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During the evolution of life, there have been several transitions in which individuals began to cooperate,
forming higher levels of organization, and sometimes losing their independent reproductive identity. For
example, multicellularity and insect societies evolved independently multiple times. Several factors that
confer evolutionary advantages on higher levels of organization have been proposed. In this paper we
highlight one additional factor: the sharing of information between individuals. Information sharing is
not subject to the intrinsic conservation laws that characterize the sharing of physical resources. A simple
model will illustrate how information sharing can result in aggregates in which the individuals both
receive more information about their environment and pay less for it. This may have played a role in the
evolution of higher levels of organization.
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1. INTRODUCTION

The importance of sharing information about the environ-
ment has been noted for many biological systems (Shapiro
& Dworkin 1997; Wilson 1971; Rasa 1985; Losick & Kaiser
1997). For instance, myxobacteria have adopted multi-
cellularity as their strategy for survival. Before aggrega-
tion individual bacteria measure the state of their local
environment. An interactive signalling process involving
100 000 cells ensues, enabling the cells to determine more
reliably whether a nutrient shortage is local or whether
their nutrient supply approaches global exhaustion. After
determining that their available food supply has been
exhausted they aggregate to construct fruiting bodies
(Kaiser 1993, 1999). Similarly, an ant colony can respond
e¤ciently to information about its environment acquired
by many individual ants (Adler & Gordon1992; Lachmann
& Sella 1995; Theraulaz et al. 1998). The colony’s response
will be expressed in terms of the allocation of labour
(Wilson 1971), where the large number of ants enables a
concurrent operation that increases reliability against
environmental contingencies (Oster & Wilson1978).

In this paper we use the term `information’ in a very
simple way: environmental cues carry information to
which organisms may react in order to adapt to their
environment. We will say that one individual has more
information than another if it uses more identical error-
prone measurements than the other. We will say
information is shared in an aggregate when individuals
use the outcomes of measurements performed by other
individuals in the aggregate.

Information sharing di¡ers qualitatively from the
sharing of a physical resource. When an organism shares
information about the environment with others, there
may be no immediate cost imposed, no intrinsic loss. In a
group of dwarf mongooses, one individual acts as sentry
while others forage. A solitary dwarf mongoose would
have to invest most of its time looking for predators, and
would not survive (Rasa 1985). Assuming that the

members of a band eventually have the same information
as a solitary dwarf mongoose, the cost of this information
(in this case the loss of foraging time) will be a fraction
(one divided by the number of band members) of the cost
for the solitary individual. However, when one organism
shares food with another it loses exactly the amount of
food it gives away. This kind of conservation is intrinsic to
the sharing of a physical and/or energetic resource. This
distinction, between a physical resource and information,
is analogous to the distinction between private and public
goods in the economics literature (Taylor 1995).

2. TWO SIMPLE MODELS

To illustrate the e¡ects of information sharing we study
several versions of a very simple model. The dynamics
occur in discrete time and share the following features.

(i) Individuals live in an environment that switches
between two states E1 and E2. The dynamics of
environmental states are described by a Markov
process, with switching probability ¸ per time-step.

(ii) Individuals perceive their environment through
error-prone measurements. The probability of a
measurement yielding the correct state of the environ-
ment is 1 ¡ e, whereas the probability of it yielding
the wrong state is e.We call e the error probability, and
assume that e5 0:5. An individual determines its
phenotype based on the last M measurements, where
M is a parameter of the model called memory size.

(iii) At each time-step individuals can assume one of two
possible phenotypes ©1 or ©2. It is assumed that ©1

is the `correct’ phenotype for an environment in state
E1, and ©2 for E2.

(iv) A generation consists of Tg time-steps. An indivi-
dual’s relative ¢tness is the fraction of time-steps at
which it had the c̀orrect’ phenotype during a genera-
tion. The time-scales are set so that Tg ¾ Te ¾ 1,
where Te ˆ 1=¸ is the average time during which
the environment remains ¢xed. This relationship
enables an individual to infer the state of its environ-
ment, and subsequently ¢tness becomes a measure of
an individual’s inference ability.
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When nothing keeps an individual from performing
many measurements (measurements are cheap, quick and
independent of one another) then individuals will make
enough measurements to cancel the measurement error.
This paper, however, will examine cases in which
measurement rate by an individual is limited. In the ¢rst
version of the model, individuals are constrained to one
measurement per time-step where a measurement does
not entail any ¢tness cost. In the second version of the
model an individual is free to perform many measure-
ments per time-step under the constraint that each entails
an additive ¢tness cost q.

Under these assumptions, what is the optimal strategy
for the choice of phenotype? Figure 1 shows a graph of
the best ¢tness possible for di¡erent values of M, when
the error rate e is 0:4. When only the latest measurement
can be used, i.e. M ˆ 1, the optimal strategy is to choose
©1 when the measurement result was E1 and choose ©2

otherwise. This strategy will yield an average ¢tness of
(1 ¡ e). A method for obtaining the optimal solution for
M4 1 is described in Appendix A. As M increases the
individual can better assess the state of the environment
and so its attained ¢tness increases. For large values of M
the ¢tness asymptotes and does not reach unity, because
older measurements become less relevant to the current
state of the environment.

We now add an additional assumption:

(v) Within an aggregate consisting of N individuals, each
individual still measures the environment once per
time-step, but this measurement together with the rest
of the last M measurements are available to everyone.

Figure 1 shows the average ¢tness of the optimal
strategy for a few values of aggregate size N and memory
size M, calculated according to the method described in
Appendix A. As N is increased, each individual can attain
a higher ¢tness, in some cases greater than the ¢tness of a
single individual with in¢nite memory. When the number
of individuals in the aggregate increases, more recent
information becomes available to each, and the ¢tness

increases. This model illustrates, by way of its construc-
tion, the ¢rst advantageous e¡ect of information sharing:
in an information sharing aggregate each individual has
access to more information than it will have in isolation.

Before we examine the second model, we should like to
address concerns a reader might have as to the applic-
ability of the ¢rst model to biological systems. First
consider the memory size. What happens if, as is often the
case in nature, memory size entails a ¢tness cost? In this
case ¢tness will not asymptote with memory size, but
instead reach a maximum at a certain size. Increased cost
of memory increases the bene¢t of sharing in an aggre-
gate, because sharing provides an alternative way for the
individual to respond to many independent measurements
of the environment. A second concern is errors in trans-
mission. Just as there is an error in the measurement of
the environment (e), there could be an error in the trans-
mission of the measurement between individuals (eS). In
the analysis in Appendix A we also examine the case with
transmission errors. Sharing might not be bene¢cial when
eS is of the same size or bigger than e. Because signals
encode a message, but are not necessarily physically
related to it, there is no need to assume that e and eS are
physically related to the message which they encode:
signals about an approaching predator do not need to be
harder to hear when the predator is harder to see.
Sharing will be worthwhile when e is su¤ciently bigger
than eS, and we examine those cases.

Now we turn to the second model. Here we consider
the e¡ects of information sharing when measurements are
costly and the rate of measurement is a variable included
in the individual’s strategy.

If all individuals in the aggregate behave alike, an indivi-
dual in an information sharing aggregate that performs n
measurements per time-step will pay a ¢tness cost of qn, and
will have information from nN measurements per time-step.
The optimal choice of n can be found using the following
reasoning. Let g(x) express the ¢tness gained by an indivi-
dual having x measurements per time-step, either by
measuring or from transmission from others.We assume that
g(x) is a monotonically increasing function of x. The ¢tness
of a solitary individual that performs n measurements per
time-step is g(n) ¡ qn.This ¢tness will be maximized when

dg
dx x ˆ n

ˆ q: (1)

For N individuals in an aggregate, the ¢tness for each
individual is g(Nn) ¡ qn, and will be maximized when
(again, we take the derivative of the expression with
respect to n and equate it with zero):

dg
dx x ˆ Nn

ˆ
q
N

: (2)

Figure 2 shows the ¢tness of a single individual and of
aggregates consisting of three and ten individuals, for
di¡erent values of n, assuming in¢nite memory. Here we
assume in¢nite memory with no cost, because this is the
worst-case assumption for sharing: with increased memory
cost the bene¢ts of receiving additional measurements
from others increases. One can see in ¢gure 2 that indivi-
duals in a sharing aggregate pay less for the same amount
of information, because by sharing each individual pays for
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Figure 1. The ¢rst advantageous e¡ect of information sharing
for individuals in an aggregate: the increase in ¢tness resulting
from having more information. Fitness versus memory size for
the optimal strategy in an aggregate, with individuals
constrained to one cost-free measurement per time-step. The
error probability e is 0.4, and the rate of environmental
change ¸ is 0.05. Each aggregate contains N organisms
sharing measurements and memory of M past measurements.



fewer measurements. Each individual can therefore à¡ord’
to gather more information. Under the ¢tness maximiza-
tion premise employed above, an individual in an informa-
tion sharing aggregate experiences two advantageous
e¡ects: it has more information than a solitary individual,
and pays less for that information. As aggregate size
increases, the cost paid decreases.

The fact that information sharing is advantageous to
individuals in an aggregate does not imply that it is
evolutionarily stable. One problem that may arise is the
invasion of sel¢sh individuals that use the information
acquired by others but do not contribute to the informa-
tion pool. Sel¢sh individuals may perform less measure-
ments or abstain from sharing the information they
acquire. Consider the stability condition for a group of N
sel¢sh individuals, assuming acquired information is non-
excludable, i.e. once a measurement has been performed
its outcome is available to all (the term `non-excludable’ is
taken from work in economics; see Taylor (1995)). If
N ¡ 1 individuals perform n* measurements per time-
step, and the individual under consideration performs n
measurements per time-step, this individual’s ¢tness will
be g((N ¡ 1)n* ‡ n) ¡ qn. Taking the derivative with
respect to n and equating with zero, we see that it will be
maximized if

dg
dx x ˆ (N¡1)n* ‡ n

ˆ q: (3)

Now, consider the symmetrical equilibrium where all indi-
viduals are sel¢sh and have identical strategies, i.e. when
n* ˆ n. Substituting this into the previous equation gives

dg
dx x ˆ Nn

ˆ q: (4)

In this case each individual has Nn measurements per
time-step, and by comparing the above expression with

equation (3) we can see that it has just as much informa-
tion as the solitary individual, but pays only an Nth of
the cost. When information is excludable but its sharing
entails a cost either through competition between indivi-
duals or by way of a physical cost of producing a signal,
this model alone does not prevent cheating from invading.
The model only exempli¢es a bene¢t that can be gained if
cooperation is achieved. A model that will not enable
cheaters to invade should have other mechanisms such as
kin selection (Hamilton 1964), reciprocity (Axelrod 1984)
or population-dynamic e¡ects (Wilson 1987; Eshel 1977;
Sella & Lachmann 1999) in addition to information
sharing. In Appendix B we present a population-dynamic
model in which limited mixing enables information
sharing to prevail over sel¢shness: we assume a constant
cost s for sharing a measurement, and aggregates that
have a proportion r of genetically identical individuals
and a portion 1 ¡ r randomly chosen from the rest of the
population.We show that if

N >
s…1 ¡ r†

qr 2
, (5)

then a totally sharing strategy is an evolutionarily stable
strategy (ESS). For that strategy the number of measure-
ments is n such that g 0(Nn) ˆ (q ‡ s)=(1 ¡ r ‡ r 2N), so
that the number of measurements performed per time-
step will be higher than in the sel¢sh equilibrium
analysed above.

3. DISCUSSION

We have noted in this paper that sharing information is
di¡erent from sharing other resources. With simple
models we showed the interplay between two bene¢cial
e¡ects of sharing information: gaining ¢tness bene¢ts
from having more information, and reducing measure-
ment costs with increasing group size as a result of
sharing. We also remarked how the bene¢ts of sharing
information by themselves cannot prevent sel¢sh indivi-
duals from disrupting sharing in some cases, and that
other mechanisms probably come into play in those cases.

During the evolution of life, there have been several
transitions in which individuals began to cooperate
forming higher levels of organization, and sometimes
losing their independent reproductive identity (Bonner
1988; Maynard Smith & Szathma© ry 1995; Wilson 1971;
Buss 1987; Jablonka 1994). For example, multicellularity
and insect societies evolved independently multiple times.
How can the bene¢ts of information sharing have
in£uenced the evolution of higher levels of organization?
One may rightfully claim that an ant colony does not face
the same `problems’ and is not submitted to the same
selection pressures as a solitary insect (Lewontin 1983),
and even more so for unicellular organisms as compared
to organized multicellular organisms. We suggest informa-
tion sharing may not only have driven the evolution of
higher levels of organization, but may also have played an
important role in shaping the changing problems,
selection and organization schemes in these higher-level
individuals. For example, since the cost of acquiring
information decreases with group size, and consequently
the amount of information per individual increases as
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Figure 2. Two advantageous e¡ects of information sharing in
the costly measurement model: individuals in an aggregate
have more information than in isolation, and pay less for it.
Fitness versus measurements per time-step an individual uses.
The memory size M is assumed to be in¢nite. The cost per
measurement q is 0.01, and as in the ¢rst ¢gure e ˆ 0:4 and
¸ ˆ 0:05. The maximum ¢tness point for an individual in an
aggregate of a given size is shown. The symmetric sel¢sh
equilibria are also marked. For sel¢sh individuals the amount
of information is equal to that of a solitary individual, but
¢tness is higher because of reduced cost.



more information becomes à¡ordable’, the amount of
relevant and/or worthwhile information for an individual
also increases with the size of the collective to which it
belongs. With more information, a collective can react
adaptively to a di¡erent scale of regularity in the world.
Thus quantity of information can become quality: what
has been `noise’ for an individual can become relevant
information for a collective, and consequently the rele-
vant `problems’ and applied selection pressures are trans-
formed on the path to a higher level of organization.

We believe that the evolution of collectives and of a
higher level of organization involved many di¡erent
factors. These include the advantages associated with
specialization, division of labour and the increased ¢tness
gained by helping kin. Information sharing is another
factor, perhaps of no lesser generality or importance. It is
likely to have a¡ected the origination of collectives and
higher levels of individuality, as well as participated in
shaping their evolution. The evolution of a higher level of
individuality involved the evolution of mechanisms for
acquiring information and sharing it. The simplicity and
widespread use of alarm signals indicating the presence of
a predator or the depletion of resources, as in the two
cases described in ½ 1, shows that information sharing is
already a factor in primitive forms of social organization.
To see its e¡ect on higher forms of social organization,
one should note the cost^bene¢t trade-o¡ in such
systems: the cost paid per measurement available to the
collective decreases with group size, whereas the bene¢t
from making more measurements might level o¡. This
process can lead big collectives to dedicate only a fraction
of their individuals to information acquisitionö20
sensory cells in a multicellular organism of size 1000
might already give each individual cell 20 times the
amount of information available to a solitary cell, for
1=50 of the cost. Thus in advanced forms of social organi-
zation evolution of mechanisms for acquiring and sharing
information might guide the evolution of di¡erentiation
and specialization, as in the evolution of nerve cells and
sensory organs in multicellular organisms, or patrolling
ants in ant colonies.
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Ptak, M. Tanaka, M. W. Feldman, J. Pepper and J. Hughes for
many, many comments. This work was supported by NIH grant
GM 28016 to M.W. Feldman, and by the Santa Fe Institute.

APPENDIX A

(a) Solving for the best strategy with memory M
(i) One cell

In this appendix we give analytical solutions to two
related questions:

(i) What is the optimal strategy, in determining the
phenotype in the next time-step, given a sequence of
M past measurements ?

(ii) What is the average ¢tness, across all possible
sequences of measurements, associated with that
optimal strategy?

The state of the world and the generated measurements
are described by the hidden Markov model described in

¢gure A1. In order to answer the above questions, we
introduce the following notation:

(i) St: the state of the environment at time t, which is
either 0 or 1;

(ii) Pi, i ˆ 0,1: the equilibrium probability of the envir-
onment being in state i, which is P0 ˆ P1 ˆ 1

2;
(iii) aij, i, j ˆ 0,1: the probability per time-step that the

environment switches from state i to j, which is
aij ˆ 1 ¡ ¸ if i ˆ j and aij ˆ ¸ if i 6ˆ j ;

(iv) Ot: the result of the measurement at time t, which in
the single cell model is either 0 or 1;

(v) bi( j), i, j ˆ 0,1: the probability of getting measure-
ment outcome j when the environment is in state i.
In the single-cell model this is given by bi( j) ˆ 1 ¡ e
if i ˆ j and bi( j) ˆ e if i 6ˆ j.

Given a sequence of measurements O1 : : : OM we would
like to calculate

¬M(0) ² P(SM ˆ 0jO1 : : : OM),

¬M(1) ² P(SM ˆ 1jO1 : : : OM).
(A1)

Then, given ¬M(0) and ¬M(1), the strategy for the
optimal choice of phenotype is

© ˆ index(maxi ˆ 0,1f¬M(i)g), (A2)

and the average ¢tness associated with this strategy is

fopt(M) ˆ
X

all O1 : : : OM

P(O1 : : : OM)maxf¬M(0), ¬M(1)g:

(A3)

To calculate the average ¢tness we shall write recursions
on P(O1 : : : OM) and ¬M(0), ¬M(1).

First, we derive the initial conditions

¬1(0) ˆ P(S1 ˆ 0jO1),

ˆ
P(O1jS1 ˆ 0)P(S1 ˆ 0)

P(O1jS1 ˆ 0)P(S1 ˆ 0) ‡ P(O1jS1 ˆ 1)P(S1 ˆ 1)
,

ˆ
b0(O1)P0

b0(O1)P0 ‡ b1(O1)P1

ˆ
b0(O1)

b0(O1) ‡ b1(O1)
,

(A4)

where we have used Bayes’ law. In the same way

¬1(1) ˆ
b1(O1)

b0(O1) ‡ b1(O1)
: (A5)

1290 M. Lachmann and others On the advantages of information sharing

Proc. R. Soc. Lond. B (2000)

1 - v 

1 - e 1 - e 

1 - v 

v 

v 

ee

0 1

measurement outcome

state of environment

0 1

Figure A1. The measurement of the environment described as
a hidden Markov model. The rate of measurement errors is e,
and the rate of switching of the environment is ¸.



Finally,

P(O1) ˆ P(O1jS1 ˆ 0)P(S1 ˆ 0) ‡ P(O1jS1 ˆ 1)P(S1 ˆ 1),

(A6)

ˆ b0(O1)P0 ‡ b1(O1)P1, (A7)

ˆ
1
2

(b0(O1) ‡ b1(O1)): (A8)

The recursion for ¬t(0) can be derived as follows:

¬t ‡ 1(0) ˆ P(St ‡ 1 ˆ 0jO1 : : : Ot ‡ 1),

ˆ
P(Ot ‡ 1jSt ‡ 1 ˆ 0)P(St ‡ 1 ˆ 0jO1 : : : Ot)

POt ‡ 1jO1 : : : Ot)
,

(A9)

ˆ fP(Ot ‡ 1jSt ‡ 1 ˆ 0)

£ P(St ‡ 1 ˆ 0jO1 : : : Ot)g

/fP(Ot ‡ 1jSt ‡ 1 ˆ 0)

£ P(St ‡ 1 ˆ 0jO1 : : : Ot)

‡ P(Ot ‡ 1jSt ‡ 1 ˆ 1)

£ P(St ‡ 1 ˆ 1jO1 : : : Ot)g,

(A10)

ˆ fb0(Ot ‡ 1)(a00¬t(0) ‡ a10¬t(1))g/fb0(Ot ‡ 1)

£ (a00¬t(0) ‡ a10¬t(1)) ‡ b1(Ot ‡ 1)(a01¬t(0)

‡ a11¬t(1))g. (A11)

Using a similar derivation for ¬t ‡ 1(1) we obtain

¬t ‡ 1(1) ˆ fb1(Ot ‡ 1)(a01¬t(0) ‡ a11¬t(1))g/fb0(Ot ‡ 1)

£ (a00¬t(0) ‡ a10¬t(1)) ‡ b1(Ot ‡ 1)(a01¬t(0)

‡ a11¬t(1))g. (A12)

Finally,

P(O1 : : :Ot ‡ 1) ˆ P(Ot ‡ 1jO1 : : : Ot)P(O1 : : : Ot),

ˆ (P(Ot ‡ 1jSt ˆ 0)¬t(0)

‡ P(Ot ‡ 1jSt ˆ 1)¬t(1))P(O1 : : : Ot),

ˆ ‰(b0(Ot ‡ 1)a00 ‡ b1(Ot ‡ 1)a01)¬t(0)

‡ (b0(Ot ‡ 1)a10 ‡ b1(Ot ‡ 1)a11)¬t(1)Š

£ P(O1 : : : Ot): (A13)

Using recursions (A9), (A12) and (A13) with initial
conditions (A4), (A5) and (A6), ¬M(0), ¬M(1) and
P(O1 : : : OM) can be calculated for any of the 2M

possible measurement sequences. By replacing these
values in equation (A3) one can calculate the average
¢tness corresponding to the optimal strategy relying on
the last M measurements.

(ii) A clone of N cells
Finding the optimal strategy and the ¢tness associated

with it, in the case where information from N measure-
ments is available at each time-step is very similar. The

di¡erence is that now there are 2N measurement
outcomes at each time-step. Considering that, as far as
information on the environment is concerned, only the
number of cells that obtained each of the outcomes is
important and not which cell obtained which result, the
number of possible outcomes can be reduced to N ‡ 1. We
can then denote by j the number of cells that obtained
measurement outcome 0, and the number that measured
1 is then N ¡ j. Thus, in this case Ot 2 f0, : : : , Ng for
every time-step t. Hence, the only modi¢cation to the
derivations of the last section is in the coe¤cients bi( j),
where now j ˆ 0, : : : , N and i ˆ 0, 1 as before. The new
coe¤cients are

b0( j) ˆ
N
j

(1¡ e) jeN¡ j,

b1( j) ˆ
N
j

e j(1¡ e)N¡ j:

(A14)

Substituting these coe¤cients in the recursions developed
in Appendix A ½ (a)(i), we can obtain both the optimal
strategy and its associated ¢tness, for a clone of size N
with memory of M past measurement outcomes.

(iii) Unreliable signalling
When signalling is not reliable, the analysis in

Appendix A ½ (ii) must be slightly changed. Now, not all
measurements are equally likely to be `correct’. In the
analysis, we need to distinguish between measurements
made by the individual, and measurements gained from
sharing. A measurement will now consist of a pair:
Ot ˆ (OI

t ,OS
t ), where OI

t is the own measurement at time
t, and OS

t are the shared measurements. So, now
Ot 2 f0,1g£ f0, : : : , N ¡ 1g. The coe¤cients in this case
are

b0(i, j) ˆ
N ¡ 1

j
(1 ¡ eC) jeN¡j¡1

C (1 ¡ e)ie1¡ i,

b1(i, j) ˆ
N ¡ 1

j
e j

C(1 ¡ eC)N¡j¡1ei(1 ¡ e)1¡ i:

(A15)

Where eC is the combined error rate of measurement and
signalling, which is equal to eS(1 ¡ e) ‡ (1 ¡ eS)e. As in
Appendix A ½ (a)(i) it is easy to use these coe¤cients to
obtain the recursions.

APPENDIX B

(a) Information sharing in populations with limited
mixing

Here we examine the case in which the population is
subdivided into separate aggregates, each of which is
founded by a single individual. A limited amount of
mixing occurs between aggregates: a certain proportion
of individuals from all aggregates are put into a `mixing
pool’, and then redistributed at random back into the
aggregates. As a consequence, a fraction of the indivi-
duals in a given aggregate will be the o¡spring of a single
parent; the remaining fraction will have entered from
other aggregates via the mixing pool and will therefore
have di¡erent parents. The population is asexual. We will
assume that there are two genotypes, which we call
cooperators and defectors. Cooperators share their
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information, whereas defectors do notöthey might even
mislead and send false information. Let us use the
following notation:

(i) N : the number of individuals in each aggregate;
(ii) r: the proportion of individuals in each aggregate

that do not get mixed;
(iii) fc(M): ¢tness of cooperators in an aggregate in

which there are M cooperators, and N7M defec-
tors;

(iv) fd(M): ¢tness of defectors in an aggregate in which
there are M cooperators, and N7M defectors;

(v) q: the cost of making a measurement;
(vi) s: the cost of sharing a measurement.

In this model it is fairly easy to calculate invasion
criteria for one genotype into a population of another
type, and thus we can determine under what cases defec-
tion cannot invade a population of sharing cooperators.
Determining the steady state of the system in the case of
information sharing, when several genotypes can be
present at the same time is a non-trivial task, and is
beyond the scope of this paper.

When defectors ¢rst invade a population of coopera-
tors, i.e. when defectors are rare, the vast majority of
aggregates containing defectors will be one of two types:
the ¢rst are aggregates whose founder was a defector
which will have rN defectors and …1¡ r†N cooperators;
the second are aggregates into which defectors arrived
through mixing, and because defectors are rare these
aggregates will have one defector and N ¡ 1 cooperators.
The average ¢tness of cooperators in a population
invaded by rare defectors is fc(N). Most of the coopera-
tors in such a population will be in aggregates in which
there are only cooperators, and only very few will be in
aggregates with defectors; therefore the ¢tness of almost
all cooperators will be fc(N). For defectors to invade,
their average ¢tness has to be bigger than thatöeven
though they might outcompete all the cooperators in
their own aggregate. Thus they invade if and only if

(1 ¡ r) fd(N ¡ 1) ‡ rfd(1 ¡ r)N) > fc(N). (B1)

As r increases, the main input to defector ¢tness comes
from the term rfd((1 ¡ r)N). The function fd((1 ¡ r)N)
decreases as r increases, and is therefore eventually
smaller than fc(N). This is because by supplying wrong
information and/or not sharing, defectors eventually hurt
themselves in groups in which there are mostly defectors.
Therefore, there always exist large enough r, for which
defectors cannot invade.

In the following, we examine a speci¢c form of `defec-
tion behaviour’, the behaviour of sharing only a fraction u
of the acquired information. We shall calculate the
mixing rate so that limited-sharing individuals cannot
invade a population of sharing individuals. Now we intro-
duce the following notation:

(i) u: fraction of measurements a limited-sharing indivi-
dual shares with members of its aggregate;

(ii) ns and nl: number of measurements per time-step
done by a sharing and limited-sharing individual
respectively;

(iii) g(x): ¢tness gain by an individual who receives x
measurements per time-step (as de¢ned in this paper).

We assume that g is increasing, and that its derivative
g 0 is decreasing. Using these we can calculate fd(M) and
fc(M):

fd(M) ˆ g(Mns ‡ (N ¡M ¡1)nlu ‡ nl) ¡ qnl ¡ snlu, (B2)

fc(M) ˆ g(Mns ‡ (N ¡M)nlu)¡ qns ¡ sns. (B3)

Substituting these into equation (B1) and some rearrange-
ment gives the invasion condition

(1 ¡ r)g(Nns ¡ ns ‡ nl) ‡ rg(Nns ¡ rN (ns ¡ unl))

¡ qnl ¡ snlu > g(Nns) ¡ qns ¡ sns.
(B4)

Let us call a strategy a pair (nl, u) of choice of measure-
ments per time-step and fraction of measurement shared.
We want to see under what conditions a strategy (ns, 1)
will be an ESS. Notice that if nl ˆ ns and u ˆ 1, then the
left-hand side of equation (B4) is equal to the right-hand
side. For nl to maximize the left-hand side of equation
(B4) at u ˆ 1, the following needs to hold:

(1 ¡ r)g0(Nns ¡ ns ‡ nl) ‡ rg0(Nns ¡ rN(ns ¡ nl))rN

¡ q ¡ s ˆ 0.
(B5)

If this condition holds for nl ˆ ns then the left-hand side of
equation (B4) is maximized for nl ˆ ns ; so for all other nl

(with u still equal to unity) the left-hand side of the equation
is smaller, and therefore no strategy (n l, 1), can invade such
a population. Solvingequation (B5) for nl ˆ ns gives

(1 ¡ r)g0(Nns) ‡ rg0(Nns)rN ¡ q ¡ s ˆ 0, (B6)

or

g0(Nns) ˆ
q ‡ s

1 ¡ r ‡ r 2N
. (B7)

Now we want to ¢nd a condition so that no strategy
(nl, u) can invade the population. To do this we ¢rst ¢nd
conditions under which the left-hand side of equation
(B4) is a local maximum at (ns, 1) with respect to (nl, u).
For this, the derivative with respect to u at this point has
to be positive:

rg0(Nns ¡ rN(ns ¡ nlu))rNnl ¡ nls > 0: (B8)

By setting (nl, u) ˆ (ns, 1) andusing equation (B7) we obtain

r 2N
q ‡ s

1 ¡ r ‡ r 2N
¡ s > 0, (B9)

or

q
s

>
1 ¡ r
r 2N

. (B10)

Thus (ns, 1) is a local maximum under these conditions.
For it not to be an ESS, another point has to achieve a
higher value for the left-hand side of equation (B4), so
there has to be another maximum, in this case an internal
one. If there is an internal maximum, then the derivative
of the left-hand side of equation (B4) with respect to nl

and u has to be equal to zero. Some algebra gives

g0(Nns ¡ rN(ns ¡ unl)) ˆ
s

r 2N
,

g0(Nns ¡ (ns ¡ nl)) ˆ
q

1 ¡ r
.

(B11)
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But the right-hand side of equation (B7) is between the
values of the right-hand sides of equations (B11). This,
together with requirement (B10), means that

q
1 ¡ r

4 g 0(Nns) >
s

r 2N
, (B12)

or that it has to hold that

g0(Nns ¡ (ns ¡ nl)) > g0(Nns) > g0(Nns ¡ rN (ns ¡ unl)).

(B13†

Because g 0 is a monotonic decreasing function, this is
impossible. Thus, a su¤cient condition for sharing to be
an ESS is equation (B10), or

N4
s(1 ¡ r)

qr2
. (B14)
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