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ABSTRACT

Many posttranslational modifications (N-myristoyla-
tion or glycosylphosphatidylinositol (GPI) lipid
anchoring) and localization signals (the peroxisomal
targeting signal PTS1) are encoded in short, partly
compositionally biased regions at the N- or
C-terminus of the protein sequence. These sequence
signals are not well defined in terms of amino acid
type preferences but they have significant interposi-
tional correlations. Although the number of verified
protein examples is small, the quantification of
several physical conditions necessary for productive
proteinbindingwith the enzymecomplexesexecuting
the respective transformations can lead to predictors
that recognize the signals from the amino acid
sequence of queries alone. Taxon-specific prediction
functions are required due to the divergent evolution
of the active complexes. The big-P tool for the
prediction of theC-terminal signal forGPI lipid anchor
attachment is available for metazoan, protozoan and
plant sequences. The myristoyl transferase (NMT)
predictor recognizes glycine N-myristoylation sites
(at theN-terminus and for fragments after processing)
of higher eukaryotes (including their viruses) and
fungi. The PTS1 signal predictor finds proteins with a
C-terminus appropriate for peroxisomal import (for
metazoa and fungi). Guidelines for application of the
three WWW-based predictors (http://mendel.imp.uni-
vie.ac.at/) and for the interpretation of their output are
described.

INTRODUCTION

For researchers who want to analyze the occurrence of a
potential PTS1 signal, of a putative GPI lipid anchor
attachment or myristoylation sites in their target protein

sequences, this text provides application and output interpreta-
tion guidelines for the WWW-servers big-P, NMT and PTS1.
The methodology behind those tools and their validation is
described in great detail elsewhere (Table 1) except for the new
big-P plant predictor (B. Eisenhaber, M. Wildpaner, C.J.
Schultz, G.H.H. Borner, P. Dupree and F. Eisenhaber, manuscript
submitted). In the following, we summarize aspects that are
important from the user’s point of view.

A number of sequence motifs at the termini of proteins
encode signals for targeting to cellular compartments and for
posttranslational modifications. The N-terminal signal peptide
responsible for export into the ER is the most well known, the
mitochondrial and the chloroplast signals are also N-terminally
located. In contrast, the peroxisomal targeting signal PTS1 is
C-terminal. Many posttranslational modifications are attached
N-terminally (N-myristoylation) or C-terminally (GPI lipid
anchors, farnesylation, geranylgeranylation), to name just a
few (1).

Despite the functional importance of these sequence signals,
the theoretical methods for their prediction from the sequence
of query proteins has received less general attention than those
for studying globular domains. With the concept of homology,
the assumption of a common ancestor originating a family of
sequentially similar sequences in an evolutionary process
involving gene duplications and mutations, function can
be assigned to globular domains (having a typical length of
100–150 amino acids) by annotation transfer from experimen-
tally studied sequence family members (2). Unfortunately, the
signals for subcellular targeting and posttranslational mod-
ification are located in relatively short (<40 amino acids), non-
globular regions with typical amino acid compositional bias
and interpositional correlations. Therefore, the measures for
quantifying remote sequence similarity cannot be directly
applied for family classification of these signals.

Even in the absence of knowledge of the active complex
responsible for translocation or modification of the substrate
protein, the sequence requirements for productive binding with
the active protein complex can be derived from the variability
of sequences of experimentally verified substrate protein
sequences. If the learning set is large, procedures of
unsupervised, automated learning successfully extract complex
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sequence patterns [for example, in the case of SIGNALP (3),
the current standard for signal peptide prediction]. The same
methodology is considerably less powerful if the learning set is
an order of magnitude smaller and less reliable as for the
mitochondrial or chloroplast targeting signal (4,5), especially
for rejecting false-positive predictions.

If the sequence motif in the substrate protein is considered
from the view point of productive binding with the active
complex, simple physical conditions for the rejection of non-
permissive query sequences can be formulated (6,7). Typically,
a core of the sequence motif with several positions of amino
acid type conservation is necessary for binding in the active
site of the modifying enzyme or the recognition site of the
translocator. Conformational flexibility in the motif region
is required to adapt to the catalytic cleft. The sequence
environment of the core has to provide accessibility of
the sequence signal, mechanical linkage to the remainder of
the substrate protein and appropriate interaction with the
aqueous or membrane surrounding of the active complex. A
combined score function with profile terms (for evaluating
amino acid type preferences) and physical property terms (with
only non-positive scores for rejecting unsuitable queries) can
successfully discriminate queries even in cases of single-
residue mutations that affect modification efficiency (1,8,9).

BIG-P: PREDICTION OF THE C-TERMINAL GPI
LIPID ANCHOR MOTIF IN METAZOAN,
PROTOZOAN AND PLANT SEQUENCES

Posttranslational modification with a GPI lipid anchor consists
of two reactions executed by the transamidase complex in the
endoplasmic reticulum, the attachment of the GPI moiety to
the carboxyl terminus (o-site) of the polypeptide after
proteolytic cleavage of a C-terminal propeptide. Typically, a
GPI lipid anchored protein is finally moved to the extracellular
side of the cytomembrane via vesicular transport. The classical
sequence pattern consists of four regions defined by the
preferred pattern of physical properties of amino acid side
chains (6,10). (i) The region o7 11 . . .o7 1 is a flexible,
polar linker. This stretch has been hypothesized to occupy a

channel in the transamidase complex. In the structural model
of the transamidase (11), access to the active site cleft of the
cysteine protease PIG-K/gpi8 is regulated by the endoplasmic
lumenal domain of PIG-T, a b-propeller structure with a central
hole. (ii) The region o7 1 . . .o þ 2 has volume constraints
and is occupied preferentially by small residues. (iii) The
spacer region o þ 3 . . .o þ 9 is composed of moderately
polar residues. (iv) The typical hydrophobic tail begins with
o þ 9 or o þ 10 and extends up to the C-terminal end.

The big-P tool (Table 1) evaluates the concordance of a
query with this sequence motif. In the output, the primary and,
if available, the secondary o-sites are reported. Together with
their sequence position, the prediction quality [strong predic-
tion or twilight zone (8)], the score and the probability of false
positive prediction are presented. In the case of sequences
without GPI lipid anchor motif, the nevertheless best site is
listed. In either case, a detailed description of score
components is shown that allows the evaluation of the
agreement with amino acid type profile and with physical
pattern properties and, especially, to analyze reasons for
negative predictions. Therefore, the big-P predictor is well
suited for designing mutations aimed at abolishing GPI lipid
anchoring capacity. For example, modified query sequences
where the putative site is substituted by a residue with large
side chain or with more immobile backbone can be tested prior
to the experiment.

A positive prediction by big-P does not necessarily mean
capacity for GPI lipid anchoring in vivo. Big-P assesses only
the concordance of the C-terminus with the GPI lipid anchor
modification motif. In the evaluation of the prediction
outcome, the issue of ER export signal should receive special
independent attention. One can routinely check for signal
leaders (3) but alternative export signals [see, for example
(12)] should also be taken into account.

Further, the function parameterization relies on the small set
of known GPI lipid anchor modified proteins. Thus, a largely
negative physical property term (‘profile independent score’)
can be considered a sure sign for the absence of the GPI anchor
motif because only a handful of very stably derived parameters
enter this term (8). In contrast, a small profile score can also be
a result of the still limited learning set with biased amino acid

Table 1. Big-P, NMT, PTS1: web URL, taxonomic range and prediction accuracy

WWW-server, URL and taxonomic range Sensitivity (%) False-positive prediction rate (%)

Big-P (8,10,16)
http://mendel.imp.univie.ac.at/gpi/gpi_server.html (metazoa/protozoa) 80 0.2
http://mendel.imp.univie.ac.at/gpi/plant_server.html (plants) 94 0.1

NMT (7,9)
http://mendel.imp.univie.ac.at/myristate/ (non-fungal eukarya þ viruses/fungi) >95 0.5

PTS1 (19,20)
http://mendel.imp.univie.ac.at/myristate/ (fungi, metazoa, other eukarya) >90 0.2–0.8

All servers request a single fasta-formatted sequence and a taxon selection as input. Only for taxonomic ranges where the amount of learning data
(especially the number of non-redundant substrate sequences) is sufficient, predictors have been developed as indicated in this table. Details of the
prediction functions and their validation procedures are described in detail in the references indicated. Scores calculated from different predictors are not
directly comparable. In a practical application, it is also not clear from the score alone how large is the risk of wrongly accepting the prediction as correct.
Therefore, the score is translated into probabilities of false-positive prediction calculated for the queries analyzed (9,16,17) following the BLAST E-value
style (18). Two values characterize the accuracy of the corresponding predictors. Sensitivity or coverage is the probability to predict the biological
property for a true target (with a threshold score¼ 0). The false-positive prediction rate (which complements the specificity to 100%) assesses the
probability that the biological property is assigned to a random, non-related protein sequence (with a threshold score¼ 0).
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type preferences and, consequently, an insufficiently general
profile matrix.

NMT: PREDICTION OF N-MYRISTOYLATION
OF N-TERMINAL GLYCINES FOR HIGHER
EUKARYOTE, VIRAL AND FUNGAL QUERY
SEQUENCES

N-terminal N-myristoylation is the attachment of a myristoyl
anchor to an N-terminal glycine by a myristoyltransferase
(NMT) for modulation of interaction of the modified protein
with intracellular membranes or with other proteins. At least the
N-terminal 17 residues of the substrate protein experience
amino acid type variability restrictions for N-myristoylation (7).
Positions 1–6 with glycine in the leading position fit the binding
pocket of the NMT, positions 7–10 interact non-specifically
with the NMT’s surface at the mouth of the catalytic cavity, and
positions 11–17 form a hydrophilic linker. Thus, in addition to
the segment physically interacting with the NMT, 10–11 more
residues in a linker region experience weaker sequence
variability restrictions and contribute to the recognition motif.

The NMT predictor (Table 1) scores the agreement of a
query N-terminus with the N-myristoylation pattern and
returns the corresponding probability of false-positive predic-
tion (Fig. 1). We distinguish reliably predicted targets
(score� 0), twilight zone predictions (0> score��2), and
proteins that are predicted not to be NMT targets. It should
also be noted that, for example in the case of viral
polyproteins, internal glycines become N-terminal after protein
processing and are myristoylated. Optionally, possible myr-
istoylation at internal glycines (in typical processing patterns)
may be analyzed, too (9).

The N-myristoylation signal is commonly applied to target
proteins to membranes. The NMT predictor can be used for
testing protein constructs with engineered N-terminal
N-myristoylation motif prior to the experiment. With the
complete output of score components, the agreement with
the physical property pattern can be checked in detail (for
example, the suitability of the linker region) and it becomes
easy to examine the effects of changes in the construct.

PTS1: PREDICTION OF THE PTS1
PEROXISOMAL IMPORT SIGNAL FOR HIGHER
EUKARYOTES AND FUNGI

To date, two different signals that can trigger peroxisomal
import have been characterized, termed PTS1 and PTS2. PTS1,
the major targeting signal, consists of the three C-terminal
amino acids (mainly the canonical tripeptide S/A/C-K/R/H-L,
but not only) that bind to the inner cavity of the receptor
molecule Pex5 in addition to several residues further upstream
(13) that either interact with the surface of Pex5 or serve as a
short conformationally unrestricted linker to the remainder of
the protein.

The concordance with this motif is searched for using an
algorithm implemented in the PTS1 signal server (Table 1).
Reliably predicted targets should have a non-negative total
score; queries with a score larger than �10 are considered as
twilight zone hits. In all other cases, the protein is predicted not

to have a PTS1 signal. We must emphasize that the server
analyzes exclusively the concordance of the query’s C-
terminus with the generalized PTS1 motif as described above.
The PTS1 signal competes with other signals if contained in
the sequence. Proteins with dual localizations, including for
example a peroxisomal and a mitochondrial fraction (14), are
known; proteins with a strong signal peptide are most probably
co-translationally exported to the ER.
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Figure 1. Example output of the NMT predictor. The information generated
upon sequence submission is similarly structured for all three servers. As
example, the server output is presented for the yeast 26 S protease regulatory
subunit 4 homologue (RPT2, SWISS-PROT accession P40327). For control
purposes, the complete sequence is returned first with the examined motif high-
lighted. After the general classification of the prediction (reliable, twilight
zone, not predicted) and the overall score and probability of false positive pre-
diction, the components of the score function are listed. In this case, no devia-
tion from the physical property pattern was measured although the protein is
not part of the learning set. N-myristoylation of the RPT2 protein has been pre-
dicted (9) and the experimental verification reported (15).
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