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ABSTRACT

We describe FrameD, a program that predicts coding
regions in prokaryotic and matured eukaryotic
sequences. Initially targeted at gene prediction in
bacterial GC rich genomes, the gene model used in
FrameD also allows to predict genes in the presence
of frameshifts and partially undetermined sequences
which makes it also very suitable for gene prediction
and frameshift correction in unfinished sequences
such as EST and EST cluster sequences. Like recent
eukaryotic gene prediction programs, FrameD also
includes the ability to take into account protein
similarity information both in its prediction and its
graphical output. Its performances are evaluated on
different bacterial genomes.

The web site (http://genopole.toulouse.inra.fr/
bioinfo/FrameD/FD) allows direct prediction,
sequence correction and translation and the ability
to learn new models for new organisms.

INTRODUCTION

FrameD has been initially designed to predict genes on
prokaryotic sequences that may contain frameshifts. It has been
used in the framework of two GC-rich genome annotation
projects (1,2). One specific property of GC-rich genomes is
that most coding regions naturally induce a mirror open
reading frame on the reverse strand which can induce
overprediction of many overlapping genes. FrameD is based
on a graph model where gene overlapping is specifically
modeled which leads to a good specificity of its predictions.
This model includes RBS finding, probabilistic coding models
and possible protein similarities. Even if it was initially
developed for GC-rich genomes, FrameD also applies to other
genomes, with good performances (see Results).

FrameD specificity lies in its ability to deal with frameshifts
and sequences containing arbitrary IUPAC base symbols. This
makes it possible to predict and correct frameshifts not only in

bacterial sequences but also in matured transcribed eukaryotic
sequences such as EST, EST clusters or cDNA. FrameD has
been effectively used to predict coding regions in EST clusters
in (3).

Beyond the ability to perform gene and frameshift predic-
tion, the FrameD web site offers the ability to directly build
models for new organisms. A rich graphical interface allows
the user not only to visualize the predicted genes and
frameshifts but also all the information used to perform the
prediction (coding score, RBS strength, protein similarities,
GC% and GC3% local statistics).

MATERIAL AND METHODS

To perform gene prediction, FrameD relies on a weighted
directed acyclic graph (DAG) designed in such a way that
every path in the graph represents a possible gene prediction
(consistent with START and STOP codons use, including
possible partial genes on the sequence border). The graph in
Figure 1 is an example of the graph used for a short sequence.
It has seven parallel tracks that respectively correspond, from
top to bottom, to the assumption that a region is coding in
frame 3, 2, 1, non-coding, or coding in frame �1, �2 and �3.
Each nucleotide is represented by seven edges in the graph,
one on each track, represented below each nucleotide in the
figure. These are called ‘content’ edges. Other edges connect
vertices from the nucleotide at position i to the nucleotide at
position i þ 1. These are called ‘signal’ edges: the occurrence
of a possible translation START in a given frame p induces the
creation of a signal edge that allows to go from the non-coding
track to the track coding in frame p. Conversely, a STOP codon
in frame p induces the creation of a signal edge that goes from
the frame p coding track to the non-coding track and also
prevents any path ( prediction) from crossing a STOP codon by
removing the corresponding horizontal signal edge (Fig. 1).
When dealing with unfinished sequences, degenerated START
and STOP codons are also detected.

A source-sink path in this graph represents a possible
prediction. However, genes may not overlap. To allow gene
overlapping, frequent in bacterial genomes, we further added
six so-called ‘bi-coding’ tracks to the graph that represent
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regions coding in two different frames on the same strand.
Each occurrence of a START codon (resp. STOP) is
represented by an additional edge that allows to reach (resp.
quit) the corresponding ‘bi-coding’ track.

Finally, to represent possible frameshifts, additional edges
have been added that allow, for example, to reach a given
coding track from another one (for a deletion, the edge jumps
over one nucleotide).

In this final graph, every path from the source to the sink
represents a possible prediction. In order to choose a prediction
among the exponential number of paths in the graph, each edge
receives a weight. If we interpret these weights as the opposite
of the logarithm of the probabilities that the edge can be used
in a path, a shortest path in this weighted graph represents a
most reliable path (prediction).

Weighting the graph

The probability associated with content edges is defined by the
emission probability of the corresponding nucleotide in a
track-specific interpolated Markov model (IMM) (4). Each
track is associated with a specific model (0th order Markov
model for the non-coding track, three-periodic IMM for coding
tracks and a mixture of two coding models for bi-coding
tracks). In order to deal with noisy sequences, basic IMMs
have been extended to deal with arbitrary sequences over the
alphabet A,T,G,C,N and are therefore able to provide the
probability of emission of a given nucleotide A,T,G,C or N
after any kmer that possibly contains Ns. The basic statistics
needed for the estimation of an IMM are the number of
occurrences of arbitrary k þ 1mers (k ranging from 0 to 8 in
practice) in a learning set of sequences over the alphabet
A,T,G,C. For k þ 1mers that do not contain a degenerated N

this count is obtained by enumeration of occurrences in the
learning set. For k þ 1mers containing Ns, the number of
occurrences can be computed recursively from counts
associated with k þ 1mers containing one less N.

For signal edges, we consider that only one of all the signal
edges that leave a vertex may be used, acting as a switch
between tracks. The following weights are used:

� A constant STOP penalty is associated with each signal edge
representing a STOP occurrence.

� A constant frameshift penalty is associated with each signal
edge representing a frameshift (deletion and insertion are
considered as equally probable).

� For START codons, a RBS hybridization energy E is
estimated from an approximate thermodynamic model using
elementary energies (5) and a free end-gap like alignment
algorithm between an RBS motif and a short region before
each START codon. By analogy with thermodynamics, the
probability that the START is used is then defined as a/(1þ
b exp(E)) where a and b are constant to be estimated.

� The remaining horizontal signal edge is weighted by the
logarithm of 1 minus the probability of all other signals that
occur at the same position (if any, frameshift probability
being considered as negligible).

When protein similarities are available, the coding score of
each nucleotide is enhanced in the corresponding frame using
a simple scheme. We define the mean (bit) score S of a hit as
the (bit) score divided by the hit length. For each nucleotide
in the sequence, the strongest mean (bit) score is used to
enhance the corresponding content edge using a pseudo-count
approach: if p is the original probability of the content edge for
the nucleotide, the updated probability is p0 ¼ ( p þ gS)/
(1 þ gS) where g is a user-defined parameter (BlastX hits
confidence). When g is not null, the similarity information can
also enhance frameshift prediction (see 6 for a related
similarity-based approach to frameshift detection).

Gene and frameshift prediction

Once all parameters are fixed, the problem of finding a most
reliable path in the previous directed graph can be solved using
any DAG shortest path algorithm. This is done in linear time
and space in the sequence length.

This algorithm will only compute one optimal prediction. In
practice, it may be the case that several sub-optimal predictions
differ significantly from the optimal one. This may be the case
for the choice of a START codon or the use (or not) of a

Figure 1. A simplified view of the directed acyclic graph built for analyzing the sequence CATGAGTACNGA. This view ignores the additional complexity induced
by gene overlapping regions and frameshift modeling. The occurrence of a START codon at position 2 to 4 induces a ‘signal’ edge that goes from the non-coding
track to the þ2 coding track. Similarly, the occurrence of the NGA codon at the end induces a STOP signal edge. Edge weights sources are indicated using dotted
arrows.
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frameshift. To make such uncertainty in the optimal prediction
visible, FrameD computes for every signal edge in the graph
the probability that this edge is used over all possible
predictions. This information can be interpreted as a ‘mean’
prediction that summarizes all possible predictions, taking into
account their respective reliability. This computation is done
using a forward-backward like dynamic programming algo-
rithm, in linear time and space.

Fixing parameter values

In order to compute all edge weights, FrameD requires the
value of several parameters.

The frameshift penalty being set to a very large value, the
STOP penalty, a and b parameters have been estimated by
optimizing the quality of the prediction on curated annotated
sequences. The quality of the prediction was measured at the
nucleotide level and at the gene level by counting correctly
predicted STOP and START codons. For a given type of
predicted item, sensitivity (Sn) is defined as the ratio of the
number of correctly predicted items to the number of annotated
items; specificity (Sp) as the ratio of the number of correctly
predicted items to the number of predicted items.

The criteria optimized to estimate the parameters is the
sum of these six ratios. It has been optimized using a
dedicated genetic algorithm on a region of the GC-rich
Sinorhizobium meliloti genome. The parameters are quite
robust and provide good prediction performances on genomes
with rich and medium GC content (see Results). For low GC%,
another parameter set has been tuned using Rickettsia
prowazekii sequences.

WEB SITE DESCRIPTION

FrameD is implemented in Cþþ and is available as a
standalone program, downloadable from FrameD web site.
The main web page allows users to specify the sequence and
parameters. A precise description of the different sections in
this page is available online.

The first section (Sequence) allows the user to enter a DNA
sequence and either to select a probabilistic model estimated
on existing bacterial/eukaryotic genomes or to build a new
gene model (see below).

The ‘FrameD behavior control’ section allows to modify the
default parameters used to perform gene and frameshift
prediction. For bacterial sequence analysis, the user must
select the GC% class (high/medium or low) for the sequence
analyzed. For high/medium GC%, the internal a and b
parameters used are close to the parameters obtained after
optimization on S.meliloti genome. For low GC%, they have
been tuned for the R.prowazekii genome. For intronless
eukaryotic sequence analysis, the user must select the
‘Matured eukaryotic sequences analysis’ option which restrict
start codons to ATG, deactivates the RBS search and changes
a priori probabilities of being coding or not. Most importantly,
the user must select a frameshift penalty that reflects the
sequence quality. Other functions are available such as the
translation of the predicted genes or the correction of predicted
frameshifts.

The ‘Protein similarities’ section allows the user to specify
existing similarities between the sequence and protein
sequences. These similarities should be provided using the
so-called ‘tabulated format’ available in recent versions of
the NCBI-BlastX (7) program (-m8 flag in release 2.2.5). The
choice of the set of similarities that are submitted to FrameD is

Figure 2. An example of the graphical output of FrameD. The sequence is on the x-axis. The y-axis corresponds to possible predictions. From top to bottom: frame 3, 2,
1 coding tracks, intergenic track (IG) and frame �1, �2,�3 coding tracks. In-frame START codons are represented as blue vertical lines. The longer the line, the better
a possible RBS. In-frame STOP codons are represented as small red vertical lines (grey if the STOP codon is degenerated). Thin black lines represent the smoothed
normalized coding/non coding score. Finally, BlastX hits are represented as magenta blocks. The prediction itself is visible as red blocks and the ‘mean’ prediction as a
thin grey line. The thin magenta line represents frameshift expectation. The sequence here has been specifically modified for the example: the ATG start codon of the
gene, at position 148 has been replaced by an ANG and 15 nucleotides from position 915 to 929 have been replaced by 14Ns. Using the ‘low quality sequence’ frame-
shift penalty, FrameD correctly predicts a gene that starts at position 148 and a frameshift between positions 911 and 912. The frameshift expectation and the ‘mean’
prediction make clear the uncertainties on the frameshift and START positions.
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entirely left to the user, including the choice of the expectation
threshold and the protein databases used.

The ‘Output parameter’ section allows to control the layout
of the prediction (textual, graphical or both, image size . . . ).
All parameters are detailed in the online help.

The results of FrameD analysis include a list of predicted
CDS and frameshifts in text format followed by a graphical
output that summarizes the predicted genes, frameshifts and all
the information used to perform the prediction. Links to
translated and frameshift corrected sequences are also available
if requested.

FrameD graphical output is illustrated in Figure 2 where it is
applied to a genomic sequence of Ralstonia solanacearum
modified to highlight FrameD features.

Another web page allows the user to build probabilistic
models from user provided coding sequences. Since FrameD
uses extended interpolated Markov models for building
probabilistic models of coding sequences, the amount of
sequence provided is not as crucial as in classical Markov
models which may be prone to over-fitting. Five to ten
kilobases of CDS provide a reasonable start but the more the
better. Once the model is built, it is made available in the
available organisms list on the main web page. A maximum of
30 such user models are stored on the site for a maximum
period of 15 days.

RESULTS

We have applied FrameD and GeneMarkS (8) on six different
complete genomes chosen to cover several criteria: GC percent,
taxonomy, frequency of laterally transfered genes, pathogeni-
city. For FrameD, when it was possible, the probabilistic model
was build from sequences available on SWISS-PROT before
the release of the complete genome. For Pyrococcus abyssi,
very few such sequences existed and we have used sequences
with strong similarities with known proteins when the genome
was annotated (high confidence level in the annotation). For
R.solanacearum, the model used was build during the
annotation of the genome. GeneMarkS builds its own models
on-the-fly. Each software is used with its default parameters.
No similarity information is used by FrameD. An annotated
gene is considered as correctly predicted when it is predicted
with the correct STOP codon.

Table 1 reports the gene level sensitivity and specificity
results of this comparison. FrameD performances are compar-
able to the performances of GeneMarkS, with a tendency to get
better sensitivity at the cost a lower specificity for genomes
with a GC% above 50. We also measured the qualities of
START predictions (not reported here). GeneMarkS and
FrameD give very similar results but the reliability of the
START position in existing annotations is probably not
sufficient to conclude. Compared to GeneMarkS, which
requires at least 100 kb of sequence to work, FrameD is able
to analyze short sequences and offer the extra ability to
reconstruct genes in the presence of frameshifts and ambiguous
nucleotide symbols and therefore to process EST or EST
clusters.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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Table 1. Comparison of FrameD and GeneMarkS

Species GC% Type Size (Mb) FrameD Sn/Sp GeneMarkS Sn/Sp

Bacillus subtilis 43.5 gramþ 4.2 94.88/92.86 96.68/93.95
Pyrococcus abyssi 44.7 archæ 1.8 97.85/91.47 98.58/91.57
Escherichia coli 50.8 gram� 4.6 94.12/95.57 92.10/97.12
Neisseiria meningitidis 51.8 gram� 2.2 87.22/89.54 82.26/95.67
Pseudomonas aeruginosa 66.6 gram� 6.3 97.12/96.05 97.11/96.86
Ralstonia solanacearum 66.9 gram� 3.7 þ 2.1 97.85/92.66 91.13/98.04

For each genome, we report its GC%, the type of the organism and the genome size. For each software, we give the gene level sensitivity (percentage of
annotated genes among predicted genes) and specificity (percentage of predicted genes among annotated genes).

Nucleic Acids Research, 2003, Vol. 31, No. 13 3741


