Abstract
The development of nerve connections is thought to involve competition among axons for survival promoting factors, or neurotrophins, which are released by the cells that are innervated by the axons. Although the notion of competition is widely used within neurobiology, there is little understanding of the nature of the competitive process and the underlying mechanisms. We present a new theoretical model to analyse competition in the development of nerve connections. According to the model, the precise manner in which neurotrophins regulate the growth of axons, in particular the growth of the amount of neurotrophin receptor, determines what patterns of target innervation can develop. The regulation of neurotrophin receptors is also involved in the degeneration and regeneration of connections. Competition in our model can be influenced by factors dependent on and independent of neuronal electrical activity. Our results point to the need to measure directly the specific form of the regulation by neurotrophins of their receptors.
Full Text
The Full Text of this article is available as a PDF (215.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albers K. M., Wright D. E., Davis B. M. Overexpression of nerve growth factor in epidermis of transgenic mice causes hypertrophy of the peripheral nervous system. J Neurosci. 1994 Mar;14(3 Pt 2):1422–1432. doi: 10.1523/JNEUROSCI.14-03-01422.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barry J. A., Ribchester R. R. Persistent polyneuronal innervation in partially denervated rat muscle after reinnervation and recovery from prolonged nerve conduction block. J Neurosci. 1995 Oct;15(10):6327–6339. doi: 10.1523/JNEUROSCI.15-10-06327.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett M. R., Robinson J. Growth and elimination of nerve terminals at synaptic sites during polyneuronal innervation of muscle cells: a trophic hypothesis. Proc R Soc Lond B Biol Sci. 1989 Jan 23;235(1281):299–320. doi: 10.1098/rspb.1989.0002. [DOI] [PubMed] [Google Scholar]
- Birren S. J., Verdi J. M., Anderson D. J. Membrane depolarization induces p140trk and NGF responsiveness, but not p75LNGFR, in MAH cells. Science. 1992 Jul 17;257(5068):395–397. doi: 10.1126/science.1321502. [DOI] [PubMed] [Google Scholar]
- Blöchl A., Thoenen H. Characterization of nerve growth factor (NGF) release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur J Neurosci. 1995 Jun 1;7(6):1220–1228. doi: 10.1111/j.1460-9568.1995.tb01112.x. [DOI] [PubMed] [Google Scholar]
- Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci. 1995;18:223–253. doi: 10.1146/annurev.ne.18.030195.001255. [DOI] [PubMed] [Google Scholar]
- Burgos I., Cuello A. C., Liberini P., Pioro E., Masliah E. NGF-mediated synaptic sprouting in the cerebral cortex of lesioned primate brain. Brain Res. 1995 Sep 18;692(1-2):154–160. doi: 10.1016/0006-8993(95)00696-n. [DOI] [PubMed] [Google Scholar]
- Cabelli R. J., Hohn A., Shatz C. J. Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science. 1995 Mar 17;267(5204):1662–1666. doi: 10.1126/science.7886458. [DOI] [PubMed] [Google Scholar]
- Campenot R. B. Development of sympathetic neurons in compartmentalized cultures. Il Local control of neurite growth by nerve growth factor. Dev Biol. 1982 Sep;93(1):1–12. doi: 10.1016/0012-1606(82)90232-9. [DOI] [PubMed] [Google Scholar]
- Causing C. G., Gloster A., Aloyz R., Bamji S. X., Chang E., Fawcett J., Kuchel G., Miller F. D. Synaptic innervation density is regulated by neuron-derived BDNF. Neuron. 1997 Feb;18(2):257–267. doi: 10.1016/s0896-6273(00)80266-4. [DOI] [PubMed] [Google Scholar]
- Cohen-Cory S., Elliott R. C., Dreyfus C. F., Black I. B. Depolarizing influences increase low-affinity NGF receptor gene expression in cultured Purkinje neurons. Exp Neurol. 1993 Feb;119(2):165–175. doi: 10.1006/exnr.1993.1018. [DOI] [PubMed] [Google Scholar]
- Cohen-Cory S., Fraser S. E. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature. 1995 Nov 9;378(6553):192–196. doi: 10.1038/378192a0. [DOI] [PubMed] [Google Scholar]
- Diamond J., Holmes M., Coughlin M. Endogenous NGF and nerve impulses regulate the collateral sprouting of sensory axons in the skin of the adult rat. J Neurosci. 1992 Apr;12(4):1454–1466. doi: 10.1523/JNEUROSCI.12-04-01454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards R. H., Rutter W. J., Hanahan D. Directed expression of NGF to pancreatic beta cells in transgenic mice leads to selective hyperinnervation of the islets. Cell. 1989 Jul 14;58(1):161–170. doi: 10.1016/0092-8674(89)90412-1. [DOI] [PubMed] [Google Scholar]
- ElShamy W. M., Linnarsson S., Lee K. F., Jaenisch R., Ernfors P. Prenatal and postnatal requirements of NT-3 for sympathetic neuroblast survival and innervation of specific targets. Development. 1996 Feb;122(2):491–500. doi: 10.1242/dev.122.2.491. [DOI] [PubMed] [Google Scholar]
- Elliott T., Shadbolt N. R. A mathematical model of activity-dependent, anatomical segregation induced by competition for neurotrophic support. Biol Cybern. 1996 Dec;75(6):463–470. doi: 10.1007/s004220050311. [DOI] [PubMed] [Google Scholar]
- Funakoshi H., Belluardo N., Arenas E., Yamamoto Y., Casabona A., Persson H., Ibáez C. F. Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science. 1995 Jun 9;268(5216):1495–1499. doi: 10.1126/science.7770776. [DOI] [PubMed] [Google Scholar]
- Garofalo L., Ribeiro-da-Silva A., Cuello A. C. Nerve growth factor-induced synaptogenesis and hypertrophy of cortical cholinergic terminals. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2639–2643. doi: 10.1073/pnas.89.7.2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gouzé J. L., Lasry J. M., Changeux J. P. Selective stabilization of muscle innervation during development: a mathematical model. Biol Cybern. 1983;46(3):207–215. doi: 10.1007/BF00336802. [DOI] [PubMed] [Google Scholar]
- Grinnell A. D., Letinsky M. S., Rheuben M. B. Competitive interaction between foreign nerves innervating frog skeletal muscle. J Physiol. 1979 Apr;289:241–262. doi: 10.1113/jphysiol.1979.sp012735. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He Y., Yao Z., Gu Y., Kuang G., Chen Y. Nerve growth factor promotes collateral sprouting of cholinergic fibers in the septohippocampal cholinergic system of aged rats with fimbria transection. Brain Res. 1992 Jul 17;586(1):27–35. doi: 10.1016/0006-8993(92)91367-n. [DOI] [PubMed] [Google Scholar]
- Holtzman D. M., Li Y., Parada L. F., Kinsman S., Chen C. K., Valletta J. S., Zhou J., Long J. B., Mobley W. C. p140trk mRNA marks NGF-responsive forebrain neurons: evidence that trk gene expression is induced by NGF. Neuron. 1992 Sep;9(3):465–478. doi: 10.1016/0896-6273(92)90184-f. [DOI] [PubMed] [Google Scholar]
- Hume R. I., Purves D. Geometry of neonatal neurones and the regulation of synapse elimination. Nature. 1981 Oct 8;293(5832):469–471. doi: 10.1038/293469a0. [DOI] [PubMed] [Google Scholar]
- Jansen J. K., Fladby T. The perinatal reorganization of the innervation of skeletal muscle in mammals. Prog Neurobiol. 1990;34(1):39–90. doi: 10.1016/0301-0082(90)90025-c. [DOI] [PubMed] [Google Scholar]
- Jeanprêtre N., Clarke P. G., Gabriel J. P. Competitive exclusion between axons dependent on a single trophic substance: a mathematical analysis. Math Biosci. 1996 Jul 1;135(1):23–54. doi: 10.1016/0025-5564(95)00134-4. [DOI] [PubMed] [Google Scholar]
- Layer P. G., Shooter E. M. Binding and degradation of nerve growth factor by PC12 pheochromocytoma cells. J Biol Chem. 1983 Mar 10;258(5):3012–3018. [PubMed] [Google Scholar]
- Lewin G. R., Barde Y. A. Physiology of the neurotrophins. Annu Rev Neurosci. 1996;19:289–317. doi: 10.1146/annurev.ne.19.030196.001445. [DOI] [PubMed] [Google Scholar]
- Li Y., Holtzman D. M., Kromer L. F., Kaplan D. R., Chua-Couzens J., Clary D. O., Knüsel B., Mobley W. C. Regulation of TrkA and ChAT expression in developing rat basal forebrain: evidence that both exogenous and endogenous NGF regulate differentiation of cholinergic neurons. J Neurosci. 1995 Apr;15(4):2888–2905. doi: 10.1523/JNEUROSCI.15-04-02888.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindsay R. M., Shooter E. M., Radeke M. J., Misko T. P., Dechant G., Thoenen H., Lindholm D. Nerve Growth Factor Regulates Expression of the Nerve Growth Factor Receptor Gene in Adult Sensory Neurons. Eur J Neurosci. 1990;2(5):389–396. doi: 10.1111/j.1460-9568.1990.tb00431.x. [DOI] [PubMed] [Google Scholar]
- Miller F. D., Speelman A., Mathew T. C., Fabian J., Chang E., Pozniak C., Toma J. G. Nerve growth factor derived from terminals selectively increases the ratio of p75 to trkA NGF receptors on mature sympathetic neurons. Dev Biol. 1994 Jan;161(1):206–217. doi: 10.1006/dbio.1994.1021. [DOI] [PubMed] [Google Scholar]
- Ninkina N., Adu J., Fischer A., Piñn L. G., Buchman V. L., Davies A. M. Expression and function of TrkB variants in developing sensory neurons. EMBO J. 1996 Dec 2;15(23):6385–6393. [PMC free article] [PubMed] [Google Scholar]
- Purves D., Lichtman J. W. Elimination of synapses in the developing nervous system. Science. 1980 Oct 10;210(4466):153–157. doi: 10.1126/science.7414326. [DOI] [PubMed] [Google Scholar]
- Rasmussen C. E., Willshaw D. J. Presynaptic and postsynaptic competition in models for the development of neuromuscular connections. Biol Cybern. 1993;68(5):409–419. doi: 10.1007/BF00198773. [DOI] [PubMed] [Google Scholar]
- Ribchester R. R. Activity-dependent and -independent synaptic interactions during reinnervation of partially denervated rat muscle. J Physiol. 1988 Jul;401:53–75. doi: 10.1113/jphysiol.1988.sp017151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ribchester R. R., Barry J. A. Spatial versus consumptive competition at polyneuronally innervated neuromuscular junctions. Exp Physiol. 1994 Jul;79(4):465–494. doi: 10.1113/expphysiol.1994.sp003781. [DOI] [PubMed] [Google Scholar]
- Rylett R. J., Williams L. R. Role of neurotrophins in cholinergic-neurone function in the adult and aged CNS. Trends Neurosci. 1994 Nov;17(11):486–490. doi: 10.1016/0166-2236(94)90138-4. [DOI] [PubMed] [Google Scholar]
- Salehi A., Verhaagen J., Dijkhuizen P. A., Swaab D. F. Co-localization of high-affinity neurotrophin receptors in nucleus basalis of Meynert neurons and their differential reduction in Alzheimer's disease. Neuroscience. 1996 Nov;75(2):373–387. doi: 10.1016/0306-4522(96)00273-4. [DOI] [PubMed] [Google Scholar]
- Schnell L., Schneider R., Kolbeck R., Barde Y. A., Schwab M. E. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature. 1994 Jan 13;367(6459):170–173. doi: 10.1038/367170a0. [DOI] [PubMed] [Google Scholar]
- Sutter A., Riopelle R. J., Harris-Warrick R. M., Shooter E. M. Nerve growth factor receptors. Characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. J Biol Chem. 1979 Jul 10;254(13):5972–5982. [PubMed] [Google Scholar]
- Wiley H. S., Cunningham D. D. A steady state model for analyzing the cellular binding, internalization and degradation of polypeptide ligands. Cell. 1981 Aug;25(2):433–440. doi: 10.1016/0092-8674(81)90061-1. [DOI] [PubMed] [Google Scholar]
- Yasuda T., Sobue G., Ito T., Mitsuma T., Takahashi A. Nerve growth factor enhances neurite arborization of adult sensory neurons; a study in single-cell culture. Brain Res. 1990 Jul 30;524(1):54–63. doi: 10.1016/0006-8993(90)90491-s. [DOI] [PubMed] [Google Scholar]
- van Ooyen A., Willshaw D. J. Poly- and mononeuronal innervation in a model for the development of neuromuscular connections. J Theor Biol. 1999 Feb 21;196(4):495–511. doi: 10.1006/jtbi.1998.0849. [DOI] [PubMed] [Google Scholar]