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Predicting the likely success of invasions is vitally important in ecology and especially epidemiology.
Whether an organism can successfully invade and persist in the short-term is highly dependent on the
spatial correlations that develop in the early stages of invasion. By modelling the correlations between
individuals, we are able to understand the role of spatial heterogeneity in invasion dynamics without the
need for large-scale computer simulations. Here, a natural methodology is developed for modelling the
behaviour of individuals in a ¢xed network. This formulation is applied to the spread of a disease through
a structured network to determine invasion thresholds and some statistical properties of a single
epidemic.
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1. INTRODUCTION

Invasion is one of the most fundamental concepts in
ecology and epidemiology. It is only with a ¢rm quantita-
tive understanding of this ubiquitous phenomenon that
we can accurately determine vaccination thresholds and
evolutionary selection as well as more common forms of
invasion (Kornberg & Williamson 1987). Invading organ-
isms are initial highly aggregated, with only limited
spatial spread, and therefore su¡er from far more intra-
speci¢c competition than non-spatial models would
predict. As infectious diseases provide the best docu-
mented and most accurately modelled problems in
ecology, this paper shall concentrate on analytical results
for the invasion of an infection into a spatially distributed
host population.

Spatial models, from meta-population models to
partial di¡erential equations (PDEs), have become
increasingly popular in both ecology and epidemiology. It
has become obvious that in many situations spatial
patterns and correlations play a vital role; this is espe-
cially true for invasions. Using the correlations between
individuals to capture the essential spatial characteristics
is not new to ecology (Hassell & May 1974), although
only recently have these correlations been treated as
dynamic variables (Dickman 1986; Matsuda 1987;
Matsuda et al. 1992; Sato et al. 1994; Levin & Durrett
1996; Keeling & Rand 1999).

Correlation models, and in particular pair-wise
models, have been primarily used to describe the
behaviour of simple spatial models (such as probabilistic
cellular automata) in terms of a set of ordinary di¡eren-
tial equations (ODEs). However, these correlation models
can be used in their own right (Dietz & Hadeler 1988;
Altmann 1995; Keeling et al. 1997) and can provide a
more general framework and neighbourhood structure
than is feasible in traditional spatial models. Correlation

models are of most use when the interactions between
individuals (or sites) can be considered as occurring on a
networköthis is the case for communicable diseases.
When considering the spread of an epidemic, it is the

contact structure between individuals that determines the
progress of the disease through the population (Barbour
& Mollison 1990). One of the simplest models which
captures the fundamental features of infection dynamics
is the SIR (susceptible^infectious^recovered) model
(Anderson & May 1992; Mollison 1995; Grenfell &
Dobson 1995).

The ¢rst section examines the structure of a network
and the behaviour of various quantities when the network
is speci¢ed by a graph or contact matrix. In ½ 3, a method
for closing the system of ODEs at the level of pairs is
formulated, (i.e. we express the number of triples in terms
of the number of pairs). Section 4 combines the theore-
tical arguments to derive the equations for an SIR disease
spreading across a network. Sections 5 and 6 examine
two fundamental properties of the SIR model the basic
reproductive ratio R0 and the ¢nal size of the epidemic.
The ¢nal section considers how these two properties are
changed by vaccination, and predicts vaccination thresh-
olds.

2. GENERAL THEORY

One of the simplest assumptions for disease trans-
mission is that the contact structure forms a network of
links between individuals (or nodes), with all links being
of equal strength. Such a network is often referred to as a
graph.We can describe a network involving N individuals
by a matrix G 2 f0,1gN2

,

Gij � 1 if i and j are connected
0 otherwise

�
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As all links are bidirectional and self-contact is not
allowed, this places two constraints upon the matrix:
G � GT and Gii � 0. From this matrix, we can calculate
the number of connected pairs and triples in the graph,

number of pairs �kGk � nN ,

number of triples �kG2k ÿ trace(G 2).

Here, kGk �Pi;j Gij is the sum of all the elements in the
matrix and n is therefore the average number of neigh-
bours per node. The number of triples is calculated as the
number of nodes which are joined by two connections,
given that the nodes are distinct.

It should be noted that there is ambiguity in the precise
form of a triple; for three connected nodes, it is possible
to form triangular loops as well as linear arrangements
(Keeling et al. 1997; Morris 1997; Rand 1999; Van Baalen
1999). These loops are very important in the spread of a
disease, as we will show later. Let � be de¢ned as the
ratio of triangles to triples, this is a simple measure of
how interconnected the local neighbourhoods are. When
� is large, the members of a connected pair will be
connected to many common nodes, your neighbour's
neighbours are also your neighbours (¢gure 1a), whereas
when � is small there are few common nodes, and long-
range connections dominate (¢gure 1b). As triangles are
three linked nodes with the same start and end point, �
can be expressed in terms of the graph

� � number of triangles
number of triples

� trace(G 3)
kG 2k ÿ trace(G 2)

. (1)

For most communicable diseases, we are likely to ¢nd
that each individual experiences only a small proportion
of the population (n� N) and yet � is generally large as
there tends to be complete interaction within small social
groups (cf. Watts & Strogatz 1998). We believe that in
general, much of the underlying structure of the network
can be characterized in terms of the average number
of neighbours (n) and the interconnectedness (�).
Throughout this paper, we will assume that both n and �
are ¢xed for all sites, i.e. the network is homogeneous.

To begin to consider the dynamics of individuals, it is
necessary to de¢ne a set of functions which inform us
about the state of each node. Let Ai be equal to one if the
individual at node i is of type A or zero otherwise. This
allows us to de¢ne rigorously the number of single, pairs
and triples of each type,

singles of type A � �A� �
X
i

Ai,

pairs of type A--B � �AB� �
X
i;j

AiBjGij,

triples of type A--B--C � �ABC� �
X
i;j;k

AiBjCkGijGjk.

(2)

This method of counting means that pairs are counted
once in each direction so that �AB� � �BA� and that �AA�
is even. From equations (2), we can recover the natural
rules for summing singles, pairs and triples,

X
A

�A� �
X
A

X
i

Ai �
X
i

X
A

Ai

 !
� N , (3)

X
B

�AB� �
X
B

X
i 6�j

AiBjGij �
X
i;j

AiGij � n�A�, (4)

X
C

�ABC� �
X
C

X
j;i 6�k

AiBjCkGijGjk �
n(nÿ 1)

N
�A��B�. (5)

Note that, in general, there is no corresponding formula
for
P

B�ABC�.
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Figure 1. Examples of a network of 100 nodes, with an
average of ¢ve connections per node (n � 5). In (a) � � 0:7
and triangles are common, whereas in (b) � � 0:2 and there
is less obvious structure. These graphs were obtained by
placing nodes randomly in two dimensions and weighting the
probability of a connection between nodes by the distance.



As well as the number of pairs, it is often useful to
consider the multiplicative correlation between connected
nodes of various types. We shall de¢ne CAB to be the
correlation between nodes of type A and B,

CAB � N2

P
i 6�j

AiBjGijP
i 6�j

AiBj
P
i 6�j

Gij
� N

n
�AB�
�A��B� . (6)

From this, it can be seen that CAB 2 �0,N �. When CAB � 1,
then A and B are uncorrelated so their placement with
respect to each other is random.

3. FORMULATING A MODEL BY CLOSING THE

SYSTEM

Let f be any function of the states of nodes in the
network. If f can be assumed to be continuous in the
limit of large populations, then its behaviour can be
captured by the di¡erential equation (Morris 1997; Rand
1999)

df
dt
�

X
events

rate of event� change in f due to event

(7)

Normally, f is considered to be either the number of
nodes of a given type (�A�) or the number of pairs of a
given type (�AB�), allowing the formulation of equations
for the behaviour of the system.

In the vast majority of ecological and epidemiological
systems, any change in the behaviour or state of an indivi-
dual will be dependent on the state of its neighbours. For
example, a susceptible individual surrounded by infec-
tious neighbours is likely to become infected. Let
Q i(BjA) be the number of B neighbours surrounding
node i, given that node i is state A. Q i is considered to be
comprised two parts: the expected value Q , together
with some associated error � which is not necessarily
small.

Q i(BjA) � Q (BjA)� �i(BjA) �
�AB�
�A� � �i(BjA).

One of the main features of individual-based models with
a small neighbourhood, is that individuals often experi-
ence large £uctuations in their environment, so � may be
large compared to Q (Keeling & Rand 1999). By
assuming a distribution for the Q i terms and, hence, a
distribution for the errors �i, one can produce expressions
for the expected number of triples and higher-order
connections in terms of pairs (Rand 1999). For a ¢xed
number of neighbours per site, the most likely form for
the errors is multinomial, in which case

�ABC� �
X
j;Bj�1

Q j(AjB)Q j(CjB), (8)

�
X
j;Bj�1

�AB�
�B� � �j(AjB)

� � �BC�
�B� � �j(CjB)

� �
,

� �AB��BC��B� �
X
j;Bj�1

�j(AjB)�j(CjB),

� nÿ 1
n

� � �AB��BC�
�B� : (9)

A similar technique can be applied if other nonlinear
arrangements of the Q i terms arise or if other distribu-
tions for � are plausible. In the SIR example given below,
only linear combinations of pairs and triples will appear,
and therefore equation (9) will be all that is needed. In
the remainder of the paper, for convenience of notation,
we shall set � � (nÿ 1)=n.

In the above calculation of the number of triples, no
consideration has been given to the structure of the
network; in particular the number of triangular and
higher order loops has been ignored. If A^B^C form a
triangle, we must also allow for the fact that the correla-
tion between A and C is also important. The most
natural way to include this correlation is

�ABC� � � �AB��BC��B� CAC �
�N
n
�AB��BC��AC�
�A��B��C� .

Hence, bringing in the full network structure by including
the ratio between triangles and triples,

ABC� � � � �AB��BC��B� (1ÿ �)� �N
n
�AC�
�A��C�

� �
. (10)

It can be hoped that in choosing � for any particular
applications, it may capture the e¡ects due to all loops of
three nodes and higher. It should be expected that the
e¡ect from four node loops is far less than that from three
node loops etc., and so the � which describes the system
best should be slightly larger than the exact ratio of
triangles to triples.

4. THE SIR MODEL

With these tools, we are now in a position to consider
the spread of a disease through a network of nodes; in
particular, a network with n neighbours per site and with
an interconnectedness of �. Throughout this work, the
mean ¢eld limit (n! N !1, �! 1) will be calculated
as a check and a comparison.

The most basic epidemic model with a recovered status
is the simple epidemic, described by the SIR model
without the demographic processes of birth and death
(Kermack & McKendrick 1927; Anderson & May 1992;
Mollison 1995). Such a model exhibits a single epidemic.
Each individual can be in one of three states: susceptible
to the disease, infectious when they can spread the disease
to susceptibles, and recovered when they have been
infectious but can no longer spread or catch the disease
(cf. the rapid spread of in£uenza). This framework forms
the basis of almost all epidemiological models (Grenfell
et al. 1992; Grenfell & Dobson 1995; Keeling & Grenfell
1997). Denoting the number of susceptible, infectious
and recovered individuals by S, I and R respectively, the
mean ¢eld equations are

E¡ects of local spatial structure M. J. Keeling 861

Proc. R. Soc. Lond. B (1999)



_S � ÿ� S
N

I ,

_I � � S
N

I ÿ gI ,

_R � gI .

(11)

Here, � is the contact parameter, and 1=g is the infectious
period. This model has been analysed and applied to
numerous situations (Anderson & May 1992; Mollison
1995 and references therein), the main results are as
follows.

(i) An epidemic can only occur if R0 � �=g41.
(ii) S is monotonically decreasing, R is monotonically

increasing and I is unimodal.
(iii) The epidemic eventually dies out with some propor-

tion of susceptibles, S1, remaining

S1 � exp ((S1 ÿ 1)R0).

For the correlation model, the equations describe the
behaviour of A^B pairs instead of the behaviour of
individuals. As we have moved from a global to a more
individual approach, we will de¢ne � the transmission
rate across a connection to be �=n; hence, the potential
for spreading infection is equal between the two
approaches.
There exist nine distinct types of pairs; however, due to

symmetries (�AB� � �BA�) and the fact that the sum over
all pairs remains constant, only ¢ve di¡erential equations
are necessary.

_�SS� � ÿ2� �SSI �,
_�SI � � �(�SSI � ÿ �ISI � ÿ �SI �)ÿ g�SI �,
_�SR� � ÿ� �RSI � � g�SI �, (12)
_�II � � 2�(�ISI � � �SI �)ÿ 2g�II �,
_�IR� � � �RSI � � g(�II � ÿ �IR�),

Using equation (10), the system can be closed at the level
of pairs, assuming a multinomial distribution of neigh-
bours. Figure 2 shows a comparison between the results
of the correlation equations (12) and the average of
astochastic simulation modelling the spread of a disease
across a network. There is good quantitative agreement
between the equations and the full model. It is the
characteristic shape of the S^I correlation (¢gure 2b)
with its rapid initial decline that leads to the major di¡er-
ence between the correlation and mean ¢eld equations.

When � � 0, the ODEs can be uncoupled in a natural
way by expressing the system in terms of
Q (SjS) � �SS�=�S�, Q (I jS) � �SI �=�S� and the number of
new cases C � � �SI �,

_C � C �
nÿ 1
n

Q (SjS)ÿ nÿ 1
n

�Q (I jS)ÿ � ÿ g
� �

,

Q ( _SjS�) � ÿ� nÿ 2
n

Q (SjS)Q (IjS), (13)

Q (_IjS) � � nÿ1
n

Q (SjS)Q(I jS)ÿ(��g)Q(I jS)��
n
Q(I jS)2.

Therefore, when there are no triangular connections, the
pairwise ODEs can be reduced to three dimensions, only
one more than the mean-¢eld model. The extra dimen-

sion accounts for the correlation between susceptibles and
infectious individuals.

5. THE BASIC REPRODUCTIVE RATIO, R
0

The basic reproductive ratio, R0, is the most funda-
mental quantity in epidemiology (Diekmann et al. 1990;
Anderson & May 1992; de Jong et al. 1994). R0 is de¢ned
as the average number of secondary cases produced by an
infectious individual in a totally susceptible population. It
informs us whether a disease can ever invade a popula-
tion, and is useful in the calculation of many other
quantities. For the simple epidemic,

R0 �
�

g
.

Let us consider the initial phase of an infection invading
a total susceptible population.
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Figure 2. Results from the correlation equations (12)
(solid line) and from the average of 100 stochastic simulations
of an epidemic on a network (dashed line). The network
contained N � 6000 nodes, with each individual having n � 6
neighbours and an interconnectedness � � 0:2. (a) shows the
number of infectious individuals over time, (b) shows the
correlation between infectious and susceptibles CSI . The
discrepancies between the two results may in part be due to
the imprecise synchronization of epidemics across the many
realizations (because of the stochastic nature of the system),
leading to a smoothing-out of the simulation results.



_�I � � � �SI � ÿ g�I �,

� �
�S�
N
CSI ÿ g

� �
�I �,

Because �S� is assumed to be equal to N initially, this
gives R0 � CSI�=g. As a single infectious individual is
placed in a sea of susceptibles, initially we ¢nd that
susceptibles and infectious nodes must be uncorrelated
(CSI � 1). It would therefore appear that R0 is the same
for the mean-¢eld and the network model. However, this
approach is £awed; consider the early behaviour of CSI

_CSI �
N
n
d
dt
�SI �
�S��I �
� �

!

ÿ � CSI � C2SIÿn�(CSIÿC2SI)(1ÿ�)�n�C2SI�
�I �CII
N

� �
(14)

as �S�=N ! 1, CSS ! 1 and �I �=N ! 0. The initial
growth in the proportion of infectious nodes is small,
however equation (14) shows that the correlation between
S and I decays at order one. This means that in the region
of the network that has been invaded, there is rapid
development of the spatial structure as captured by the
local correlations. In the early development of the
epidemic CSI converges to a quasi-equilibrium C�SI. It is
therefore advisable to measure R0 once the local spatial
pattern has formed and CSI has equilibrated. As C�SI will
be less than one, the value of R0 will be similarly
reduced.

From equation (14), it is clear that, in general, the
quasi-equilibrium value also depends on the value of
CII �I �=N . The correlations between infectious nodes grow
fast enough that �I �CII=N (which is interpreted as the
probability that a neighbour of an infectious individual is
also infectious) is of order one, even when the density of
infectious individuals is small.

d
dt
�I �CII
N
� 1
n
d
dt
�II �
�I �

� �
) ICII

N

� �
! 2�CSI

g� �CSI ÿ 2��C2SI�
(15)

Therefore, from equations (14) and (15), it is found that
C�SI satis¢es

n�(1ÿC�SI)(1ÿ�)ÿ
2���C�SI 2

g� �C�SI ÿ 2��C�SI 2�
ÿ C�SI�1 (16)

The values of CSI and hence R0 can be seen to depend
only of the values of n, � and �=g. Figure 3 shows the
behaviour of CSI (and hence R0) and the associated values
of �I �CII=N for a range of n and �.

As R0 is proportional to the S^I correlation, it is clear
that the network models have a lower basic reproductive
ratio than their mean-¢eld counterparts. Therefore, there
will exist conditions when the mean-¢eld equations will
predict that an epidemic will take o¡, but the network
model will show that this is not the case.We can examine
this result analytically in the limiting case when there are
no triangular loops, � � 0.

n�(1ÿ C�SI)ÿ C�SI � 1) C�SI � 1ÿ 2
n

) R0 � 1ÿ 2
n

� �
�

g

Similarly, by considering the limiting case when � is
large, we ¢nd that the disease always dies out if

�4
nÿ 2
nÿ 1

.

This limiting value of � corresponds to a highly inter-
connected system, where all but one of the neighbours is
within a completely interconnected group.

It should be clear that whether a disease can invade a
totally susceptible population (whether R041) is depen-
dent upon the network structure as well as the individual
disease parameters.We ¢nd that the potential to invade is
reduced by having few neighbours or a highly inter-
connected network structure, with the e¡ects of � being
reduced as the number of neighbours increases.

6. THE FINAL SIZE OF A SINGLE EPIDEMIC

One of the main characteristics of an SIR epidemic in
a population without births is the ¢nal size of the
epidemic. This is the total number of individuals that
become infected during the course of the epidemic and is
equal to the ¢nal number of recovered individuals
R1 � 1ÿ S1. The ¢nal size of simple epidemics has been
much studied in deterministic and stochastic models
(Kermack & McKendrick 1927; Ball & Nasell 1994;
Islam et al. 1996). It should be noted that when the birth
rate is low compared to the epidemic time (e.g. in£uenza),
this formulation still gives an accurate prediction of the
number infected.

Given a ¢xed number of neighbours n per site and
� � 0, analytical results have been developed (Diekmann
et al. 1998) to show how, for a network of connected
nodes, R1 is smaller than predicted by mean-¢eld
assumptions. For the network model

R1 � 1ÿ 1ÿ �

g� � � �
�

g� �
� �n

, (17)

where

� � 1ÿ �

g� � � �
�

g� �
� �nÿ1

.

When n!1, and keeping n� � �, this returns to the
standard ¢nal size result of Kermack & McKendrick
(1927) calculated as the long-term limit of the SIR
equations. Unfortunately, the long-term limit of equations
(12) cannot be solved as easily. However, as shown in
Appendix A, for the case where � � 0, using the reduced
form (13) the ¢nal size can be obtained and agrees with
the value calculated by Diekmann et al. (1998). There is
no obvious means of extracting the ¢nal size equations
when � 6� 0, instead numerical results from integration of
the network equations will be used to demonstrate the
behaviour (¢gure 4).

The correlation model predicts a lower ¢nal size than
the mean-¢eld equations, and as � is increased the ¢nal
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size is further reduced. In all cases, it is true that R1 ! 1
as �!1. Figure 4 also illustrates the e¡ect � has on the
invasion threshold (R0 � 1) which can be seen to occur at
increasing transmissibilities for increasing �. Therefore,
not only does the proportion of triangular contacts (�)
reduce the initial spread of an epidemic, it also limits the
¢nal proportion of the population that the epidemic
reaches.

7. VACCINATION

One of the main aims of epidemiology is to understand
the role of vaccination and hence predict the level of
vaccination necessary to eradicate a disease. If we assume

that vaccination confers lifelong immunity to the disease,
then we can amalgamate the vaccination and recovered
individuals into a single non-susceptible class. For the
simple SIR model without births or deaths, the e¡ects of
vaccination can be captured by starting the population
with a fraction V � 1ÿ S in the non-susceptible class, so
equations (12) and (13) still hold.

When starting with only a proportion S of the popula-
tion being susceptible, the invasion is characterized by
the e¡ective reproductive ratio R. For the mean-¢eld
models, there is a simple relationship between R and R0,

R � SR0 �
�S
g
.
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Figure 3. From equations (14) and (15), we can calculate the correlation between susceptibles and infectious nodes in the initial
stages of invasion (a) and the probability that a neighbour of an infectious node is also infectious (b). For both these models, we
have taken g � 0:1 and � � 0:5. The contour on graph a represents the line where R0 � 1, above this line epidemics can start; for
the comparative mean-¢eld model, R0 � 5.



Hence, using this approximation, the disease can only
invade if the proportion susceptible is greater than some
threshold value ST � g=�. When considering the invasion
on a network, we must take into account the initial
spatial distribution of the susceptibles as well as their
overall density. In general, we should expect susceptibles
to be aggregated so that CSS41. As shown in ½ 5, local
spatial structure develops over a short time-scale; the
e¡ect this has on R can be captured by examining the
correlation CSI .

CSI !
(nÿ 1)�S�CSS(1ÿ �)ÿN

n�S� � (nÿ 1)�I �CII�ÿ (nÿ 1)�S�CSS�
,

�I �CII !
2�N �S�CSI

gN � n� �S�CSI ÿ 2(nÿ 1�)� �S�C2SI�
.

When, � � 0, so that there is no spatial structure present
in the network, we ¢nd

CSI !
(nÿ 1)�S�CSS ÿ �N �

n�S� ,

) R � �
g

(nÿ 1)
�S�
N
CSS ÿ 1

� �
.

(18)

Hence, it is both the proportion of susceptibles, �S�=N,
and the correlation between susceptibles, CSS which
controls the initial spread of the disease. The disease can
only invade if

�S�
N

4
1
CSS

g� �
�(nÿ 1)

,

)�S�
N

4
1

(nÿ 1)CSS
1
R0

(nÿ 2)� 1
� �

4
ST
CSS

.

In general, irrespective of the contact rate �, a disease
cannot invade if

�S�
N
<

1
(nÿ 1)(1ÿ �)CSS

,

which gives us a vaccination threshold that takes into
account the network structure as well as the aggregation
of the susceptibles. The aggregation of susceptible
individuals is a monotonic function of the aggregation of
vaccinated individuals.We therefore ¢nd that the vaccina-
tion threshold necessary for disease eradication increases
with the number of neighbours and the aggregation of
vaccination, but decreases with increasing �.

As detailed in ½ 6, it is also possible to formulate equa-
tions for the ¢nal size of an epidemic when � � 0. Using
the same approach, starting with a proportion S0 of
susceptibles with correlation CSS, we ¢nd

S1 � S0 1ÿ �

� � g
CSSS0 �

�

� � g
CSSS1=n0 S1ÿ1=n1

� �n

.

Final proportion infected � S0 ÿ S1.
(19)

From which we ¢nd that both larger initial densities and
larger initial aggregations will lead to a greater propor-
tion of the population being infected.

8. DISCUSSION

Using the simple epidemiological SIR model, we have
shown that the spatial structure which develops during
the early stages of invasion can determine its success or
failure. The limited spread of invading organisms means
that they su¡er far greater intraspeci¢c competition than
the homogeneously mixed, mean-¢eld equations would
suggest. This greater intraspeci¢c competition leads to
reduced success at invasion. This paper has demonstrated,
primarily by numerical integration, that intraspeci¢c
competition, and therefore departure from the mean-¢eld
model, is greatest when the neighbourhood is small and
there are many local connections (� is large).

We have de¢ned the reproductive ratio (R0) as being the
average number of individuals produced by an invading
organism once the local spatial structure has reached equili-
brium. Thus, this is a measure of whether an organism can
enter the population and persist in the short-term; the stan-
dard mean-¢eld result informs us whether the organism can
simply enter the population. Therefore, for some parameter
values, an organism may be able to enter a population, but
cannot survive in the environment that rapidly develops
around it. However, such situations are likely to be indistin-
guishable from chance events. It should be realized that
invasion is a highly stochastic phenomenon and many
invasions will fail simply by `bad luck'. We believe that, in
general, by the time the local spatial structure has
developed, there should be su¤ciently many cases that
stochastic extinctions can be ignored. Thus, invasion is best
characterized by a short stochastic entry phase followed by a
more deterministic growth phase governed by the value of
R0 calculated above.
For communicable diseases, assuming the infection is

spread via a network of contacts is the natural way to
model the e¡ects of spatial correlations. We have shown
that departure from the standard mean-¢eld results is
greatest when n is small and � is large. This is often the
case for sexually transmitted diseases where most of the

E¡ects of local spatial structure M. J. Keeling 865

Proc. R. Soc. Lond. B (1999)

0.1 0.14 0.18 0.22 0.26 0.30
0

0.2

0.4

0.6

0.8

1

contact rate β

pr
op

or
tio

n 
in

fe
ct

ed

Figure 4. Comparison of theoretical and numerical results
for n � 10 and g � 0:1. The dashed line is the theoretical
proportion infected in the mean-¢eld model. The black line is
the theoretical result (and numerical solution of the ODEs
(12)) when � � 0. The grey lines are for increasing � (0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and show how on a more
interconnected graph we should expect smaller epidemics.
The points where the curves meet the horizontal axis
correspond to the invasion threshold when R0 � 1. Again,
g � 0:1.



partners come from a small social group. For other
human diseases, such as childhood epidemics, there are
many more contacts, but they are still highly intercon-
nected. Therefore we should expect that for many
common communicable diseases the fact that a network
consists of a limited number of connected pairs will play
an important role in the dynamics. If we allow the
network to be dynamic, such that connections can break
and reform (cf. Dietz & Hadeler 1988), then the
behaviour becomes more like the mean-¢eld model, with
the correlations decaying to one as the movement of indi-
viduals becomes large.

For these correlation models to prove useful in practical
epidemiological problems requires greater parameter-
ization at the level of an individual, therefore what is
needed is a method of extracting local parameters from
global results. However, this method forms a valuable
link between mathematically simplistic mean-¢eld equa-
tions and computationally intensive individual-based
models, and provides insights into the role of individuals
and spatial correlations in ecological invasions.

This research was supported by the Wellcome Trust and the
Royal Society. I wish to thank David Rand for his many helpful
comments and insights as well as Minus van Baalen and Odo
Diekmann.

APPENDIX A

(a) Long-term limiting behaviour of the correlation
model

Equation (13) cannot be solved for the ¢nal size of the
epidemic so easily as the standard SIR model. It is neces-
sary to consider the behaviour of some new combinations
of parameters; let us de¢ne

� � nÿ 1
n

, P � �SI ��S�� , R � �SS��S�� , T � �SS�
exp(n�S�1=n)S2� .

Now, from equation (12)

_P � �� �SS��S� P ÿ (� � g)P,

_R � ÿ2�� �SS��S� P � �SS�
�

�S���1 � �SI �,

� ÿ�� �SS��S� P,
_T � �TP,

�A1�

and from equation (13),

Q ( _SjS) � d
dt
�SS�
�S� � ÿ�

nÿ 2
n

Q (SjS)Q (I jS),

and

d�S�
dt
� ÿ� �S�Q (I jS)) �SS� � n�S�2� .

In particular, �SS�1 � n�S�2�1.
Integrating the three equations (A1) from t � 0 to1,

P(1)ÿP(0)�0���
Z 1
0

�SS�
�S� Pdt ÿ(� � g)

Z 1
0

Pdt, (A2)

R(1)ÿ R(0) � �SS�1�S��1
ÿ n � ÿ��

Z 1
0

�SS�
�S� Pdt, (A3)

ln (T�1))ÿ ln (T(0)) � nÿ n�S�1=n1 � �
Z 1
0

Pdt. (A4)

Therefore, from equation (A2) and substituting the
expressions from equations (A3) and (A4),

ÿ (� � g)
�

(nÿ n�S�1=n1 ) � �SS�1�S��1
ÿ n.

So setting S1 � �S�1=N, the equation for the ¢nal size of
an epidemic can be recovered.

ÿ(� � g)(1ÿ S1=n1 ) � �(S�1 ÿ 1),

S1=n1 � 1� �

� � g
(S�1 ÿ 1),

S1 � 1ÿ �

� � g
� S�1

�

� � g

� �n

:

This is the same solution as equation (17) because
� � S�1. It is doubtful whether a similar technique could
be applied to the situation when � 6� 0.
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