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The evolution of density-dependent dispersal
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Despite a large body of empirical evidence suggesting that the dispersal rates of many species depend on
population density, most metapopulation models assume a density-independent rate of dispersal.
Similarly, studies investigating the evolution of dispersal have concentrated almost exclusively on density-
independent rates of dispersal. We develop a model that allows density-dependent dispersal strategies to
evolve. Our results demonstrate that a density-dependent dispersal strategy almost always evolves and
that the form of the relationship depends on reproductive rate, type of competition, size of subpopulation
equilibrium densities and cost of dispersal. We suggest that future metapopulation models should account

for density-dependent dispersal.
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1. INTRODUCTION

Understanding the conditions under which different
dispersal strategies evolve has been of interest to evolu-
tionary ecologists for over 20 years (see, for example,
Hamilton & May 1977; Comins 1982; Olivieri et al. 1995;
Doncaster et al. 1997; Travis & Dytham 1999; Dieckmann
et al. 1999). Today, even more than before, an appreciation
of the forces driving different dispersal strategies is impor-
tant. We live in a world where almost every landscape is
becoming increasingly fragmented, disturbed and
degraded. More and more species are being forced to
adapt to a life in a ‘metapopulation’ and a recurrent
question in metapopulation ecology relates to the likely
persistence of populations living in fragmented, patchy
landscapes. Dispersal is a key element of an organism’s
life history and the form of dispersal exhibited by an
organism influences its performance in a particular land-
scape (Neuhauser 1998). Almost all models investigating
the consequences of dispersal on metapopulation
dynamics have assumed dispersal to be independent of
population density (e.g. Gonzalez-Andujar & Perry 1993;
Hassell et al. 1995; Lindenmayer & Possingham 1996;
Rohani et al. 1996).

A large body of empirical work suggests that for many
species dispersal rate depends on local population size. A
positive relationship between population density and the
rate of dispersal has been observed in spiders (Duffey
1998), insects (Berger 1992; Denno & Peterson 1995;
Fonseca & Hart 1996; Rhainds et al. 1997, 1998),
echinoderms (Rosenberg et al. 1997), mammals (e.g.
Berger 1987, Krebs 1992; Sinclair 1992), and birds (e.g.
Watson et al. 1984; Nilsson 1989; Veit & Lewis 1996).
Negative density-dependent effects on dispersal have also
been observed, mainly for mammals (e.g. Wolft 1997
Diffendorfer 1998; Diffendorfer et al. 1999).
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Despite this wealth of empirical evidence suggesting
that density-dependent dispersal is a frequently exhibited
strategy, relatively few metapopulation models incorpo-
rate it (but see Gsilling et al. 1994; Ruxton 1996; Saether et
al. 1999). In one recent exception, Saether et al. (1999)
showed that different density-dependent strategies influ-
ence both the establishment and the rescue effects in the
local dynamics of metapopulations, and thus alter the likeli-
hood of metapopulation extinction. Exactly the same
assumption of density-independent dispersal has been
made in almost all models investigating the evolution of
dispersal (e.g. Comins et al. 1980; Travis & Dytham 1998).
Two recent exceptions to this trend are provided by the
work of Janost & Scheuring (1997), who identified
evolutionarily optimal thresholds for dispersal in a meta-
population model, and Ezoe & Iwasa (1997) who used a
patch occupancy model to investigate the evolutionarily
stable strategy proportion of dispersing offspring under
different environmental conditions.

In this paper we develop a model that allows linear
density-dependent dispersal strategies to evolve. We inves-
tigate how changes to the reproductive rate, the type of
competition and subpopulation equilibrium density affect
the form of dispersal that is selected.

2. THE MODEL

The model developed incorporates a framework similar
to that of models we have used previously to investigate
the evolution of dispersal (e.g. Travis & Dytham 1998;
1999). For simplicity, we consider an asexual species.
Genotypes differ only in the dispersal strategy that they
exhibit: there is no trade-off between dispersal ability
and competitive ability. We do consider a cost of leaving
the natal site in the form of a probability of dying while
dispersing, but reproductive output is otherwise un-
affected by the propensity to disperse. The dynamics
occur on an n X n square lattice with periodic boundaries,
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where each site on the lattice can support a subpopulation.
All subpopulations have the same equilibrium density.
The order of events for individuals in each generation is
as follows: birth; local competition; dispersal (or not);
reproduction; death.

The most important advance we introduce is the consid-
eration of density-dependent dispersal strategies. Whereas
earlier work considered only density-independent rates of
dispersal, we now allow for the evolution of any linear
density-dependent strategy described by an intercept and
slope. The propensity of an individual to disperse depends
both on its genotype and the density of its natal patch
(1.e. probability of dispersal changes linearly with local
patch density).

(a) Within-subpopulation dynamics

Within-subpopulation dynamics are described by an
individual-based formulation based on Hassell & Comins
(1976). Each individual present in the population at time ¢
gives birth to a number of offspring taken at random
from a Poisson distribution with mean p defined as

_ (N
/‘L_<‘Nt)7

where
Nipt = AN,(1 4 aN) ™,

and / is the rate of increase, a relates to patch quality and
b describes the type of competition operating. When
b =1 the competition is ‘contest’ and as b increases, the
nature of the competition becomes increasingly ‘scramble’.
The parameter a is calculated from the following expres-
sion:

a= ("= 1N,

where V" is the subpopulation equilibrium density. Using
a number drawn from a Poisson distribution to determine
how many offspring an adult has causes the model to
exhibit demographic stochasticity.

All offspring inherit their dispersal genotype from their
parent, but with small independent probabilities, m; and
,, of mutation to the intercept and the slope of the
density-dependent dispersal strategy respectively. The
distance of a mutation away from the parental strategy is
given by d; and d,, respectively. For all the realizations of
the model which we describe in this paper,

m

m;

=m, =0.01, and d, = d, = R/5,

where R is a random deviate drawn from the rectangular
probability density function with limits —1 and 1.

(b) Dispersal

Dispersal occurs 1immediately after the within-
population dynamics. One feature of our previous models
(Travis & Dytham 1998, 1999) was that character space
was discrete: a finite number of different dispersal rates
could evolve. In the model presented here, character
space (the number of possible phenotypes) 1s continuous
and individuals can disperse according to any linear,
density-dependent dispersal strategy.
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Figure 1. A typical density-dependent dispersal strategy for a
system comprising large subpopulations (V" =100, b=1,
¢=0.05, A=35).

The probability (P) that any individual will disperse is
calculated as follows:

i
P=1I+S
- <N)

where 7/ and S are, respectively, the intercept and slope of
the density-dependent dispersal strategy being played by
the individual. A positive slope indicates that propensity
to disperse increases with density. A negative intercept
and positive slope indicates that there is no dispersal at
lower densities. Dispersal occurs with equal probability to
the eight patches that border on an individual’s natal
subpopulation. When negative values of P are obtained,
the probability of dispersing is interpreted as zero. We
include costs of dispersal as follows: a dispersing indivi-
dual will fail to reach its destination with a probability c.

In this paper we investigate the effect of varying the
reproductive rate, the subpopulation equilibrium densi-
ties, the type of competition and the cost of dispersal, on
the form of dispersal that evolves. The model is initialized
by randomly placing 1000 individuals onto the lattice:
each individual has /=0 and $=0 (1.e. no dispersal at
any density), and has an equal chance of being in each
subpopulation. Each realization of the model runs for
5000 generations, to obtain our values for the intercept
and slope we take the mean values of the final population.
The results for any particular combination of parameter
values use an average taken from ten realizations of the
model.

3. RESULTS

Density-dependent dispersal almost always evolved for
the conditions we used in our model (figure 1). The only
exception to this was for the rather unrealistic case where
there is no cost associated with dispersal ¢=0). When no
explicit cost of dispersal 1s incorporated, the strategy that
evolves under a wide range of parameter values is one
where individuals always disperse (i.e. intercept =1.0 and
slope > 0.0). This 1s most often observed when the repro-
ductive rate is high and the type of competition is
‘scramble’ (b =10).

There is a big difference between the results obtained
for large and small subpopulation equilibrium densities.
When subpopulation equilibrium densities are high
(M>=100) the relationship between dispersal prob-
ability and population density is robust to changes in
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Table 1. Mean density-dependent dispersal strategies for
metapopulations with large local populations

(N*=100, ¢=0.01. When subpopulation size is relatively
large the strategy which evolves is largely insensitive to the
values of b and 4.)

type of competition, b

reproductive
rate A 1 2 10
2 intercept -1.34¢ -1.19 —-1.37
slope 1.20 1.05 1.24
5 intercept -1.30 -1.24 —1.25
slope 1.15 1.12 1.17
10 intercept -1.17 =127 —1.18
slope 1.03 1.15 1.07

Table 2. Mean dispersal strategies in metapopulations with
small local populations for three types of competition and three
reproductive rates

(N*=25, ¢=0.01. The table clearly shows a reduction in the
value of the intercept for both increasing 4 and increasing 4.)

type of competition, &

reproductive
rate A 1 2 10
2 intercept -0.85 —-0.80 —0.89
slope 0.91 0.85 0.93
5 intercept —-0.69 —0.58 —0.41
slope 0.79 0.73 0.59
10 intercept -0.70 —-0.44 —0.27
slope 0.80 0.62 0.49
reproductive rate and the type of competition (see

table 1). For a wide range of parameter values the strategy
that evolves is one where individuals never disperse
until the population they are in reaches the equilibrium
density, and always disperse when the population density
is higher than twice the equilibrium density. For lower
subpopulation equilibrium densities (N*=5, 10 or 25) the
relationship is more complex (see table 2). For higher
values of the reproductive rate, 4, the intercept of the rela-
tionship increases and the slope decreases slightly (see
figure 2a). At higher rates of reproduction dispersal starts
to occur at lower densities than for lower values of 4. This
effect is strongest for ‘scramble’ competition (higher values
of b). As the value of 4 is raised, the same effect is seen,
with an increase in the values of the intercept and a small
decrease in the slope (see figure 25).

The form of dispersal that evolves is highly dependent
upon the cost of dispersal (see figure 2¢). As the cost asso-
ciated with dispersal increases, lower intercepts are
selected for. However, there is no such obvious change in
the value of the slope that evolves. This result is true for
both small and large subpopulations.

Figure 3 shows three trajectories that describe how the
slope and intercept evolve through the phase space to an
attractor. If both slope and intercept start with values of
zero, there is an initial increase in both. This is because
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Figure 2. A comparison of the relationships obtained for
different parameter values. Only one parameter is varied in
each graph. (a) The reproductive rate is varied: A =2 (dotted
line); A=5 (solid line); A= 10 (dashed line), but all other
parameters are kept constant (¢=0.1, =10, N*=25).

(b) The form of competition is varied: b =1 (dotted line);
b=2 (solid line); b =10 (dashed line), other parameters are
constant (¢=0.1,1=10, N*=10). (¢) Cost of dispersal varied:
no cost (dotted line); ¢=0.1 (solid line); ¢ =0.5 (dashed line),
other parameters constant (h=1,1=5, N*=10). When there
is no cost of dispersal all individuals disperse at all densities.

some dispersal is better than none and can be achieved
with slope or intercept above zero. After a period, the
strategy becomes more refined and the trajectory reverses
its direction in the intercept axis and tracks back towards,
and eventually into, an area of negative intercepts (i.e. no
dispersal at low densities). The slope continues to increase
until eventually a stable point is reached with a negative
intercept and a positive slope.

4. DISCUSSION

The results show clearly that density-dependent
dispersal strategies should evolve under almost all condi-
tions. This result met with our expectations. Individuals
in patches below their equilibrium densities are likely to
be more successful if they produce offspring that remain
in their natal patch. Other, nearby patches may have
population densities greater than those in the natal patch
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Figure 3. The trajectories taken by the mean intercept and
mean slope of a population over 5000 generations from three
different initial values for slope (S) and intercept (). All
trajectories are generated with the same parameter values:

4=5,¢=0.05,b=1 and N*=100.

and the expected reproductive output of offspring
moving to those patches will be lower than if they
remain at home. Conversely, individuals in patches well
above equilibrium density will do best by producing
mainly dispersing offspring. This is for two reasons. By
producing some dispersing offspring kin competition in
the natal patch is reduced, and nearby patches may have
lower densities so the expected reproductive success of
individuals moving to those patches will be higher than
for individuals that do not disperse. Lemel et al. (1997)
suggest that an evolutionarily stable dispersal rate should
permit the spatial homogenization of fitnesses. The
density-dependent strategy that evolves in this model
appears to be doing likewise: after dispersal the differ-
ence in subpopulation density between patches is much
reduced. The evolution of the dispersal strategy can be
seen in figure 3. For example, from a starting point
where §=0 and /=0, both dispersal variables increase,
as any dispersal is better than none. However, as more
individuals disperse the strategy becomes more finely
tuned, and the intercept reverses its direction and
becomes negative so that dispersal occurs only after a
threshold density, around the subpopulation equilibrium
density, has been reached.

The cost involved in dispersing is critical in deter-
mining the relationship between population density and
probability of dispersal. For almost all species it would
seem likely that there is some cost to dispersal, whether it
is due to a risk of mortality while moving, or the risk of
not finding a suitable destination site, or through costs
associated with developing wings or seeds that disperse
better. With density-independent dispersal it has been
found that incorporating higher costs of dispersal leads to
a reduction in propensity to disperse (Travis & Dytham
1998). We wanted to ascertain whether the slope, the
intercept, or both, are affected by increased dispersal
costs for the case of density-dependent dispersal. Our
results suggest that whenever dispersal has a cost then we
should expect the frequency at which it occurs to vary
with population density. As the cost of dispersing
increases, the form of the density-dependent relationship
changes. With a low cost, the effects of density are rela-
tively weak; an individual has a good chance of surviving
if it disperses. As the cost of dispersal increases however,
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the density at which dispersal 1s first apparent also
increases; unless at very high densities it pays an indivi-
dual to stay where it is and compete for whatever
resources are available (figure 2¢). From our results, we
predict that the strongest forms of density-dependent
dispersal should be observed in species where the cost of
dispersal is greatest.

It is interesting that there is a difference in the results
for small and large subpopulations. For a subpopulation
equilibrium density of 100 the form of dispersal to evolve
is largely insensitive to reproductive rate or the form of
competition. This is not the case for smaller subpopula-
tion equilibrium densitites. In smaller subpopulations
demographic stochasticity is far more important. Here,
interactions between demographic stochasticity, the
reproductive rate and the type of competition determine
the form of the relationship that evolves. For a population
size near 100 the many stochastic events affecting each
individual will average out over the population as a
whole, such that the population’s behaviour approaches
that described by a set of deterministic equations. At
these higher densities it appears that the cost involved in
dispersing is the dominant factor (of those we included)
determining the relationship between population density
and probability of dispersal. We expect that deterministic
models investigating the evolution of linear density-
dependent dispersal strategies would also reach this
conclusion.

For smaller subpopulation equilibrium densities the
form of dispersal depends on both the reproductive rate
and the type of competition. As the type of competition
becomes increasingly ‘scramble’, there is a higher prob-
ability of dispersal even at low population densities. As b
1s increased, the probability of patches becoming empty
increases owing to the less stable population dynamics
generated by the ‘scramble’ competition. This greatly
increases the benefits of dispersing: dispersers are now far
more likely to colonize empty sites, experience less
competition and consequently have higher expected
reproductive success. With higher values of 4 it becomes
advantageous for a small proportion of offspring to
disperse even at low population densities. Holt & McPeek
(1996) suggested that chaotic dynamics should favour
higher rates of density-independent dispersal, although
other work (Travis & Dytham 1998) shows that this may
not always be the case. The main conclusion to be drawn
from this study is that where dispersal is density depen-
dent we should expect chaotic dynamics to favour
increased probabilities of dispersal at relatively low
subpopulation densities. It is less clear what happens at
higher densities, and to establish that perhaps requires a
study of the evolution of nonlinear density-dependent
relationships.

At higher reproductive rates dispersal starts to occur at
lower population densities and this effect is seen most
clearly at higher values of 4. For individuals with low
reproductive output that are in patches below equilibrium
density, there is an advantage to be gained by having
sedentary offspring. Offspring in these patches will suffer
relatively low levels of competition and by moving they
suffer costs of dispersal with limited possible gains.
However, for individuals with higher reproductive rates it
is not so straightforward. If all their offspring remain the
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patch will become crowded and kin competition will be
high. For these individuals it is better for some offspring
to disperse, simultaneously reducing the level of compe-
titon in the natal patch and increasing the chances that a
new patch may be colonized. Thus, for reasons of kin
competition, it benefits individuals with higher rates of
reproduction to start producing dispersing offspring at
lower subpopulation densities than individuals with lower
reproductive output.

In this paper the relationship between population
density and dispersal is constrained to be linear. This was
primarily chosen as it represents the simplest case,
although we believe that a linear relationship can provide
for most likely strategies. An example of density-
dependent dispersal that has a similar form to the one
shown here is that of bagworm larvae (Rhainds et al.
1997). Females of the bagworm, Metisa plana, lack wings
and disperse by ballooning, releasing a silken thread,
which is then caught on the wind. The propensity to
balloon is density dependent with a linear relationship.
At lower population densities females tend to stay on their
natal host plant. This is attributed to the fact that
M. plana 1s host specific and the chance of finding a
suitable plant is quite small given that movement is
dependent on wind conditions (Rhainds et al. 1998).
Mortality during dispersal is high but this mortality is
traded off against a reduction in fecundity due to small
size at pupation if the female remains on a densely popu-
lated host plant. Another bagworm, Otketicus kirby, has a
higher rate of dispersal at low density levels. This is
attributed to a combination of lower cost of dispersal
(lower host specificity) and higher level of competition
(Rhainds et al. 1998).

Future work should address the evolution of nonlinear
relationships. We anticipate that the main difference
would be that at population densities well above equili-
brium density, the probability of dispersing would remain
slightly below unity: a curve would have an asymptote of
unity. The same would possibly also be true at very low
population densities, with a curve having an asymptote of
zero. Johst & Brandl (1997) modelled a form of nonlinear
density-dependent dispersal and have shown that under
certain circumstances it is favoured over the linear form.
However, they only modelled two nonlinear dispersal
strategies with no evolution, and it remains unclear what
forms of nonlinear density-dependent dispersal are
favoured under differing environmental and demographic
conditions.

Positive density-dependent dispersal is often easy to
explain and usually relates to competition for food or
other types of resources, or interference. However, there
are also well-documented cases of species showing
dispersal occurring more frequently at low population
densities (e.g. Birkhead 1977; Lamont et al. 1993; Herzig
1995; Kuussaari et al. 1998). Negative density-dependent
dispersal may occur as a result of the Allee effect (Allee
1931). Recruitment to a population may be low owing to
the problems in finding a mate, to social effects such as
cooperation or facilitation. For example, female golden-
rod beetles, Trirhabda virgata, disperse from host plants
with a higher frequency when there is a low density of
males, than when there is a high density, whatever the
local patch quality (Herzig 1995). Incorporating the Allee
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effect into models of the evolution of dispersal is outside
the scope of this paper, but remains an interesting area
for future study.
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