity of signals solely a function of
intent and interference?
In the last decade, researchers have placed a strong

emphasis on the role receiver biases may play in driving
the diversity of signal form (Guilford & Dawkins 1991;
Endler 1992; Ryan 1990; West Eberhard 1979). One recent
development has been the introduction of connectionist
methods for exploring `receiver psychology' (Enquist &
Arak 1993; Johnstone 1994). The models known as arti¢-
cial neural networks are in many ways ideal tools for
formulating hypotheses about the nature and origins of
biases in the nervous systems of receivers. An arti¢cial
neural network consists of interacting neuron-like compu-
tational units that sometimes behave remarkably like a
real nervous system. This convenient attribute, combined
with the relative simplicity of the networks, permits

researchers to investigate how tasks such as signal recogni-
tion might be performed. Once networks have been
trained to recognize a particular signal, for example, one
can probe successful networks to determine whether they
recapitulate the errors and generalizations made by test
subjects, to produce novel predictions about the responses
of receivers, and ultimately to generate hypotheses
concerning the neural substrates of signal recognition.
Researchers in animal communication may augment this
approach by replacing standard training algorithms, such
as `back-propagation', with a genetic algorithm. The
genetic algorithm uses selection, mutation and recombina-
tion to train networks, and so enables one to model how
receiver responses change as a function of selection pres-
sures and population parameters.
To date, researchers in animal communication have

successfully employed neural networks to investigate how
selecting networks to perform tasks analogous to species
recognition might lead to more general biases (reviewed
in Enquist & Arak 1998). Several of these studies have
demonstrated that networks selected to recognize one
pattern, or to discriminate between two patterns, show
emergent preferences for traitsösuch as pattern length
and symmetryöwithout having been selected to cue in
on the g̀ood genes' these traits are often thought to adver-
tise (Enquist & Arak 1993, 1994; Arak & Enquist 1993;
Johnstone 1994). The main strength of this approach is
that the simulations can be used to make qualitative
predictions about many communication systems (Arak &
Enquist 1993; Hurd et al. 1995; Enquist & Arak 1998; John-
stone 1994). Unfortunately, in doing so one sacri¢ces the
capacity to make quantitative predictions about the beha-
viour of particular animals. In the absence of data on the
external validity of the models, signal and receiver
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simplicity is often construed as an impediment rather than
an asset (Kirkpatrick & Rosenthal 1994; Dawkins &
Guilford 1995).
We asked if simple neural networks could evolve to

recognize a real mate recognition signalöthe call of the
tüngara frog, Physalaemus pustulosus. We then tested
whether neural networks that were able to recognize the
tüngara frog call would generalize to novel calls, as do
real females. To assess the biological validity of the
networks, we compared the responses of females in a two-
way choice test (novel call versus noise) to the responses of
neural networks. And last, we asked if the ability of the
networks to predict female responses was robust to manip-
ulations in the network architecture.

2. METHODS

(a) Network architecture
The architecture consisted of four groups, or layers, of

neurons. The input layer neurons respond to select frequency
ranges and pass this information on to the neurons of the feature
detector layer. This layer processes the stimuli and in£uences the
activity of the context layer. The context layer feeds back on the
neurons of the feature detector layer, enabling the feature
detector neurons to make responses to current sound stimuli
contingent on preceding stimuli. This recurrence permits the
extraction and recognition of temporal features in the sound
stimulus. Neurons of the feature detector layer in£uence the
activity of the output neuron, and it is the activity of the output
neuron that ultimately de¢nes a network's response to a stimulus.

This recurrent network architecture is essentially an Elman
network (1990) modi¢ed to relax the assumption that context
neurons have perfect information about the activities of feature
detector neurons in a preceding time-step. This was accom-
plished by replacing the context layer of an Elman networköin
which the activity of an individual context neuron is identical to
the activity of a corresponding feature detector neuron during
the preceding time intervalöwith context neurons that receive
input from all neurons of the feature detector layer. The context
neurons are now allowed to weight these inputs di¡erently and
compute their activations based on the sum of these inputs.

The input layer consisted of 15 neurons, each responding
selectively to a frequency range of 86.93 Hz, together spanning
from 261Hz to 1565Hz. Each of these neurons projected to
every neuron in the feature detector layer. In the standard archi-
tecture, the feature detector layer consisted of 12 neurons: each
received input from every neuron in the input layer and the
context layer; each sent e¡erent projections to the 12 neurons of
the context layer and to the output neuron (¢gure 1). Each
neuron in the network also received input from a bias neuron
(not shown in the schematic) that was tonically active
(activity�1.0).

The activity of individual neurons was de¢ned by the sigmoid
activation function

A � 1
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�
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where !i and �i represent the weight and activity of the input
neuron i. The coe¤cients 72.5945 and 71.5 were chosen a
priori to provide the neurons with low basal levels of activation
in the absence of input, and to saturate activation at high input.

As in the standard implementation of the Elman network (1990),
the activation of a neuron did not accumulate over time (though
current studies are exploring the rami¢cations of modifying this
parameter). Weights varied from 70.6 to +0.6, coded as six-bit
numbers, with a discrete uniform distribution (��0). (Neurons
of the input layer did not weight sound stimuli, though they did
weight input from a bias neuron. The bias neuron enabled input
layer neurons to di¡er in threshold responses to their respective
frequencies; variation in the frequency tuning of ascending audi-
tory ¢bres is known to in£uence anuran auditory processing and
mate choice (Ryan et al. 1990).)

A neuron of the feature detector layer, for example, possesses
28 weights for each of its 28 inputs: one tonically active bias
neuron, 15 neurons of the input layer, and 12 neurons of the
context layer. This neuron multiplies each weight times the
activity of its respective input, sums these values, and enters the
weighted sum into the activity function. Simultaneously, all other
neurons in the network calculate their activities based on their
inputs and weights. This yields new activity levels for the
neurons of the network, which are then used to recalculate activ-
ities in the subsequent time step. The activity of the output
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Figure 1. Schematic of standard neural network architecture.
Each network consisted of neurons connected as shown above,
with large arrows indicating that each neuron of the target
layer receives information from every neuron in the source
layer. On the upper left hand corner of the ¢gure there are
three spectrograms presented one at a time to the networks,
with each stimulus presented at a di¡erent time in the stimulus
window. Each pixel of a spectrogram represents a particular
time and frequency interval. The shade of a pixel re£ects the
value of one FFT coe¤cient of the soundödarker pixels
correspond to larger coe¤cients. To the left of the input layer is
a row of pixels representing such coe¤cients for 15 frequency
intervals and a single time interval. In each time interval, the
activity of each neuron is calculated by taking the weighted
sum of the activities of its inputs in the preceding time interval,
and entering this number into the activation function (see
text). The activity of the output neuron at the end of the
stimulus window is the output of the network. Additional
simulations were run using architectures with varied numbers
of neurons in the feature detector and context layers.



neuron at the end of the stimulus window is recorded as a
network's response to a stimulus.

To assess whether the responses of networks were stable over
various network architectures, we varied the size of the feature
detector and context layers. `Small' networks consisted of eight
neurons in each of these layers. `Large' networks consisted of 16
neurons in each of these layers.These architectures were otherwise
identical to the `standard' neural network depicted in ¢gure1.

(b) Stimulus synthesis
Calls were synthesized at a sampling rate of 20 kHz using an

AMIGA 3000 computer and a sound synthesis program
developed by J. Schwartz for use with the software package
FutureSound, as previously described (Ryan & Rand 1993).
Synthetic calls were then recorded on a Macintosh using
Canary software (Bioacoustics Research Program, Cornell
Laboratory of Ornithology).We generated spectrograms of these
calls using a ¢lter bandwidth of 352.94Hz, a framelength of 256
points, grid resolution of 86.93Hz by 11.5ms, logarithmic ampli-
tude, a sampling frequency of 22 kHz, and a Hamming window
function. Because calls were synthetic, extraneous noise could be
easily identi¢ed and clipping level adjusted appropriately. Three
spectrograms for each call were then extracted from the ¢le and
fast Fourier transform (FFT) coe¤cients were rescaled such that
the smallest coe¤cients in each spectrogram were equal to zero,
and the largest coe¤cient was equal to 4.0. This ensured that all
stimuli had identical peak coe¤cients, little noise, and fell into a
range appropriate for use with the activation function chosen for
the neural network model. Spectrograms generated from the
same calls but with di¡erent clipping levels produced very
similar responses from networks. The tüngara frog call resulted
in a set of three matrices, each comprised of 15 rows corre-
sponding to each frequency range, and 32 columns
corresponding to each time interval; novel stimuli also had 15
frequency rows, but varied in the number of time columns that
were produced.

During each generation of the evolutionary simulations, each
tüngara frog call was placed at a random time in a window of 70
time bins, resulting in three 15�70 matrices (¢gure 1). Noise
stimuli were constructed de novo at every stimulus presentation
by randomly reassigning the frequency coe¤cients within each
time interval, producing noise in a matching amplitude envelope.
Selecting for networks that ignored this stimulus ensured that
networks would not recognize calls by acting as simple high-
pass ¢ltersöa possible but trivial solution to the task of discrimi-
nating a call from white noise. For calls and corresponding
noises, 2% of the 15�70 matrix entries were randomly selected
and assigned arbitrary values between zero and four. Thus,
during the evolutionary simulation there were two sources of
noise: networks were selected to respond to a call in various posi-
tions of the time window, with some noise overlaid; and networks
were selected to ignore a noise stimulus containing sound in a
similar amplitude envelope. Although we have begun studies
examining the consequences of using other noise stimuli, such as
environmental background noise or the calls of sympatric
species, these stimuli would confound our investigation of
species recognition by adding selection to overcome transmission
constraints and discriminate between species.

The two sources of noise used during the evolutionary simula-
tion provide the variation in the `training set' necessary for
network generalization.The variation introduced by the overlaid
noise alone produces approximately 1.14�1063 potential signals,
of which only three are used in each generation. Because of the

vast number of potential signals, the repetition of patterns is
negligible, and the size of the training set used in a run is
approximately three times the number of generations in a run of
the simulation (small networks, ��1577 generations; standard
networks, ��997; large networks, ��840).

When testing the responses of networks to novel calls (see ½ 2d
below), we sought to use a noise stimulus comparable to the
`white noise' used in female phonotaxis experiments. The testing
algorithm ¢rst computed the average of the 15 frequency coe¤-
cients in each time interval of the call. Each frequency coe¤cient
of a noise stimulus was drawn from a uniform distribution
between 0 and twice the call's average frequency coe¤cient in
the corresponding time bin (note �noise��call). This results in a
noise stimulus whose coe¤cients are more evenly distributed
than either the true call or the noise used during the evolutionary
simulation, but retains the appropriate amplitude envelope.
During the testing phase, no noise was added to the calls them-
selves.

(c) Genetic algorithm
Each evolutionary simulation began with the generation of

100 networks at random. Each network was represented by a
single binary string called a c̀hromosome.' Chromosomes of the
standard architecture consisted of 3282 bits, representing 547
network weights, each coded as a six-bit string.We evolved popu-
lations of networks using a modi¢ed version of Goldberg's simple
genetic algorithm in C (Smith et al. 1994). Networks encoded as
chromosomes were selected for a capacity to discriminate calls
from noise in the same amplitude envelope, with the ¢tness
function de¢ned as

F �
���������������������������������Xn
i�1

(Ci ÿNi)
2=n

s
� 0:01

where F is ¢tness, Ci is the response of the network to call i, Ni is
the response of the network to noise i, and n is the number of calls
(3). (The response of the network was de¢ned as the activity of
the output neuron at the end of the stimulus window. If the
response of the network to noise exceeds the response to a call,
the response Ci7Ni was recorded as zero.) Because we used a
proportional selection method, described below, minute di¡er-
ences in initial ¢tness could cause loss of most genetic diversity
very early in the simulation (data not shown); a small external
¢tness component of 0.01 was added to slow this loss and thereby
speed the algorithm.

The algorithm drew 100 chromosomes with replacement from
the starting population. For each draw, the probability that a
particular chromosome would be chosen was equal to its ¢tness
relative to the rest of the population (a proportional selection
regime known as roulette wheel selection). These 100 chromo-
somes were selected in 50 pairs; pairs were recombined with a
probability of 0.5. Recombination was equally likely at any point
along the chromosome. Each bit of the resulting 100 chromo-
somes was mutated with a probability of 0.001. This yielded a
population of daughter chromosomes that were again screened
for their capacity to recognize the tüngara frog call. The
simulation ran until the population recognized the P. pustulosus
call at predetermined criteria (¢tness of single most ¢t individual
in the population40.90, average ¢tness40.75) for two consecu-
tive generations.

The simulation was run 20 di¡erent times for the standard
architecture, ten times for the small architecture, and ten
times for the large architecture. At the end of each run, the
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Figure 2. Stimuli presented to the neural networks during testing. (a) Sonograms of the extant and ancestral calls of the P. pustu-
losus species group, as reported in Ryan & Rand (1995). The empty frame on the right depicts the scale of sonograms used in panels
a, b, and c. (b) A call transect representing intermediate states between P. pustulosus and P. petersi, with `caricatures' (calls 16, 24 and
25) formed by overshooting the axis of variation bounded by the two calls. Intermediate and caricature calls were constructed by



weights of the single best network in the last generation were
frozen, recorded, and tested for their responses to a suite of
novel calls.

The simulations were implemented in an AIX 4.0 environ-
ment on IBM RS/6000 computers provided by the computer
Science Department at the University of Texas at Austin.

(d) Network testing
We measured how well each of the 40 networks, representing

separate runs of the simulation, could discriminate test stimuli
from noise in a corresponding amplitude envelope. Stimuli were
presented at the beginning, centre, and end of the stimulus
window. Network responses were calculated using the ¢tness
function de¢ned in ½ 2c above, in which C now represents the
response to the novel call being tested, and N the response to
`white noise' in a matching amplitude envelope. Test stimuli
consisted of 15 calls representing the extant and hypothetical
ancestral calls of the P. pustulosus clade (¢g. 2a, Ryan & Rand
1995), and 19 calls representing various intermediate states
between the tüngara frog call and the calls of P. enesefae and P.
petersi (¢gure 2b,c) for which female response data were available.
For each of the three network types, the average network
response was considered an estimate of the probability that an
individual female would approach the stimulus.

(e) Female responses
Female response data were obtained from phonotaxis experi-

ments in which each call was paired with white noise in the
same amplitude envelope, as previously described (Ryan &
Rand 1995). Recent data suggest that the proportion of females
approaching a speaker in a choice test represents the probability
that any individual female will approach the speaker on repeated
tests (Kime et al. 1998). Female responses to the 15 extant and
hypothetical ancestral calls of the P. pustulosus clade have been
published elsewhere (Ryan & Rand 1995).

3. RESULTS

Of the 40 runs of the simulation, every random initial
population was able to meet the call recognition criteria
within 2200 generations (small ��1577, s.d.�414; stan-
dard ��997, s.d.�168; large ��840, s.d.�292). The
results from a run representative of the standard networks
are shown in ¢gure 3, which depicts the single best and
average ¢tness of each generation.
Testing of network responses to novel stimuli versus noise

revealed that the networks are able to generalize to many
novel calls (¢gure 4).We compared the average response of
the standard 20 networks for each of the 34 test stimuli
(shown in ¢gure 2) to the proportion of females responding
to the corresponding calls in phonotaxis experiments. Stan-
dard networks were able to predict the preferences of
females remarkably well. The resulting regression showed
that the responses of the networks could explain 65% of
the variation in the responses of real females (¢gure 4;
y�0.62x+ 0.10, R2�0.65, p50.0001). Thus selection for

mate recognition is su¤cient to predict female responses to
many novel stimuli.
This result proved to be extremely robust to manipula-

tions of architecture size. Small networks yielded a
regression ( y�0.60x+ 0.10, R2�0.65, p50.0001) remark-
ably similar to the standard network regression, as did
large networks ( y�0.64x+ 0.13, R2�0.67, p50.0001).
Neither of these regressions were signi¢cantly di¡erent
from the regression equation produced by the standard
networks (p40.05) and the responses of both were highly
correlated with the responses of the standard networks
(small networks, r�0.99, p50.001; large networks,
r�0.97, p50.001). The responses of small and large
networks have not been shown because of their extreme
redundancy with standard network responses.

4. DISCUSSION

Simple neural networks are reliably able to recognize the
call of the tüngara frog, and to discriminate it from noise in
the same amplitude envelope. This is the ¢rst time, to the
authors' knowledge, that a simple neural network has been
shown to recognize a mate recognition signal capable of
eliciting responses from females. These data are consistent,
however, with reports indicating that recurrent neural
networks are capable of recognizing time-varying signals
from a variety of domains, including human speech (Tank
& Hop¢eld1987; Elman1990; Lippman1989).
Neural networks selected to recognize the call of the

tüngara frog generalize to novel stimuli with varying
strengths. This is particularly encouraging, since a recei-
ver's capacity to generalize to some stimuli while ignoring
others de¢nes the dimensions along which a signal may
vary. If receiver biases in£uence signal evolution, signal
diversity ought to be partly explained by these dimensions
of receiver preference.
Interestingly, there are data suggesting that the relaxa-

tion of receiver perceptual constraints permitted the
diversi¢cation of calls in di¡erent groups of anurans. One
would predict that lineages of receivers with larger
perceptual landscapes would provide more opportunity
for signal variation and divergence. Given that changes in
mating call are an important behavioural isolating
mechanism (Blair 1964), increases in the size of the
perceptual landscape should translate into higher specia-
tion rates (Ryan 1986). Ryan (1986) reported exactly this
correlation: anuran lineages with amphibian papillae that
respond to a larger frequency rangeöand hence place less
rigid restrictions on signal divergenceöare reliably more
speciose. Similarly, a number of researchers have argued
that when receiver preferences extend beyond existing
signal variation, novel traits able to exploit these biases
may be added to the sender's repertoire (West Eberhard
1979; Basolo 1990; Ryan 1990; Endler 1992).
Arguably the most exciting ¢nd in this study is the

remarkable correlation between the responses of neural
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Figure 2 (continued) simply changing each of the call variables used in call synthesis by 1/8 the di¡erence between the P. pustulosus
and P. petersi calls. (The calls of panels (b) and (c) are part of an ongoing study. Call 16 was excluded from the regression analysis
because female choice data are not yet available, but is presented in this ¢gure for completeness.) (c) A similar call transect for the
axis of variation de¢ned by P. pustulosus and P. enesefae. The numbers in parentheses correspond to the numbers given in the
regression provided in ¢gure 4.



networks and the responses of females in phonotaxis
experiments. This demonstrates an external validity that
satis¢es the criticisms levied against earlier studies, `that
future models should show that they can adequately
mimic animal perception before they are used to simulate
the evolutionary forces produced by animal perception in
the design of animal signals,' (Dawkins & Guilford 1995).
Moreover, this predictive power is not compromised by
manipulating details of the architecture.
The overall similarity between the responses of networks

and females suggests that selection for species recognition is
su¤cient to explain many of the perceptual biases exhibited
by real females.The dimensions of female preference in this
species appear to have little to do with the information the
investigated calls might convey, or with the capacity of these
calls to penetrate a noisy environment. While both game
theory and signal detection theory are viable explanations
for general attributes of signal structure and receiver prefer-
ence (Hauser 1996), they seem less capable of explaining
certain di¡erences in signal form among related taxa.
Last, the similarity between networks and females

suggests anunderlying similarity in information processing.
Current studies are aimed at understanding how networks
are solving the task of mate recognition, and how varying
selection pressures a¡ect the properties of networks. The
neural network models proposed here, with their small
numberofassumptions aboutneuronalproperties and selec-
tion pressures, may serve as null models for understanding
biases in call recognition. Discrepancies between the
responses of networks and females may suggest selection on
the female auditory system to cue in on particular traits,
selection to overcome particular environmental transmis-
sion constraints, or the absence of an important proximate
constraint in the design of the model. In short, neural
networks that accurately predict receiver responses may
help to reveal how particular signals are processed, and
how this processing changes as a function of selection.
These questions are central to any deep understanding of
animal communication.
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