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The value of a future reward should be discounted where there is a risk that the reward will not be
realized. If the risk manifests itself at a known, constant hazard rate, a risk-neutral recipient should
discount the reward according to an exponential time-preference function. Experimental subjects,
however, exhibit short-term time preferences that differ from the exponential in a manner consistent with
a hazard rate that falls with increasing delay. It is shown here that this phenomenon can be explained by
uncertainty in the underlying hazard. The time-preference function predicted by this analysis can be
calculated by means of either (1) a direct superposition method, or (i1) Bayesian updating of the expected
hazard rate. The observed hyperbolic time-preference function is consistent with an exponential prior
distribution for the underlying hazard rate. Sensitivity of the predicted time-preference function to varia-
tion in the probability distribution of the underlying hazard rate is explored.
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1. TIME PREFERENCES

The systematic preference for an immediate reward over
a future reward of the same magnitude has been observed
in humans and other animals (Logan 1965 Rachlin &
Green 1972; Tobin & Logue 1994). An immediate reward
of smaller magnitude may be preferred to a delayed
reward of greater magnitude. One plausible reason for
this behaviour is the risk that a future reward will not be
realized. A forager on a patch, for example, may be inter-
rupted (Houston et al. 1982). If the reward is a future
reproductive opportunity, there is a risk of the animal
dying before the reproductive act (Iwasa et al. 1984;
Houston & McNamara 1986; Candolin 1998). In human
culture, a promise of a future reward may be broken
(Rotter 1954).

The present value which an animal places on some
given reward when the reward is due after a delay of
can be expressed as a time-preference function (7). If the
animal is risk-neutral, this will satisfy

0(T) =0, 5(7), (1

where v, 1s the value of an immediate reward, assumed
here to be free of risk, and s(t) is a survival function
specifying the probability that the reward can be realized
after a delay of 7.

It is convenient to define a hazard rate /(7). This 1s the
risk per unit time of the hazard occurring, given that it
has not occurred before . The risk that a reward which is
still available after a delay of t is lost between a delay of t
and of t+dt is therefore £(7) dz.

The absolute risk per unit time of the hazard occurring
at a delay of 7 is given by —ds/dt. 4(1) is obtained by
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dividing this absolute risk by the probability that the
hazard has not already occurred before 7, i.e. dividing by
the survival function s(7). This yields
1 ds

h(t) = ———. 2

=3 ol
(a) Time preferences under a constant hazard

If the hazard rate £ has a constant value A for all T,

equation (2) gives

s(t) =exp(—A1). (3)

And hence, from equation (1),

(1) =0y exp(— A1) 4)

Exponential time preferences of the form in equation (4)
have been widely used in economic models of consumer
behaviour (see, for example, Hirshleifer (1970), Auerbach
& Kotlikoff (1987), or Varian (1996)).

(b) Observed time preferences

In experiments, animals exhibit time preferences which
are not exponential, but instead fall off with delay at a
decreasing proportional rate. A review of early results
may be found in Ainslie (1975). Mazur (1987) employed
an adjusting-delay titration procedure on pigeons, and
found that a good empirical fit to the data is given by a
hyperbolic function
1) =17

= 5
e (3)

where £ is a constant, with a larger value of £ denoting
more rapid discounting. Richards et al. (1997) obtained

similar results using an adjusting-amount titration
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procedure on rats. Rachlin et al. (1991) also obtained
results consistent with hyperbolic discounting for human
subjects choosing between hypothetical rewards. Another
human study of this type (Green et al. 1994) found age-
dependent deviation from this hyperbolic form, but the
overall finding from experiments is that behaviour is
better explained by a hyperbolic, rather than an expo-
nential, time-preference function.

Therefore, there is a need for a good biological theory
of why non-exponential discounting occurs. Kacelnik
(1997) describes a hypothesis which does not invoke risk,
but is based instead on opportunity cost. It proposes that
(1) animals try to maximize their reward rate per unit
time, and (i1) a reward is treated as part of a repeated
sequence. The time spent waiting for a delayed reward is
therefore time wasted. If the reward has a value V and
handling time 7, and delay is denoted (as before) by 1, the
rate of reward gain per unit time is V/(7+7), which has a
hyperbolic form.

This rate maximization theory (i) does not apply to
one-off rewards, and (i1) requires that the animal is not
engaged in other productive activities while waiting for a
delayed reward. These considerations limit its wider
applicability to discounting phenomena at large. Rate
maximization could still be plausible as a specific expla-
nation for results of delay-reward animal experiments. In
an experimental test, however, the predicted maximiza-
tion of expected reward rate was not observed (Bateson
& Kacelnik 1996).

Can a theory based on risk explain non-exponential
discounting? The survival function corresponding to the
hyperbolic time-preference function, in equation (3), is
given by

1
1+ kT’

s(7) = (6)

A survival function of this form, which falls off more
slowly than the exponential, implies a hazard rate which
falls with increasing delay (Kagel et al. 1986; Green &
Myerson 1996). An explanation for why the hazard rate
should fall in this way is required.

2. SURVIVAL FUNCTIONS UNDER AN UNCERTAIN
HAZARD

We consider a potential reward which is subject to a
hazard at a constant but unknown rate A, drawn from a
known probability distribution f(4). 4 will now be referred
to as the underlying hazard rate. The survival function
may be obtained from the prior distribution for A, either
by direct superposition or by Bayesian updating. It will be
shown that hyperbolic time preferences are consistent
with an exponential prior distribution for the hazard rate.

(a) Direct superposition method

Begin with the case where the underlying hazard rate
can take one of a discrete set of n values. Let the
probability of an underlying hazard rate of 4, be p;, that
of A, be py, and so on up to a probability of p, for an
underlying hazard rate of 4, . The survival function is
then given by
.y CXp( - )“rzr> <7>

s(t)=prexp(—4T) + pyexp(—/4yT). .
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Suppose now that the underlying hazard rate is deter-
mined by some continuous probability distribution f(4).
Generalizing equation (7) to the continuous case, the
survival function is given by

:/0 F(A) exp (= At)dA. (8)

The integral operation described by expression (8) is
known as a Laplace transform. Thus, the survival
function is given by the Laplace transform of the prior
distribution of the underlying hazard rate. This is a
convenient result as Laplace transforms are widely
employed in mathematical problems involving differential
equations (Rainville 1963), and their properties are well
understood.

(b) Bayesian updating method

The basis for this approach is as follows: information
that the hazard has not materialized after a certain delay
can be used to update an estimate of A. If the hazard does
not materialize as the delay increases, it will seem
progressively more likely that 4 is relatively small.

The prior probability density function for 4 is given by
S (A). The event that the hazard has not materialized (and
hence that the reward is still available) after a delay 7 is
denoted by X. Applying Bayes’ theorem for a continuous
distribution (Lindley 1965), the distribution of 4 condi-
tional on event X is given by

) p(X14)

/ S(2) p(X|A)d

In this expression, p(X|1) denotes the probability of event
X for a given value of A. This is given by the exponential
survival function s(7) in equation (3), the substitution of
which yields

FAIX) = / o

The recipient of the potential reward does not know the
exact value of the underlying hazard rate. From the
recipient’s point of view, the hazard risk per unit time
will reflect this uncertainty in A. The recipient’s hazard
rate i(t) is given by a weighted-mean estimate of 4,
where the weighting function is given by the conditional
distribution for A specified in equation (10). Hence %(7) is
equal to the posterior expectation of 4, conditional on the
hazard not occurring up to a delay of 7

/ mxfum

/ FA1X)d

Expression (11) may also be obtained via the direct super-
position method, by substituting equation (8) into
equation (2). Thus the direct superposition and Bayesian
updating methods are mathematically equivalent.

FAlx) = (9)

1) exp ( — A1)

(10)
)exp (— At)d /1

/°° Af(A)exp (— At)dA
0 . (1)

/f )exp (— At)dA
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Figure 1. The time-preference reversal effect. The curves
show how the value to a recipient of a reward A due at a time
ty and a larger reward B due at a later time /3 change over
time. At a very early time ¢;, when there is a long delay to
both rewards, B is preferred over A. At a later time £y, when
reward A is imminent, it is preferred over B.

(c) Explaining the hyperbolic time-preference
Sfunction
It remains to be shown that there is a prior probability
density function for 4 which can account for the
observed hyperbolic time-preference function. Substituting
equation (6) into equation (8), the prior distribution f (1)
must satisfy

*© 1
A —At)dA = . 1
| rtesn (= ima = 12)
This is solved by
1 bl
J(2) = exp (= A/k). (13)
Hence, the hyperbolic time-preference function is

explained by an uncertain underlying hazard rate, with
an exponential prior distribution for 4. The constant £ of
equation (5) arises from the parameter characterizing this
exponential distribution.

3. TIME-PREFERENCE REVERSALS

Non-exponential time-preference curves can cross
(Strotz 1956) and consequently the preference for one
future reward over another may change with time (Green
et al. 1981). This is illustrated in figure 1.

Some authors have interpreted this time-preference
reversal effect as indicating non-rational time preferences
(Ainslie 1975; Strotz 1956). Thus I may appear to be tempo-
rally inconsistent if, for example, I prefer the promise of a
bottle of wine in three months over the promise of a cake
in two months, but I prefer a cake immediately over a
promise of a bottle of wine in one month.

There is, however, no inconsistency if I perceive a
promised future reward not as a sure thing, but instead
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Table 1. Numerical illustration of time-preference reversal

(The table shows the expected values of rewards of cake or
wine which are due after delays ranging from zero to three
months. The probabilities are given by the hyperbolic survival
function, expression (6) in the main text, with #=1 month™!.
In this example, an immediate cake should be preferred over
a promised reward of wine after a delay of a month, but a
promised reward of wine after a delay of three months should
be preferred over a promised reward of cake after a delay of
two months.)

expected value expected value

delay probability of cake of wine
T s § X Vcake 8 X Vyine
Z€ero 1 2 3
one month % 1 %
two months % § 1

1 1 3
three months 1 3 1

intrinsic value of cake: v = 2
intrinsic value of wine: vyine = 3

as having a probability attached to it. This can be
illustrated numerically. Let the intrinsic value of a cake
be two units, and that of a bottle of wine three units.
Suppose also that cake and wine have an exponential
prior probability distribution for the hazard rate 4 as
given in equation (13) and hence a hyperbolic survival
function as given in equation (6), with £=1 month~.
The probability of a reward being available after delays
of zero to three months are shown in table 1. The corre-
sponding expected values for a reward of cake or wine
are also shown. It can be seen from the table that a cake
immediately is worth more than a promise of wine after
a month, while a promise of wine after three months is
worth more than a promise of cake after two months. So
my preferences are indeed consistent with maximizing
my expected reward.

4. SENSITIVITY ANALYSIS

Figure 2 shows various possible prior probability distri-
butions for the underlying hazard rate. The case where
there is no uncertainty in A is represented schematically
by a dashed line. For comparability, the horizontal
scaling 1is such that all the distributions have the same
mean value of /.

Figure 3 shows the corresponding survival functions,
with time-scales chosen so that each curve has a median
survival time of one. It can be seen that curves G and E
are intermediate between the exponential and hyperbolic
curves. Curve D falls off even more rapidly than the
hyperbolic for small delays, and even more slowly for
large delays.

Tor figure 4, the hyperbolic curve B is as for figure 3.
For each of the other curves, the time-scaling parameter
has been chosen so as to minimize the vertical least-
squares error between the curve and the hyperbolic over
the range zero to five. The sum-of-squares difference
between curve G and the hyperbolic is 20% of that
between curve A (the exponential) and the hyperbolic.
The sum-of-squares difference between curve D and the
hyperbolic is 44% of that between curve A and the
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Figure 2. Alternative prior distributions for the underlying
hazard rate A. The horizontal scalings are such that each
distribution has the same mean value of one. A: schematic

representation (dotted line) of a Dirac delta function,
corresponding to prior certainty in 4. B: exponential prior.
C: gamma/Erlang prior with ¢=2. D: gamma prior with
¢=0.5. E: uniform prior.

hyperbolic. The sum-of-squares difference between curve
E and the hyperbolic is 14% of that between curve A and
the hyperbolic.

These results indicate that moderate change to the
prior distribution for the hazard rate gives a survival
function which remains reasonably close to hyperbolic.
Thus the time-preference function predicted by this
theory, which 1s proportional to the survival function, has
modest sensitivity to changes in the prior distribution of
the hazard rate.

The analysis above has shown that the observed hyper-
bolic time-preference function is consistent with an
exponential prior distribution for the hazard rate f(4).
How sensitive is the predicted time-preference function to
changes in f(1)? The exponential distribution is a special
case of the gamma distribution: it is therefore instructive
to examine the predicted time-preference function under
more general gamma distribution priors for the hazard
rate. A uniform prior distribution for the hazard rate will
also be considered.

(a) Gamma prior distribution for the hazard rate
The gamma distribution is a general class of distri-
bution which may be written as

(4/6)" exp (= 4/b)
bI'(c) ’

SA) = (14)
where I'(¢) is the gamma function. The parameter ¢,
known as the shape parameter, can take any positive
value. If ¢ is an integer, the distribution may be referred
to as an Erlang distribution; this describes the sum of ¢
independent exponential variates (Evans et al. 1993).

At ¢=1, the distribution is exponential: the probability
density is highest at =0, and falls off with increasing .
When ¢ is increased above one, the distribution becomes
mound shaped. As ¢ is increased further, the distribution
tends toward a normal distribution, with an increasingly
small ratio of standard deviation over mean. In the limit
of ¢ approaching infinity, the distribution tends to a Dirac
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Figure 3. Time-preference curves: common median

survival time. A: exponential curve, corresponding to

prior with no uncertainty. B: hyperbolic curve,
corresponding to exponential prior. C: curve corresponding
to gamma/Erlang prior with c=2. D: curve corresponding to
gamma prior with ¢=0.5. E: curve corresponding to uniform
prior.

delta function, representing a hazard rate of ¢/b with no
uncertainty. At the other extreme, when ¢ is less than one,
the distribution is even more skewed than the exponential
distribution.

Substituting equation (14) into equation (8), the
survival function is given by the Laplace transform of the
gamma distribution. This is a standard result (Evans et al.
1993),

1

An exponential prior distribution (¢=1) yields a hyper-
bolic survival function, as previously derived. Letting ¢
tend to infinity, keeping ¢/b constant, the method of limits
yields an exponential survival function. For values of ¢
greater than one but less than infinity, the shape of the
survival function is intermediate between hyperbolic and
exponential. When ¢ is less than one, the survival function
falls off even more slowly than the hyperbolic for large
delays.

(b) Uniform prior distribution for the hazard rate
Let 4 be uniformly distributed in the range 0 to :

1
(0<2<b)

S =7
Sy =0

Substituting into equation (8) yields

(16)

(otherwise).

1 [1 —exp(—b1)] (17)

N

5(7)
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value

delay

Figure 4. Time-preference curves: least-squares fit to the
hyperbolic. A: exponential curve, corresponding to prior
with no uncertainty. B: hyperbolic curve, corresponding to
exponential prior. C: curve corresponding to gamma/Erlang
prior with ¢=2. D: curve corresponding to gamma prior with
¢=0.5. E: curve corresponding to uniform prior.

5. DISCUSSION

This paper has considered discounting as a function of
the risk that a delayed reward will not be received. It has
shown that hyperbolic discounting is explained by an
uncertain hazard rate with an exponential prior distribu-
tion. The survival function for the reward, and hence the
time-preference function, may be calculated either by
direct superposition or by Bayesian updating. The direct
superposition method is more straightforward, yielding a
survival function which is given by the Laplace transform
of the distribution for the hazard rate. The Bayesian
updating formulation is, however, conceptually useful; it
illustrates how, if a hazard does not materialize after a
certain delay, this information may be used to update an
estimate of the hazard rate.

Bayesian methodology is based on updating proba-
bilities in the light of events. Can this be applied to
experimental scenarios in which a choice between alter-
native rewards and delays must be made in advance? In
these circumstances, a ‘true’ Bayesian would need to carry
out a thought experiment to determine what the
estimated survival probability would be after a given
delay were experienced. It is not suggested here that
animals have such cognitive abilities. The evolution of
near-optimal behaviour in a given environment does not
require the capacity for conscious optimization on the
part of the animal concerned (McNamara & Houston
1980). It may be said that animals act as if they are
carrying out either Laplace transforms or Bayesian
updating thought experiments, but decision rules are
acquired through natural selection.

Are there any ecological processes which could give
rise to an exponential distribution for the underlying
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hazard rate A? One such process would be where 4 itself
is proportional to the lifetime of a survival process, with
a constant and fixed probability of termination per unit
time. Suppose for example that (1) the hazard event in
question 1s a predation event, with a hazard rate propor-
tional to the number of predators in a given locality, and
(i) predators are produced earlier in the season at a
constant rate, until some random event with a fixed
probability per Then the prior
probability distribution for the number of predators, and
hence for the underlying hazard rate for the predation
event, will be exponential.

The sensitivity analysis has shown that the predicted
time-preference function is not unduly sensitive to the
exact form of the prior distribution for the underlying
hazard rate. For animals which experience heterogeneous
ecological environments, it is not surprising that there
should be some uncertainty in underlying hazard rates.
The qualitative experimental finding that time prefer-
ences fall off more slowly than the exponential is consis-
tent with any arbitrary distribution with non-zero spread
for A. Assessment of the theory will therefore require
detailed quantitative analysis of ecological and experi-
mental data.

The rapidity with which an animal discounts a delayed
reward, specified by the parameter £ in this model, is not
presumed to be universally constant; it will depend,
through natural selection, on the ecological hazards faced
by the animal’s ancestors. For example, Tobin & Logue
(1994) found that animals with a higher specific meta-
bolic rate appear to be more impulsive, which implies a
larger value of £. The theory proposed in this paper can
be tested by comparing such behavioural differences with
differences in animals’ ecological environments.

Future work will compare the predictions of the theory
with time-preference data. Specifically, the following
merit further study:

unit time occurs.

(1) Detailed analysis of time-preference data (including
new and recent data) to establish more precisely what
form of hazard rate distribution is consistent with the
data.

(11) Comparative work on time preferences across species
and across rewards within a given species, comparing
these data to ecological parameters which are likely
to reflect hazard rates.

Finally, it is noted that human discounting behaviour
may be affected by learning about the economic environ-
ment. For monetary rewards in particular, a choice
between a smaller, sooner pay-off and a larger, later pay-
off is likely to depend not only on innate time preferences,
but also on market interest rates on loans and savings.
This could account for the results of Green et al. (1994),
indicating that as age group increases—from children to
young adults to older adults—the discounting of hypothe-
tical monetary rewards becomes progressively closer to
the exponential. Studies based on rewards which cannot
readily be traded in the economy may reveal people’s
innate time preferences more closely.
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Learning and Social Evolution at University College London. I
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