Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1998 Dec 7;265(1412):2341–2346. doi: 10.1098/rspb.1998.0581

The spatial dynamics of prion disease.

R J Payne 1, D C Krakauer 1
PMCID: PMC1689523  PMID: 9881479

Abstract

An important component of the latency period of the transmissible spongiform encephalopathies (prion diseases) can be attributed to delays during the propagation of the infectious prion isoform, PrPSc, through peripheral nervous tissues. A growing body of data report that the host prion protein, PrPC, is required in both peripheral and central nervous tissues for susceptibility to infection. We introduce a mathematical model, which treats the PrPSc as a mobile infectious pathogen, and show how peripheral delays can be understood in terms of the intercellular dispersal properties of the PrPSc strain, its decay rate, and its efficiency at transforming the PrPC. It has been observed that when two pathogenic strains co-infect a host, the presence of the first inoculated strain can slow down, or stop completely, the spread of the second strain. This is thought to result from a reduced concentration of host protein available for conversion by the second strain. Our model can explain the mechanisms of such interstrain competition and the time-course of the increased delay. The model provides a link between those data suggesting a role for a continuous chain of PrP-expressing tissue linking peripheral sites to the brain, and data on prion strain competition.

Full Text

The Full Text of this article is available as a PDF (135.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bessen R. A., Kocisko D. A., Raymond G. J., Nandan S., Lansbury P. T., Caughey B. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature. 1995 Jun 22;375(6533):698–700. doi: 10.1038/375698a0. [DOI] [PubMed] [Google Scholar]
  2. Blättler T., Brandner S., Raeber A. J., Klein M. A., Voigtländer T., Weissmann C., Aguzzi A. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature. 1997 Sep 4;389(6646):69–73. doi: 10.1038/37981. [DOI] [PubMed] [Google Scholar]
  3. Brandner S., Raeber A., Sailer A., Blättler T., Fischer M., Weissmann C., Aguzzi A. Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13148–13151. doi: 10.1073/pnas.93.23.13148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruce M. E. Scrapie strain variation and mutation. Br Med Bull. 1993 Oct;49(4):822–838. doi: 10.1093/oxfordjournals.bmb.a072649. [DOI] [PubMed] [Google Scholar]
  5. Büeler H., Aguzzi A., Sailer A., Greiner R. A., Autenried P., Aguet M., Weissmann C. Mice devoid of PrP are resistant to scrapie. Cell. 1993 Jul 2;73(7):1339–1347. doi: 10.1016/0092-8674(93)90360-3. [DOI] [PubMed] [Google Scholar]
  6. Büeler H., Raeber A., Sailer A., Fischer M., Aguzzi A., Weissmann C. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol Med. 1994 Nov;1(1):19–30. [PMC free article] [PubMed] [Google Scholar]
  7. Carp R. I., Callahan S. M., Patrick B. A., Mehta P. D. Interaction of scrapie agent and cells of the lymphoreticular system. Arch Virol. 1994;136(3-4):255–268. doi: 10.1007/BF01321056. [DOI] [PubMed] [Google Scholar]
  8. Caughey B., Chesebro B. Prion protein and the transmissible spongiform encephalopathies. Trends Cell Biol. 1997 Feb;7(2):56–62. doi: 10.1016/S0962-8924(96)10054-4. [DOI] [PubMed] [Google Scholar]
  9. Caughey B. Scrapie-associated PrP accumulation and agent replication: effects of sulphated glycosaminoglycan analogues. Philos Trans R Soc Lond B Biol Sci. 1994 Mar 29;343(1306):399–404. doi: 10.1098/rstb.1994.0035. [DOI] [PubMed] [Google Scholar]
  10. Come J. H., Fraser P. E., Lansbury P. T., Jr A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5959–5963. doi: 10.1073/pnas.90.13.5959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dickinson A. G., Fraser H., McConnell I., Outram G. W., Sales D. I., Taylor D. M. Extraneural competition between different scrapie agents leading to loss of infectivity. Nature. 1975 Feb 13;253(5492):556–556. doi: 10.1038/253556a0. [DOI] [PubMed] [Google Scholar]
  12. Dickinson A. G., Fraser H., Meikle V. M., Outram G. W. Competition between different scrapie agents in mice. Nat New Biol. 1972 Jun 21;237(77):244–245. doi: 10.1038/newbio237244a0. [DOI] [PubMed] [Google Scholar]
  13. Dickinson A. G., Meikle V. M. Host-genotype and agent effects in scrapie incubation: change in allelic interaction with different strains of agent. Mol Gen Genet. 1971;112(1):73–79. doi: 10.1007/BF00266934. [DOI] [PubMed] [Google Scholar]
  14. Eigen M. Prionics or the kinetic basis of prion diseases. Biophys Chem. 1996 Dec 10;63(1):A1–18. doi: 10.1016/s0301-4622(96)02250-8. [DOI] [PubMed] [Google Scholar]
  15. Griffith J. S. Self-replication and scrapie. Nature. 1967 Sep 2;215(5105):1043–1044. doi: 10.1038/2151043a0. [DOI] [PubMed] [Google Scholar]
  16. Hecker R., Taraboulos A., Scott M., Pan K. M., Yang S. L., Torchia M., Jendroska K., DeArmond S. J., Prusiner S. B. Replication of distinct scrapie prion isolates is region specific in brains of transgenic mice and hamsters. Genes Dev. 1992 Jul;6(7):1213–1228. doi: 10.1101/gad.6.7.1213. [DOI] [PubMed] [Google Scholar]
  17. Kimberlin R. H., Field H. J., Walker C. A. Pathogenesis of mouse scrapie: evidence for spread of infection from central to peripheral nervous system. J Gen Virol. 1983 Mar;64(Pt 3):713–716. doi: 10.1099/0022-1317-64-3-713. [DOI] [PubMed] [Google Scholar]
  18. Kimberlin R. H., Walker C. A. Competition between strains of scrapie depends on the blocking agent being infectious. Intervirology. 1985;23(2):74–81. doi: 10.1159/000149588. [DOI] [PubMed] [Google Scholar]
  19. Klein M. A., Frigg R., Flechsig E., Raeber A. J., Kalinke U., Bluethmann H., Bootz F., Suter M., Zinkernagel R. M., Aguzzi A. A crucial role for B cells in neuroinvasive scrapie. Nature. 1997 Dec 18;390(6661):687–690. doi: 10.1038/37789. [DOI] [PubMed] [Google Scholar]
  20. Manuelidis L. Vaccination with an attenuated Creutzfeldt-Jakob disease strain prevents expression of a virulent agent. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2520–2525. doi: 10.1073/pnas.95.5.2520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moore R. C., Hope J., McBride P. A., McConnell I., Selfridge J., Melton D. W., Manson J. C. Mice with gene targetted prion protein alterations show that Prnp, Sinc and Prni are congruent. Nat Genet. 1998 Feb;18(2):118–125. doi: 10.1038/ng0298-118. [DOI] [PubMed] [Google Scholar]
  22. Payne R. J., Krakauer D. C. The paradoxical dynamics of prion disease latency. J Theor Biol. 1998 Apr 21;191(4):345–352. doi: 10.1006/jtbi.1997.0627. [DOI] [PubMed] [Google Scholar]
  23. Prusiner S. B. Molecular biology of prion diseases. Science. 1991 Jun 14;252(5012):1515–1522. doi: 10.1126/science.1675487. [DOI] [PubMed] [Google Scholar]
  24. Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
  25. Prusiner S. B. Transgenetics and cell biology of prion diseases: investigations of PrPSc synthesis and diversity. Br Med Bull. 1993 Oct;49(4):873–912. doi: 10.1093/oxfordjournals.bmb.a072652. [DOI] [PubMed] [Google Scholar]
  26. Scott J. R., Davies D., Fraser H. Scrapie in the central nervous system: neuroanatomical spread of infection and Sinc control of pathogenesis. J Gen Virol. 1992 Jul;73(Pt 7):1637–1644. doi: 10.1099/0022-1317-73-7-1637. [DOI] [PubMed] [Google Scholar]
  27. Scott J. R. Scrapie pathogenesis. Br Med Bull. 1993 Oct;49(4):778–791. doi: 10.1093/oxfordjournals.bmb.a072646. [DOI] [PubMed] [Google Scholar]
  28. Taraboulos A., Scott M., Semenov A., Avrahami D., Laszlo L., Prusiner S. B., Avraham D. Cholesterol depletion and modification of COOH-terminal targeting sequence of the prion protein inhibit formation of the scrapie isoform. J Cell Biol. 1995 Apr;129(1):121–132. doi: 10.1083/jcb.129.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tobler I., Gaus S. E., Deboer T., Achermann P., Fischer M., Rülicke T., Moser M., Oesch B., McBride P. A., Manson J. C. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature. 1996 Apr 18;380(6575):639–642. doi: 10.1038/380639a0. [DOI] [PubMed] [Google Scholar]
  30. Weissmann C., Büeler H., Sailer A., Fischer M., Aguet M., Aguzzi A. Role of PrP in prion diseases. Br Med Bull. 1993 Oct;49(4):995–1011. doi: 10.1093/oxfordjournals.bmb.a072658. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES