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ABSTRACT

We present a web-based pipeline for microarray
gene expression profile analysis, GEPAS, which
stands for Gene Expression Profile Analysis Suite
(http://gepas.bioinfo.cnio.es). GEPAS is composed
of different interconnected modules which include
tools for data pre-processing, two-conditions com-
parison, unsupervised and supervised clustering
(which include some of the most popular methods
as well as home made algorithms) and several tests
for differential gene expression among different
classes, continuous variables or survival analysis.
A multiple purpose tool for data mining, based on
Gene Ontology, is also linked to the tools, which
constitutes a very convenient way of analysing
clustering results. On-line tutorials are available
from our main web server (http://bioinfo.cnio.es).

INTRODUCTION

Over the last few years technology in the field of genomics has
progressed significantly, resulting in vast amounts of biological
data available. In particular, microarray technologies (1,2)
are generating huge amounts of data, leading to the creation
of new tools for data management (3) and analysis (see,
for example, a compilation in http://ihome.cuhk.edu.hk/
~b400559/arraysoft.html). Data management of microarrays
firstly requires the implementation of local databases as well as
public repositories, which demand a common data exchange
format. Following this, the Microarray Gene Expression Data
(MGED; http://www.mged.org) Society, whose aim is to
facilitate the sharing of microarray data generated by
functional genomics and proteomics, establishing standards
of annotations and exchange formats. Less effort, however, has
been made in standardising the formats on the side of the
analysis of this data. Different tools implementing distinct
algorithms are available for diverse platforms. This often
makes the application of more than one algorithm to the data
cumbersome. Web-based software would avoid this problem,

but to date, apart from some exceptions [e.g. Expression
Profiler (4)], most of the web tools are spread across different
servers internationally and employ different file formats. Here
we present an integrated web-based pipeline for the analysis of
gene expression pattern where the most popular tools can be
used in an integrated interface. This allows a transparent use
once the data has been uploaded. The way in which the tools
are connected guide the user by suggesting all the available
possibilities to continue with analysis.

THE PIPELINE OF MICROARRAY DATA ANALYSIS
UNDER A WEB-BASED UNIFIED FRAMEWORK

After hybridisation with the control and/or the query labelled
DNAs, the array is scanned. Images corresponding to intensity
of the hybridisation process are obtained. Depending on the
technology used [cDNA microarrays (1) or Affymetrics
oligonucleotide arrays (2)] their processing is different but,
essentially, the microarrays must be analysed to identify and
quantify the spots corresponding to the probes. Usually,
commercial microarray scanner manufacturers provide their
own solutions for image processing. In addition, both public-
domain and commercial solutions are available. Comparison of
the results from different hybridisations requires a normal-
isation process. The distinct efficiencies in the labelling
process and in the detection of the fluorescence in both
channels, as well as differences in the initial amount of mRNA
in the samples, not to mention problems derived from the
manipulation of the samples, cause systematic biases in the
measurements. Normalisation procedures are also often
implemented in many image analysis programmes. Once the
data has been normalised, it is then ready for analysis. Since
GEPAS works with gene expression patterns, it is still
necessary to merge data coming from different conditions,
such as time-courses, cohorts of patients or a series of different
drug dosages. The matrix of gene expression values for the
different experimental conditions constitute the starting point
of the pipeline presented here. Figure 1 shows how the
different modules of GEPAS are interconnected and exchange
data amongst them. Once the expression pattern data is
introduced within the system, all the modules available can be
used to analyse them. The pre-processor module acts as a hub
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for distributing the information. Obviously, the modules can be
used independently without the necessity of accessing them
through the pre-processor.

Web-based tools guarantee real cross-platform capabilities.
Client-server architecture provided by web tools makes
resources available to remote users without the hardware
support for heavy calculations that are made on the server side.
Beyond these advantages, however, the efficiency of a modular
package largely lies on the degree of integration of the
different data analysis tools. When users can walk across a
complete pipeline of data analysis in a transparent way, without
the necessity of performing any reformatting operation or even
without executing a simple cut-and-paste, it is because the
tools are truly integrated.

File formats and programming details

Gene expression pattern datasets are huge tables with
thousands of rows corresponding to the genes or clones
present in the DNA array and several columns, one for each
experimental condition measured. Consistent with this, the row
data file format is a tab-delimited table with a first column
containing all the identifiers for the genes (or clones) and as
many columns as experiments containing their expression
values. Additional information can be added as commentaries
in lines beginning with a hash (#).

Since the tools presented here are oriented to the analysis of
sets of arrays, instead of the analysis of individual arrays,
MAGE-ML (http://xml.coverpages.org/mageML.html) has not
been used given that it is more oriented to the description of
individual arrays.

SOM and SOM-Tree are based on the original SOM_PACK
(ftp://cochlea.hut.fi/pub/som_pak) and use its native format;
nevertheless, the system is able to automatically translate the
standard expression pattern files into files suitable for
SOM_PACK without the necessity of the user’s intervention.
Programmes that deal with classes require an additional file
with its description. The description is quite simple and
consists on an enumeration of the class identifiers corres-
ponding to each column. In the case of continuous variables

(e.g. the concentration of a metabolite or time) there is a
number per column.

Tree descriptions used by GEPAS are compliant with the
widely used standard Newick tree format (http://evolution.
genetics.washington.edu/phylip/newicktree.html). Gnuplot
(http://www.gnuplot.info/) is behind the histograms calculated
by the Preprocessor and the plots made by PlotCorr. All the
remaining graphics are PNG images made with the GD library
(http://www.boutell.com/gd/). C code from R (http://www.
r-project.org/) has been used for some of the statistical tests
implemented in the modules. The web interfaces are Perl CGIs,
whereas the programmes are mainly binary executables written
in ‘C’. The overall system has been developed for working
with an Apache web server.

Data preprocessing

The Preprocessor module is an interactive web tool for pre-
processing microarray gene expression data (5). The most
interesting and powerful feature of this module is the data pre-
analyser. It analyses the data, suggests the most appropriate
transformations and proceeds with them after the user’s
agreement. The normal pre-processing steps include scale
transformations, replicate handling, management of missing
values (by means of different procedures), flat pattern filtering
and pattern standardisation; and some of them are required
before performing other pattern analysis. The processed data
set is available in several file formats so that it can be sent to
other pattern analysis tools over the web. The result can also be
sent to the FatiGO for comparing genes that have been
removed by the filters against remaining ones (see below). The
preprocessor can also receive data from other modules and, in
that way, plays the role of hub of data facilitating the
application of successive analysis steps to the data (Fig. 1).
The output of the preprocessor is also connected to the HAPI
tool, a data mining tool based on MESH terms (6) and to the
Expression Profiler (4).

Two conditions comparison

The PlotCorr module is an interface for graphical comparison
between two experimental conditions. It calculates the
correlation between both conditions and allows a quick
visualisation of the genes that differ between the compared
arrays. A threshold for masking genes with a similar
expression in both conditions can be dynamically set. Over-,
under-expressed genes and genes with similar expression
levels (according to the threshold) are plotted in different
colours and are listed in the resulting file. PlotCorr is
connected to the FatiGO (see below).

Unsupervised clustering

Clustering is perhaps one of the most widely used tools for
microarray data analysis. It produces groups of gene expression
profiles based on a distance function. Clustering can be used to
find groups of co-expressing genes (7), which are often
functionally related or to obtain clusters of experimental
conditions (8). Depending on the way in which the data is
clustered, we can distinguish between hierarchical and non-
hierarchical clustering. Hierarchical clustering allows detecting

Figure 1. The pipeline of microarray data analysis. After the operations of
image processing and data normalisation are performed (grey box on top left),
the data enters the pipeline through the preprocessor. Then, depending on the
type of analysis the user needs to perform, these can be sent to different mod-
ules that implement different tools.
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higher order relationships between clusters of profiles whereas
the majority of non-hierarchical classification techniques work by
allocating expression profiles to a predefined number of clusters,
without any assumption on the inter-cluster relationships.

Different distance functions (based on Euclidean or correla-
tion coefficients) which can produce alternative clustering of
data are available. Depending on the method, different options
are available. SOM and SOTA offer a variety of parameters for
producing the clustering under different conditions and
constraints.

Aggregative hierarchical method. Aggregative hierarchical
clustering (9) is still one of the preferred choices for the
analysis of gene expression patterns (mostly because it is avail-
able in many packages). It starts by joining the two closest
gene expression profiles and substitutes them by an averaged
profile. Then, it continues by recursively joining the next two
closest profiles (or groups) until only one group remains. At
the end, this procedure generates a representation of the data
with the shape of a binary tree, in which the most similar pat-
terns are clustered in a hierarchy of nested subsets.

The module Cluster allows for the clustering of genes,
experimental conditions or both simultaneously based on
different distance functions. The result can be sent to the
TreeView module (Fig. 1) for visualisation of the resulting
dendrogram.

SOM. It has been noted (10) that standard clustering methods
suffer from a lack of robustness when applied to clustering
thousands of gene expression profiles. As an alternative, some
authors have proposed the use of neural networks (10,11).
Unsupervised neural networks, such as Self-Organising Maps
(SOM) (12) provide a more robust framework, appropriate
for clustering large amounts of noisy data. Due to their proper-
ties, neural networks are suitable for the analysis of gene
expression patterns. They can deal with real-world data sets
containing noisy, ill-defined items with irrelevant variables
and outliers, whose statistical distributions do not need to be
parametric.

The SOM module implements a web interface over
the SOM_PACK (http://www.cis.hut.fi/research/som_lvq_pak.
shtml) and the result is graphically represented by the SomPlot
module. The user can modify all the available parameters from
the original package: the size of the network, the topology, the
training parameters and the number of trials for testing several
random initial maps. Each cluster can be viewed separately by
clicking on it.

SOM-Tree. SOM-Tree is a combination of the two latest
methods: in the first part, a SOM is trained with the data and
in the second part an average linkage tree is built with the pat-
terns of the SOM nodes. The result is drawn with SomTree
(see below). The SOM-Tree is a method for exploratory data
analysis (13).

SOTA. The Self-Organising Tree Algorithm (SOTA) is
another neural network that has been used for expression pat-
tern clustering (14). SOTA, unlike SOM, has a structure of a
binary tree, which grows during the training of the network.

This results in several important differences with respect to
SOM. Firstly, the number of clusters does not need to be arbi-
trarily fixed from the beginning and is instead obtained by
means of a randomisation test implemented in the programme
(see 14 for details). The clustering obtained with SOTA (14) is
proportional to the heterogeneity of the data instead of the
number of items in each cluster (as in SOM). Thus, regardless
of whether a given type of profile is abundant or not, all the
similar items will remain grouped together in a single cluster
and they will have no direct affect on the rest of the clustering.
This is because SOTA mapping of the data in the tree is distri-
bution preserving while SOM mapping on the grid is topology
preserving (15). Furthermore, SOTA provides a highly precise
classification of samples (16). The SOTArray module allows
interactive definition of the parameters and training conditions.
As SOM, SOTA offers the possibility of modifying many para-
meters that affect the convergence, the heterogeneity of the
clusters obtained, etc. The default parameters, which produce
optimal convergence for most of the conditions, were obtained
by using a genetic algorithm. SOTA mirrors are accessible at
the EBI (http://ep.ebi.ac.uk/EP/SOTA/) and at ALMA
Bioinformatics (http://www.almabioinfo.com/sota)

Supervised methods

In many cases there is information available on the classes and
the interest is in constructing a class predictor that, once trained,
will be capable of assigning the proper membership to a new
sample. Machine learning methods can be used for this purpose.
Specifically, Support Vector Machines (SVM) (17) have been
successfully applied to the classification of both genes (18) or
experimental conditions (19). SVM can be considered as a
binary classifier. It proceeds by constructing a hyperplane that
separates class members (positive examples) from non-
members (negative examples). Unfortunately, most real-world
problems involve non-separable data for which there does not
exist a hyperplane that successfully separates the positive from
the negative examples. SVM provides the solution to the
inseparability problem that involves the mapping of data into a
higher-dimensional space and defines a separating hyperplane.
Different kernels for the SVM can be selected by the user. The
implementation of SVM in GEPAS has two parts: the learning
part, in which the SVM learns from an example, gives an
estimation of the learning rate by means of distinct cross-
validation procedures and produces a model that can be saved
for further use; and the classificatory, in which a series of
samples can be introduced, and using a model previously stored,
a prediction of class membership is done for them.

Differential gene expression in class-related or
continuous variable related studies

One of the most interesting problems consists of finding
genes differentially expressed among two or more conditions
(e.g. different cancer types). Conceptually related to this is
finding genes related to a given continuous variable (e.g. the
level of a metabolite) or the case of survival, a particular case
of a continuous variable. Nevertheless, finding the proper
group of genes among the thousands present in the arrays is
not an easy task.
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The Pomelo tool has been designed to control the problem of
multiple testing when searching for differentially expressed
genes. Using microarray data we are testing for differential
expression of a high number genes and we need to account for
multiple testing. The problem of using the p-value from each
test directly is that we are examining many null hypotheses
(one null hypothesis—i.e. non differential expression for each
gene). If we were to consider each of the tests with a p-value
smaller than, say, 0.05, as significant, we would end up with an
excessive number of differentially expressed genes. Despite
this, not many authors are aware of this problem and few
programmes consider multiple testing in their design. The need
to account for multiple testing has been reviewed for
the analysis of microarrays by Dudoit et al. (20). In Pomelo
we have implemented four methods to account for multiple
testing; two of them control the Family Wise Error Rate (21)
and two others control de False Discovery Rate (22,23).

These methods can be applied to five different statistical
tests: the t-test (to compare expression between two condi-
tions), ANOVA (analysis of variance, to compare expression
between two or more conditions), linear regression (to examine
if the expression of genes is related to variation in a continuous
variable, e.g. expression levels of a given metabolite), survival
analysis [to examine if gene expression is related to patients’
survival (24)] and Fisher’s exact test for contingency tables
(when both the dependent and independent variables are
categorical).

Figure 2 shows the 100 genes that most differentially express
amongst the two types of leukaemia studied (25) arranged in
increasing order of the adjusted p-value. Worthy of note is that
for the gene U50928, the 93rd in the rank, the adjusted p-value
obtained is already 0.051459, while the unadjusted p value is
still 3.99992e�05. To highlight the importance of using
corrected p-values it should be noted that the number of genes
that would be accepted as showing a significant differential
expression between the classes is 1020 if the uncorrected p-
value of 0.05 is used.

Graphical representation

There are several programmes that have been especially
developed for producing graphical representations of the
results of the modules described above: PaintPom, TreeView,
SotaTree, SotaCluster and SomPlot. PaintPom is used for the
representation of the Pomelo tool results and generates a
colour-coded table of the most differentially expressed genes
(Fig. 2). TreeView is used for drawing hierarchical clustering,
SOTA trees and single clusters. It provides the classical plot
with the tree and the colour-coded gene expression profiles.
The representation can be changed in different ways. It allows
for a compact representation or an expanded representation in
which the names of the genes appear in the plot. Vertical and
horizontal size is customisable and labels can be drawn in the
plot. SotaTree was developed for SOTArray and now is also
used for drawing the result of the SOM-Tree (Fig. 3).
SotaCluster is used for displaying a cluster coming from
SOM or SOTA (Fig. 3F). Finally, SomPlot draws the resulting
SOMs in a 2D grid. Both PaintPom and SomPlot are integrated
into their respective tools because of their specificity. The
remaining ones are implemented as independent modules and

offer numerous options for interactively customising the plots
produced.

Extract cluster

This module is probably the simplest part of the pipeline where
it plays a key role in the exchange of data among programmes.
It allows clustering programmes to send their results to other
tools. The module extracts the genes belonging to the selected

Figure 2. Representation provided by Pomelo of the 100 genes most differen-
tially expressed among two different cancer types, acute myeloid leukemia
(AML) and acute lymphoblastic leukemia (ALL) labelled as 0 and 1, respectively
in the top of the figure. The genes are arranged in increasing order of adjusted
p-value. If an adjusted p-value of 0.05 is used, there are 92 genes that present
significant differential expression among the classes. Thermal scale in the
bottom represents fold of activation or repression in log2 scale. Data from (25).
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cluster from the whole data set (Fig. 3E). The cluster can be
sent to the Preprocessor module or to any of the analysis tools,
if the user wants to post-analyse the cluster.

Data interpretation using gene ontology

The rationale behind clustering is that, despite the grouping
being established by means of a given distance measure, it
must reflect some biological property or function. The next
step in the analysis consists of extracting the information and
biological characteristics common to groups of genes of
interest. Unfortunately, a large number of the available
resources compiling information on gene (or protein) function
or properties are based in the pre-genomic design in which the
information is acceded and displayed in format one-gene-at-a-
time. Such resources are useless if the aim is to detect some
biological property or function shared by a set of genes when
thousands of them are involved in the comparison. This gap
between the clustering and the final study of the available
information for a set of selected genes cannot be performed by
hand because the amount of information implied in this step is
too great to be processed by traditional methods. The FatiGO
module can deal with thousands of genes and extract the GO

(26) terms of relevance for a given set of genes with respect to
the rest of them. These terms are obtained with the application
of a test that takes into account the multiple-testing nature of
the statistical contrast. The module produces a graphical
representation with a bar chart with the proportion of GO terms
in the analysed cluster with respect to the cluster of reference.
Adjusted p-values for the differentially represented GO terms
are given too. Also, links to the GO terms as well as to the
genes are provided.

FatiGO can be applied to the validation of clusters of genes
obtained with data of different nature. FatiGO can be applied to
yeast, human and mouse genes and, in general, to proteins in
TrEMBL/SWISS-PROT.

GEPAS USAGE

The way in which GEPAS is used depends very much on the
particular scientific problem for which the microarray experi-
ment has been designed and can be understood by looking at
Figure 1. Usually, a first step of data preprocessing is required. It
is quite commonly the interest in discovering the groups of
genes that co-express under the experimental conditions

Figure 3. Use of SOTAarray and SotaTree modules. Arrows represent clicks for the user. (A) The interface to the SOTArray. (B) The results page, from which
different plots can be obtained. (C) SOTA tree program was invoked from the results page. This graphical interface allows for some interactive changes in the
final appearance of the tree represented. (D) A dendrogram representing the clusters found in the dataset. The diameter of the circle is proportional to the number
of co-expressing genes in the cluster. By clicking the circle or the histogram representing the average profile, the list of genes (E) and a representation of its profiles
(F), respectively, can be obtained. This is done by the internal module ExtractCluster. (G) Shows part of the graphical representation of FatiGO module, which
displays the percentages of GO terms in the selected cluster with respect to the rest of genes and the adjusted p-values obtained for this difference.
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studied. In this case unsupervised clustering programmes, such
as aggregative hierarchical clustering, SOM, SOTA or SOM-
Tree can be used. Unsupervised clustering can also be applied to
obtain groups of experimental conditions (see for example 8).
However, it is quite common to have some previous knowledge
on the classes and, consequently, the interest of the experiment
is more focused on class prediction (25). In this case pro-
grammes such as SVM can be used. If, in addition, the resear-
cher is interested in the particular genes that are differentially
expressed among classes, the Pomelo tool can be used. In fact,
this tool can not only be used for discrete classes but also to
relate genes to continuous measures (e.g. the concentration of
a metabolite) or even to survival data. In many cases the
application of the FatiGO tool can be useful to understand what
are the biological processes and molecular functions of the
genes selected as important in any of the previous steps.

EXTERNAL CONNECTIVITY

GEPAS modules can be invoked from other web resources and
vice versa. This allows other designers of web tools to use
partial or full GEPAS resources. At present, GEPAS can send
data files, in the proper format, to Expression Profiler (4), a
web tool at the European Bioinformatics Institute (EBI), and
to HAPI, a data mining tool based on hierarchies of MESH
terms (6).

CONCLUSIONS

Large numbers of algorithms exist for analysing microarray
gene expression data (see a compilation in http://ihome.cuhk.
edu.hk/~b400559/arraysoft.html). Some of them are parts of
packages and others are implemented as stand-alone tools.
Different tools or packages have been implemented in distinct
platforms. In many cases, tools are implemented for PC
computers to take advantage of the graphical capacity of some
programming languages. The use of Java allows cross-platform
usage of some packages (see, for example MEV, http://www.
tigr.org). However, applications, or packages, are usually
restricted in terms of their usability . Moreover, its connectivity
to other applications or integration in other, more complete,
packages is often difficult and cumbersome. Implementation of
tools as web applications facilitates the connectivity greatly.
Unfortunately, many of the web implementations that exist at
present have been conceived as stand-alone tools and do not
make use of these advantages. GEPAS has been designed with
the intention of taking full advantage of the web properties:
connectivity, cross-platform and remote usage. The modular
architecture allows the addition of new tools and facilitates the
federation of GEPAS with other webbased tools.

GEPAS is part of the pipeline of microarray data analysis in
the CNIO (27) and its modules or the complete package is
currently being used worldwide. Future work includes the
addition of more tools and the improvement of the connectivity
with other web-based tools.
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