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The functional response is a key element in all predator^prey interactions. Although functional responses
are traditionally modelled as being a function of prey density only, evidence is accumulating that predator
density also has an important e¡ect. However, much of the evidence comes from arti¢cial experimental
arenas under conditions not necessarily representative of the natural system, and neglecting the temporal
dynamics of the organism (in particular the e¡ects of prey depletion on the estimated functional
response). Here we present a method that removes these limitations by reconstructing the functional
response non-parametrically from predator^prey time-series data. This method is applied to data on a
protozoan predator^prey interaction, and we obtain signi¢cant evidence of predator dependence in the
functional response. A crucial element in this analysis is to include time-lags in the prey and predator
reproduction rates, and we show that these delays improve the ¢t of the model signi¢cantly. Finally, we
compare the non-parametrically reconstructed functional response to parametric forms, and suggest that
a modi¢ed version of the Hassell^Varley predator interference model provides a simple and £exible func-
tion for theoretical investigation and applied modelling.
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1. INTRODUCTION

The recent debates about ratio-dependent predation (e.g.
Abrams 1994; Sarnelle 1994; Akc° akaya et al. 1995;
Berryman et al. 1995; Abrams 1997; Bohannan & Lenski
1999; Abrams & Ginzburg 2000) have drawn ecologists’
attention to the issue of correctly specifying the functional
response (the instantaneous rate of prey consumption per
predator). As the link between predator and prey dynamics,
the functional response is necessarily critical for predator^
prey interactions, and it is also important for the
dynamics of complex food webs such as the response of
lakes or soil macrofauna to nutrient enrichment (e.g.
McCauley et al. 1988; Arditi et al. 1991a; Ponsard et al.
2000). The choice of a particular functional form to
model a process rate can have surprising e¡ects on statis-
tical inference and prediction (e.g. Yodzis 1994; Wood &
Thomas 1999).

Functional response equations that are strictly prey
dependent, such as the Holling family, are predominant in
the literature. The term `prey dependent’ means that the
consumption rate by each single predator is only a function
of prey density, and a `predator-dependent’ functional
response is one in which both predator and prey densities
a¡ect the per-predator consumption rate (Arditi &
Ginzburg 1989). One talks of `ratio dependence’ when
consumption is a function of the ratio prey to predator
density.Theoretical studies have shown that the dynamics of
models with predator-dependent functional responses can
di¡er considerably from the dynamics of correspondingly
structured models with prey-dependent functional responses
(Rogers & Hassell 1974; DeAngelis et al. 1975; Arditi &
Ginzburg 1989; Kuang & Beretta 1998; Jost et al. 1999).

Although the strictly ratio-dependent model has
attracted considerable attention (and emotion), the
consumption process is potentially in£uenced by so many
factors (prey and predator densities, stochastic or periodic
environmental factors, metabolic by-products in cultures,
etc.) that it is unlikely that one mathematical expression
can describe the functional response in all systems. Thus,
the key issue with regard to quantifying the functional
response is not ratio dependence, but the potential impor-
tance of predator dependence: How commonly does it
occur, and is it su¤ciently weak that we can safely ignore
it? Several recent empirical studies of this question
(Arditi & Akc° akaya 1990; Arditi et al. 1991b; Dolman
1995; McCarthy et al. 1995; Skalski & Gilliam 2000;
Ponsard et al. 2000; Jost & Arditi 2000b; see also review
in Sutherland 1996) show that predator dependence in
the functional response is very frequent in laboratory and
natural systems.

Although these empirical studies have provided
support for the concept of predator dependence, this
support is quali¢ed by some signi¢cant limitations. Many
of these studies are based on arena experiments that, in
order to achieve replication among subjects, often involve
`starved’ predators (deprived of food for an extended
period before the experiment). The feeding behaviour of
`starved’ predators might be atypical or of limited rele-
vance to the ¢eld. In addition, processes occurring on
di¡erent time-scales in the ¢eld (e.g. behavioural scale
versus demographic scale) can lead to indirect predator
dependence that is undetectable in an arena experiment
(Michalski et al. 1997; Poggiale et al. 1998). Subsidiary
problems with many arena studies are small sample size,
in the sense that the design involved a small number of
(prey, predator) density combinations, and that data
analyses often do not account for the potential e¡ects of
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prey depletion during the experiments. Because higher
predator density will increase prey depletion during the
course of the experiment, prey depletion e¡ects can
create spurious apparent predator dependence (Arditi
1982; Arditi & Sa|« ah 1992). Some other studies with data
from ¢eld observations have mostly been based on
changes in equilibrium or mean abundances over a
gradient of enrichment (e.g. Arditi et al. 1991b; McCarthy
et al. 1995; Ponsard et al. 2000). The assumption of the
systems being at equilibrium is often di¤cult to validate
in a seasonal environment, and the data analyses have
typically been framed as a contest between conventional
prey-dependent models and the ratio-dependent model.

A second and more general problem is that comparisons
have typically involved comparing speci¢c prey-dependent
equation(s) with speci¢c predator-dependent equation(s),
rather than contrasting the two qualitative assumptions.
Given that there are over 20 proposed equations for the
functional response (collections in May (1976) and
Michalski et al. (1997)), one rarely ¢nds a comprehensive
comparison rather than a selection between a few
preferred equations. The outcome of such a comparison
may be sensitive to the selection of contesting models,
with the particular risk of incorrectly rejecting prey
dependence in favour of predator dependence due to a
poor choice of the parametric equation to represent the
hypothesis of prey dependence.

Here we present a study that avoids these limitations.
We use as data time-series of predator^prey dynamics over
multiple generations, and a non-parametric approach
that minimizes the confounding e¡ects of the choice of
functional forms. Our study has its own weaknesses, due
to the problems of inferring feeding rates indirectly from
the resulting population dynamics, and in particular the
need to assume a g̀eneral’model of the population dynamics
to estimate the functional response. Although the key
assumptions of our model are supported by the data (as
discussed in ½ 3), the limitations of the data mean that we
cannot have total con¢dence in the population model.
However, these problems are completely di¡erent from the
problems of previous studies, so we interpret our results as a
useful complement to previous work. As a by-product, our
approach allows us to test the hypothesis of conservation
of mass (rather than assuming it through theoretical
arguments) and whether a delay between consumption
and reproduction (for both prey and predator) improves
agreement between model and data signi¢cantly.

The data come from a protozoan experiment (Veilleux
1976) with Paramecium aurelia as prey and Didinium
nasutum as predator, and are time-series of twice-daily
counts of predator and prey abundance over several
sustained population cycles. These are the same organ-
isms as in the classical work on predator^prey systems of
Gause (1935) and that of Luckinbill (1973). Our goal in
analysing these data is to extract qualitative information
about the functional response, rather than trying to iden-
tify the `true’ functional response equation. We would like
to distinguish between prey dependence, ratio depen-
dence and more general predator dependence in the func-
tional response, but we do not attempt to identify a
speci¢c `best-¢tting’ functional response equation.

Our analysis uses the approach developed by Ellner et
al. (1997). The basic structure of the model is derived

from biological considerations and data independent of
the time-series data used to ¢t the model, and the func-
tional response is estimated non-parametrically, yielding
a `semimechanistic’ predator^prey model. In the context
of function estimation `non-parametric’ does not mean
`distribution free’ (which is the sense of non-parametric
in, for example, `non-parametric correlation coe¤cient’).
It means that the shape of the function (in our case, the
functional response) is estimated from a high- (and
potentially in¢nite) dimensional space of functions, rather
than choosing the (few) parameters of a particular func-
tional form with limited £exibility.

As in Ellner et al. (1997), the model is ¢tted by
gradient matching: the time-series are smoothed to
obtain an estimate of the instantaneous rates of popula-
tion change (the g̀radient’ of population density), and
the model can then be ¢tted by weighted least-squares
regression. The procedure for gradient estimation that
we use here (described brie£y in electronic Appendix A
available on The Royal Society Web site) is one devel-
oped by Ellner & Seifu (2000). Getting accurate
gradient estimates is only possible if the time-series are
sampled frequently enough relative to the natural time-
scale of system dynamics, and if measurements are su¤-
ciently accurate. Simulation studies reported in ½ 4(a)
indicate that gradient estimates for the data analysed
here will be quite accurate.

We begin with a review of the data, and then present
the general model that is the basis for our analyses. The
statistical methods used to ¢t and test the non-parametric
functional response equations are outlined in } 4. In the
text we present the main ideas, and technical details are
deferred to a series of electronic appendices available on
The Royal SocietyWeb site.

2. THE DATA

The protozoan predator^prey system of P. aurelia and
D. nasutum is a classic in population ecology (Gause 1935;
Luckinbill 1973; Salt 1974). However, only Veilleux (1976,
1979) re¢ned the previous techniques su¤ciently to
obtain sustained coexistence with regular predator^prey
cycles. Paramecium was grown on Cerophyl medium
(which acts as a bacterial nutrient and supports the
vigorous bacterial populations upon which the Paramecium
feed) in varyingconcentrations (denoted by CC x, see Veil-
leux (1976) p. 24; CC 1:0 º 1:8 g l71). Varying the Cero-
phyl concentration corresponds to varying the prey
carrying capacity and the growth rate (see Veilleux (1976)
¢g. 2a^d ). Methyl cellulose was added to thicken the
medium, thus slowing down predator and prey move-
ment. Protozoan abundance was measured by non-
destructive counting (each point represents the mean of
eight countings). Measurements were taken every 12 h
and the experiments were run for 25^35 days.

Cycling coexistence was obtained in this methyl cellu-
lose medium for Cerophyl concentrations ranging from
CC 0:375 to 0:5. For higher Cerophyl concentrations,
extinction occurred after two to three oscillations. For
lower concentrations the predator went extinct, some-
times after depleting the prey to extinction.

Here we analyse the three longest time-series that were
reported in Veilleux (1976), which are shown in ¢gure 1
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(recovered by scanning and digitizing ¢gs 11a, 12a and 14c
in Veilleux (1976)). For each predator^prey time-series
there is a corresponding experiment, under the same
conditions, of the prey cultured in isolation (¢g. 2b,c in
Veilleux (1976) shown on our ¢g. 2a,e). Throughout this
paper we will call these time-series by the number of the
¢gure from which they were retrieved, i.e. 11a, 12a, 14c,
2b and 2c. B. G. Veilleux (personal communication) was
not able to provide the original data of these experiments.

(a) Sampling errors
Fitting models to these data requires a goodness-of-¢t

criterion. Veilleux’s e¡orts to quantify his sampling errors
provide information that can be used to construct a
weighted least-squares criterion. The errors in these
counts were summarized by Veilleux (1976) table 1. As

observed by Veilleux, the error variance is clearly not
constant. However, we have found that they conform to
the expectation for random (Poisson) population subsam-
pling that the standard deviations for prey and predator,
¼N and ¼P, are proportional to the square root of abun-
dance, ¼N ˆ 0:417

�����
N

p
and ¼P ˆ 0:165

����
P

p
, with multiple

r 2 > 0:95 (N and P stand for prey and predator abun-
dance, respectively, measured as individuals per milli-
litre). The resulting goodness-of-¢t criterion is therefore

E ˆ
Xq

i ˆ 1

(ni ¡ n̂i)
2

0:4172ni
‡

Xq

i ˆ 1

( pi ¡ p̂i)
2

0:1652pi
, (1)

where ni and pi are the observations of prey and predator
abundance at time ti, and n̂i and p̂i are the corresponding
model-predicted values.

3. THE GENERAL MODEL STRUCTURE

Our analysis of the data is based on a general model
for interactions between unstructured prey and predator
populations with overlapping generations:

dN
dt

ˆ Nf (N¯) ¡ g(N , P)P, (2a)

dP
dt

ˆ eg(Nt , Pt)P ¡ ·P, (2b)

with prey density N, predator density P, prey growth rate
f (N), functional response g(N , P), conversion e¤ciency e
and predator mortality rate ·. Here N (for example) is a
shorthand for the time-dependent variable N(t). The
subscripts t and ¯ refer to time-delays, e.g. Nt denotes
N(t ¡ t). Two particular features of this model require
some comment and justi¢cation: the time-delays, and the
assumption of a linear conversion e¤ciency between prey
consumption and predator reproduction.

Time-delays have been proposed at several places in
system (2), which may have a variety of e¡ects on stability
for this system (e.g. Wangersky & Cunningham 1957;
Goel et al. 1971; Cushing 1977; Gurney et al. 1980; Blythe et
al. 1982; Hastings 1983; Zhao et al. 1997; Beretta & Kuang
1998). In equations (2) we allow for a time-delay between
consumption and reproduction in both prey (¯) and
predator (t) individuals. The values of these delays are
estimated from the experimental data. Because reproduc-
tion is by ¢ssion, new o¡spring are immediately counted
as members of the population (i.e. there is no `immature
class’), and the state variables in the model are total
numbers of individuals of all ages. The delay should thus
act on the ¢ssion rates, while the non-delayed values of N
and P in equations (2) represent the fact that ¢ssion
events `now’, by individuals alive `now’, create new indivi-
duals who are immediately available for census.

The data on prey cultured in isolation make it possible
to estimate the form of the prey-growth function f , and to
estimate the time-delay .̄ Figure 2 illustrates the process
for the analysed experimental conditions. The prey
growth curve 2b from Veilleux (1976) (our ¢gure 2a) with
CC 0.5 (corresponding to series 11a and 14c) exhibits
overshoot of the apparent c̀arrying capacity’, which
argues for the existence of a delay. The same also occurs,
though the e¡ect is less pronounced, in the other experi-
mental condition with CC 0.375 (series 2c in ¢gure 2e). In
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Figure 1. Original predator^prey data with the Cerophyl
concentrations under which they were run (time measured in
days). Diamonds are the prey measurements and stars the
predator abundances. (a) Data set 11a, CC 0.5; (b) data set
12a, CC 0.375; (c) data set 14c, CC 0.5. (c) From an experi-
ment with arti¢cial predation on predators. The straight and
dashed lines in the ¢rst panel are the ¢tted trajectories of the
prey and predator populations for a model with logistic
growth and a DeAngelis^Beddington type functional response
with estimated parameters r ˆ 2.0, K ˆ 6620, a ˆ 0.045,
h ˆ 0.021, c ˆ 0.0016, e ˆ 0.284 and · ˆ 1.06 (see ½ 4(a) for
details on the ¢tting procedure).



the absence of predators, the prey equation becomes
dN=dt ˆ Nf (N¯) and therefore d( log N)=dt ˆ f (N¯).
Smoothing the time-series of log N by the methods
described in electronic Appendix A provides an estimate
of d( log N)=dt, which is plotted against N¯ for di¡erent
values of ¯ (¢gure 2b^d). For ¯ near zero, the plot
produces the appearance of an Allee e¡ect, for which
there is no mechanistic basis in the system (no need to
¢nd mates, for example). Increasing the delay to 12 h
produces a linear relationship (logistic growth:
f (N¯) ˆ r(1 ¡ N¯=K)), and we therefore use ¯ ˆ 12 h. The
same time-delay also produces a decent ¢t for the other
experimental conditions analysing series 2c (¢gure 2 f )
with CC 0.375 (corresponding to series 12a). Note that
this process also gives estimates of r and K that will be
used in the analysis of the longer time-series with
coexisting prey and predator. Veilleux (1976, table 3a)
measured the number of divisions per day for the
Paramecium. These give an approximate idea of the
generation time which should correspond to the length of
the delay. His estimate of 9̂ 15 h corresponds well with
our choice of 12 h. Within this range of biologically plau-
sible values for ,̄ any improvement in accuracy that
could be achieved by estimating more precisely an
`optimal’ value of ¯ would be more than outweighed by
the errors introduced by the need to interpolate the data
to a higher sampling frequency. We therefore treat
¯ ˆ 12 h as a known parameter in all subsequent analyses.

Theoretical arguments for the use of conservation of
mass were developped by Ginzburg (1998). Here we can
go a step further by testing this assumption and the linear
conversion between consumption and reproduction. The
prey consumption rate can be estimated from the prey
equation alone, while the predator reproductive rate can
be estimated from the predator equation alone. Electronic
Appendix B details how to use this idea to visualize the
relationship between consumption of prey and predator
reproduction (see ¢gure 3), and we conclude that the rela-
tionship appears to be linear, at least within the accuracy
of the data.

4. GENERAL METHODS TO FIT AND COMPARE

MODELS

After these preliminary analyses we can reconstruct
and compare the functional response models.

(a) Reliability of gradient estimation
The method to estimate the population gradient (elec-

tronic Appendix A) requires that the data are sampled
su¤ciently frequently and with not too much error in
order to give reliable estimates. We therefore have to test
if our data (¢gure 1) ful¢ll these requirements. This was
done by parameterizing equations (2) with a (non-
delayed) logistic prey-growth function and a (non-
delayed) DeAngelis^Beddington type functional response
(see table 1) and then ¢tting this model by standard
trajectory ¢tting to data set 11a. This trajectory ¢tting is
described in detail in Harrison (1995) and consists of inte-
grating numerically the solutions of the di¡erential equa-
tion system (i.e. the trajectories), computing the error
with equation (1) and then ¢nding parameter values that
minimize this error. Figure 1a shows the resulting trajec-
tories of prey and predator. This ¢tted trajectory was then
sampled at 12 h intervals (similar to the real experiments),
adding an observation error similar to that in Veilleux’s
data (Veilleux 1976, table 1). For this arti¢cial time-series
the known gradient can now be compared (graphically
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Figure 2. Prey-growth data in the absence of predators (time
measured in days) and how they were used to estimate the
parameters of the prey-growth function f (N¯) ˆ r(1 ¡ N¯=K).
See text for details. (a^d) analysis of series 2b with CC 0.5,
(a) raw data, (b) no delay, (c) delay ˆ 6 h, (d) delay ˆ 12 h;
(e^f ) analysis of series 2c with CC 0.375, (e) raw data,
( f ) delay ˆ 12 h. The points marked with a cross are the
beginning and end-points of the time-series where the gradient
estimate is less precise.

Figure 3. The functional response (g(N , P)) plotted against
the predator reproductive rate (h(N , P)) as reconstructed
from the prey and the predator equation separately to test the
conservation of mass hypothesis, h(N, P) ˆ eg(N , P) ¡ ·. See
electronic Appendix B for details. (a) Series 11a, t ˆ 0:3 days;
(b) series 12a, t ˆ 0:6 days; (c) series 14c, t ˆ 0:1 days;
(d) series 14c, t ˆ 0:3 days.



and by linear regression) with the estimated gradient.
Even with noise in the data these estimates are su¤ciently
accurate for our needs (r 2 > 0:99).

(b) Fitting parametric functional response equations
For comparison to the non-parametric estimates, we

will ¢t also a couple of parametric functional response
models. These models include the well known (prey-
dependent) Holling type I, II and III family, their
equivalents in the ratio-dependent approach, Ivlev’s
(1961) function and some more complex models such as
the DeAngelis^Beddington and the type II Hassell^
Varley functional responses, Crowley & Martin’s (1989)
pre-emption model and Watt’s (1959) function which is
the predator-dependent extension of Ivlev’s function (see
table 1 for formulae). We also added two predator^prey
models that do not have conservation of mass: the well-
known Holling^Tanner (or Leslie^May) model (Tanner
1975) and a variant of this model where the Holling type

II functional response is replaced by the DeAngelis^
Beddington type functional response (see table 1). With
the functional response speci¢ed parametrically and the
gradients estimated separately, ¢tting the di¡erential
equation model (equations (2), with logistic prey growth
and r, K and ¯ as estimated in } 3) to the data becomes as
simple as ¢tting a discrete model, a standard nonlinear
optimization problem. By a Taylor expansion argument
we can consider the gradient to have an observation error
that is proportional to the corresponding abundance esti-
mate. The resulting goodness-of-¢t criterion, adapted
from equation (1), is therefore the weighted sum of
squared residuals

WSSR ˆ
Xq

i ˆ 1

(xi ¡ x̂i)
2

0:4172ni
‡

Xq

i ˆ 1

( yi ¡ ŷi)
2

0:1652pi
, (3)

where xi and yi are the estimates of the gradient of prey
and predator at time ti, and x̂i and ŷi are the
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Table 1. Fitting di¡erent functional response models to Veilleux’s data sets 11a, 12a and 14c a

(WSSR, weighted sum of squared residuals.)

model g(N , P) 11a 12a 14c

WSSR t WSSR t WSSR t

Lotka^Volterra, Holling type I aN 470 0.0 278 0.32 292 0.0

Holling type II
aN

1 ‡ ahN
428 0.0 274 0.30 248 0.0

Holling type III
aN2

1 ‡ ahN2
447 0.0 277 0.29 267 0.0

Ivlev a(1 ¡ e¡cN ) 428 0.0 274 0.30 254 0.0

ratio-dependent II
aN

P ‡ ahN
393 0.38 178 0.83 187 0.40

ratio-dependent III
aN2

P2 ‡ ahN2
473 0.36 200 0.80 207 0.40

Hassell^Varley type I aNP¡m 447 0.23 214 0.76 289 0.20

Holling^Tanner 517 0.42 258 0.77 198 0.40

Hassell^Varley type II
aN

Pm ‡ ahN
382 0.30 178 0.83 125 0.62

DeAngelis^Beddington
aN

1 ‡ ahN ‡ cP
392 0.32 177 0.82 187 0.40

Crowley^Martin
aN

(1 ‡ ahN)(1 ‡ cP)
392 0.30 175 0.92 179 0.47

Watts a(1 ¡ e¡cN=Pm
) 386 0.30 177 0.81 146 0.55

Leslie^Beddington 517 0.42 247 0.77 198 0.40

a The numbers are goodness-of-¢t (equation (3)) and the estimated delay t. The horizontal lines separate functions with di¡erent
numbers of parameters and predator^prey systems that have no conservation of mass (Holling T̂anner and Leslie^Beddington). The
best ¢ts amongst equally complex models are emphasized.



corresponding model-predicted values. For the actual
regression we used the standard downhill simplex method
of Nelder and Mead, combined with simulated annealing
(routine amotsa from Press et al. (1992), implemented in
C++). For all ¢ts we used multiple initial parameter
estimates, to con¢rm that best-¢tting parameters were
well identi¢ed. The arti¢cial data described in the
previous paragraph will also be ¢tted by these parametric
models to test whether detailed model selection is feasible.

(c) Non-parametric reconstruction of the functional
response

The non-parametric ¢tting techniques used in ½ 3 to
test the conservation of mass hypothesis (details in elec-
tronic Appendix B) reconstructed prey consumption and
predator reproduction as functions of two independent
arguments N and P, but they often collapsed into their
`null space’ (the simplest possible model in the particular
model family). This indicates that the reconstructed
general functions, while they served well to validate the
conservation of mass hypothesis, might not be reliable
enough to perform model selection. We therefore limit
ourselves to models in which g is a function of a single
argument, g ˆ g(z), with z ˆ N (prey dependence),
z ˆ N=P (ratio dependence) or z ˆ N=Pm (which we will
call a generalized Hassell^Varley functional response). In
the last case, m is estimated along with the other
nonlinear parameters in the model. Imposing this restric-
tion could potentially make it harder to detect signi¢cant
predator dependence.

After rearranging equations (2),

dN
dt

¡ r(1 ¡ N¯=K)N ˆ ¡ ĝ(z)P, (4a)

dP
dt

ˆ eĝ(zt)P ¡ ·P, …4b)

with z ˆ N , z ˆ N=P or z ˆ N=P m, ĝ(z) will be approxi-
mated by penalized regression splines (Eilers & Marx
1996; Ruppert & Carroll 1997; Ruppert & Carroll 2000).
This is a ¢xed knot spline with knots 0 < ¸1 < . . . < ¸m

< B, where B ˆ max14 i4 q (zi) (q being the length of the
time-series) and the ¢tted spline estimate ĝ(z) can be
written as

ĝ(z) ˆ
Xd

j ˆ 0

 jz
j ‡

Xm

j ˆ 1

 j‡ d(z ¡ ¸j)
d
‡ , (5)

where (±)‡ equals ± for positive ±, zero otherwise.
Between two knots this spline is a polynomial of degree d.
In our application it is reasonable to model ĝ without an
intercept,  0 ˆ 0, representing the fact that consumption
halts when prey are absent. The optimization criterion is

F ˆ WSSR ‡ ¬
Xm

j ˆ 1

 2
j‡d ,

where WSSR represents the weighted sum of squared resi-
duals (3) and ¬ is the smoothing (or penalizing) para-
meter which determines the complexity of the ¢tted
function. This penalizing factor makes it possible to use a
large number of knots (we typically used 20) without the
reconstructed function exhibiting spurious features that
are not actually supported by the data. The value of ¬

needs to be determined independently of the other
parameters (see below). Plugging equation (5) into
equations (4) shows that the right-hand side is a linear
function of the parameters ³ ˆ (f ig14 i4 m‡ d , ·), if the
values of the `nonlinear parameters’ e, t and m are taken
as given. The fact that the model is conditionally linear in
most parameters allows the large number of parameters
to be estimated e¤ciently. It is biologically reasonable to
consider g(z) to be a monotonic increasing function of its
argument. This assumption leads to a constraint on the
parameters of the form C³ 5 0 for a speci¢c matrix C
(see electronic Appendix C for details). The linear optimi-
zation problem together with this constraint leads to a
standard quadratic programming problem for which
standard software solutions exist (see electronic Appendix
C). The remaining nonlinear parameters e, t and m are
then estimated (for given ¬) by the standard simplex
method.

The ¢nal shape of the ¢tted functional response is
largely determined by the value of the smoothing para-
meter. We therefore used two di¡erent methods to select ¬
as a check on robustness of our estimates, k-fold cross
validation and generalized cross validation. These are standard
methods in the smoothing literature, which we brie£y
describe in electronic Appendix D. In both cases we took
pains to avoid over¢tting (selecting a too^small value of
¬, which produces a ¢tted curve with spurious wiggles
and consequently an overestimate of how well the model
¢ts the data). We observed that over¢tting is more likely
in the more complex models with predator-dependent
functional response. This creates a risk of concluding that
the predator-dependent model is superior, when in fact it
has been misestimated in a way that in£ates its goodness
of ¢t. Conservatism in selecting model complexity is
therefore essential for our analysis. Trying to simulta-
neously estimate model complexity and parameter values
is a recipe for over¢tting (Ellner & Turchin 1995): your
numerical optimizer is then searching for the parameter
values at which over¢tting occurs, and a good optimizer
will ¢nd them. To select ¬ we therefore ¢xed the values of
the nonlinear parameters e, t, and m in equations (4) as
the averages of their estimates from ¢tting the parametric
models (see table 1), based on all prey-dependent func-
tional responses for z ˆ N, on the ratio-dependent ¢ts for
z ˆ N=P and on all predator-dependent functional
responses for z ˆ N=Pm. After ¬ had been selected, we re-
estimated e, t, and m with ¬ ¢xed. Even fairly substantial
changes in the ¢nal value of ¬ (up to a factor of ten) have
relatively minor e¡ects on the ¢tted function, in the sense
that the choice of e, t and m when estimating ¬ does not
a¡ect which model ¢ts best.

(d) Comparison of models by bootstrapping
After ¢tting the models g(N), g(N=P) and g(N=Pm) we

use the weighted sum of squared residuals WSSR (1) to
compare between the ¢ts. However, two considerations
make these `raw’ goodness-of-¢t measures unsuitable for
direct model selection: ¢rst, we do not know if the di¡er-
ence is signi¢cant, and second, they were obtained with
di¡erent ¬-values. Both problems can be overcome by the
use of a parametric bootstrapping procedure, explained
here for the example of testing g(N) against g(N=Pm): the
best ¢t of model g(N) to the data serves as the baseline,
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and we create bootstrap data by taking this ¢tted model
and adding to its predicted values a set of bootstrapped
residuals (i.e. sampled with replacement from the set of
residuals from the baseline). In generating the boot-
strapped residuals, the scaling of error variance with N
or P (see ½ 2a) is taken into account by using the scaling
relationship to standardize the residuals from the baseline
to unit variance, drawing (with replacement) a bootstrap
set of residuals, and then reapplying the appropriate error
scaling for the value to which the residual is added in the
bootstrap data set. Both models, g(N) and g(N=Pm), are
then re¢tted to these purely prey-dependent bootstrap
data.We resampled 1000 bootstrap data sets (which should
be su¤ciently large for the problem at hand (Efron &
Tibshirani 1993)). The distribution of the di¡erences in ¢t
on the bootstrap pseudo-data are then compared by
percentiles to the original di¡erence in ¢t, telling us
whether the original di¡erence in ¢t was larger than
expected under the null hypothesis that the data come
from the prey-dependent model. In particular, if the
original di¡erence in ¢t is larger than 95% of the di¡er-
ences in ¢t for the bootstrap data sets, we conclude that the
original di¡erence in ¢t is signi¢cant at level 0:05.

5. RESULTS

(a) Parametric ¢tting
In a ¢rst test we ¢tted the parametric functional

responses listed in table 1 to the gradients estimated from
the arti¢cial data that were used to test the reliability of
gradient estimation. To our surprise, even when taking
the deterministic data without any noise, the best ¢tting
model was not of the DeAngelis^Beddington type with
which the data were created, but the Crowley^Martin
type functional response, closely followed by Watt’s
functional response. This indicates that goodness-of-¢t is
an insu¤cient model selection criterion to select between
structurally very similar models. However, broad patterns
such as the functional response being prey dependent or
ratio dependent seem to be identi¢able (as found in a
more thorough simulation analysis with these two types
of model but with di¡erent ¢tting schemes by Jost &
Arditi (2000a)).

The results of ¢tting the parametric functional
responses to the natural time-series are summarized in
table 1. For each class of complexity (Holling type II to
Hassell^Varley type I with ¢ve ¢tted parameters and
Hassell^Varley type II to Watt with six ¢tted parameters)
the best ¢ts are emphasized. We can see that in the ¢rst
class the ratio-dependent model always ¢ts best, with
reasonable delays that are shorter in the rich-medium
experiments 11a and 14c with CC 0.5. Fitting the more
complex models gave the same type of delay, although the
improvement in ¢t only amounted to about 5% in data
sets 11a and 12a, while it amounted to an impressive 30%

in data set 14c. The models without conservation of mass
performed reasonably well, but were always beaten by
some equally complex (number of parameters) models
with conservation of mass. It is interesting to observe that
the prey-dependent models ¢tted best with very small or
even zero delays. Indeed, ¢tting in a ¢rst test non-delayed
numerical responses made these prey-dependent forms
win over their equally complex predator-dependent

forms. This is consistent with the ¢ndings in Jost & Arditi
(2000b) where non-delayed prey- and ratio-dependent
models were ¢tted to many similar (but shorter) protozoan
time-series, and the former ¢tted better most of the time.

(b) Non-parametric ¢tting
The results of ¢tting the non-parametric functional

responses (g(N), g(N=P) and g(N=Pm)) are summarized
in table 2. The last column for ¢ts of g(N) and g(N=P)
give the bootstrapped signi¢cance level of the better ¢t of
the generalized Hassell^Varley type model g(N=Pm).
These show that the latter always ¢tted signi¢cantly
better compared to the prey-dependent model, but only
in one of the three data sets when compared to the ratio-
dependent model (at p ˆ 0:05). The remarks in the
previous paragraph about the length of the estimated
delay apply also to these ¢ts, namely that they are shorter
for the richer medium (series 11a and 14c). The conversion
e¤ciencies e vary about a value of 0:5, a level that is
higher than the estimates given by Veilleux (1976) of 0.17
for series 11a and 14c, and 0.11 for series 12a (estimating e
as the inverse of the ¢ssion rates (number of Paramecium
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Figure 4. Best ¢ts of the non-parametric generalized
Hassell^Varley model g(N=Pm) (a, c, e) and the parametric
Hassell^Varley type II model (b, d, f ) for data sets 11a, 12a
and 14c (top to bottom). Stars mark the values reconstructed
from the prey equation, and plus signs those from the predator
equation. Series 11a: (a) g(N=Pm), m ˆ 0:67; (b) HVII,
m ˆ 0:71. Series 12a: (c) g(N=Pm), m ˆ 1:37; (d ) HVII,
m ˆ 0:97. Series 14c: (e) g(N=Pm), m ˆ 2:41; ( f ) HVII,
m ˆ 2:58.



necessary for one Didinium ¢ssion) inVeilleux (1976, table 3)).
The mortality rates are higher for 14c than for 11a (as
expected, because 14c has the same laboratory conditions
as 11a but with an additional arti¢cial mortality) when
¢tting g(N=P) and g(N=Pm), but not when ¢tting the
prey-dependent model. Figure 4a,c,e shows the recon-
structed generalized Hassell^Varley functional response
for each time-series. Note that each pair of measured prey
and predator densities results in two estimates of the
functional response (one from the prey equation (4a) and
the other from the predator equation (4b)) indicated in
¢gure 4 by a star or a plus sign, respectively.

6. DISCUSSION

Protozoan predator^prey systems in the laboratory are
usually homogeneous (well mixed) and the organisms
move around randomly while either hunting or eating.
Under these conditions the behavioural context that gives
a Holling type II functional response is well approxi-
mated; such organisms are thus expected to have a prey-
dependent functional response. However, our analysis
shows that allowing the functional response to decrease
with increasing predator density gives in all three data
sets a signi¢cantly better ¢t. This con¢rms the results
from Harrison (1995) who ¢tted trajectories of the under-
lying di¡erential equations to Luckinbill’s data (same
protozoan species as our data) and obtained the best ¢t
with a model that includes predator dependence and a
delayed numerical response. Our analysis goes a step
further in testing general non-parametric forms of the
functional response and in showing the improvement in
¢t to be signi¢cant.

This strong predator dependence seems to be contrary
to earlier results (Jost 1998; Jost & Arditi 2000b) where
we ¢tted a prey- and a ratio-dependent model to Gause’s,
Luckinbill’s and part of Veilleux’s data and always found
the prey-dependent model to ¢t signi¢cantly better.
However, these earlier results were obtained without a
delay in the reproduction equations. Indeed, when we
¢tted the parametric functional responses in table 1

without a delay, the prey-dependent model also ¢tted in
our analysis better than the ratio-dependent model. This
raises the question whether adding a delay improves the
¢t signi¢cantly and is thus justi¢ed. We tested this with
the bootstrap techniques described in } 4 and ¢tting a
non-parametric general Hassell^Varley type functional
response with or without a delay in the numerical
response, and for all three data sets the improvement in
¢t was highly signi¢cant (at p ˆ 0:01). A delayed numer-
ical response seems therefore to be a valid assumption.
This delay should usually correspond to the generation
time. For protozoans, this would be the time between two
¢ssions. Our estimates of the delay conform quite well to
the generation times estimated byVeilleux (1976, table 3a),
and they are longer for the CC 0.375 treatment than for
the CC 0.5 treatment, as would be expected (generation
time increases in a poorer environment). The delay seems
therefore not only to improve the ¢t, it also has a sound
biological background. Consequently, the predator depen-
dence found when allowing for this delay seems to be
genuine.

L. Ginzburg (personal communication) suggested that
consumption as well as reproduction should preferably be
a function of the average over present and recent
population densities rather than an instantaneous rate. In
our modelling framework this can be approximated by
introducing the same discrete delay in both functional
and numerical response in equations (2). We tested this
suggestion and found again that the general Hassell^
Varley functional response always ¢tted highly signi¢-
cantly better than the prey-dependent functional
response, but only in one of three cases did it ¢t better
than the ratio-dependent model. This additional test
shows that our general result is quite robust with respect
to the delay structure in the model.

It should be noted here that the parameters r and K
(that were estimated from independent experiments and
then assumed known in all of the above tests) could easily
be estimated in the ¢tting process because the rate equa-
tions are linear in both of them. We tested this possibility,
and most of the results mentioned above remain valid;
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Table 2. Raw results of non-parametric ¢ts of the functional response with estimates and standard deviationsa of e, t, · and m, the
estimated smoothing parameter ¬ and the signi¢cance level of g(N=Pm) ¢tting better than g(N) or g(N=P), respectively (last column)

(WSSR, weighted sum of squared residuals.)

¬ WSSR e t · signi¢cance level

g(N)
11a 107 431 § 65 0:49 § 0:06 0:00 § 0:04 1:05 § 0:12 0.01
12a 107 274 § 52 0:51 § 0:13 0:30 § 0:12 1:59 § 0:31 0.00
14c 111 251 § 54 0:34 § 0:11 0:00 § 0:13 0:88 § 0:26 0.00

g(N=P)
11a 3400 403 § 51 0:44 § 0:06 0:32 § 0:06 1:09 § 0:12 0.07
12a 3:3 £ 104 178 § 30 0:33 § 0:05 0:82 § 0:07 1:32 § 0:14 0.13
14c 100 188 § 37 0:63 § 0:23 0:43 § 0:09 1:88 § 0:51 0.00

g(N=Pm)
11a 5800 393 § 53 0:43 § 0:06 0:30 § 0:08 1:06 § 0:11 0:67 § 0:14b

12a 108 159 § 25 0:45 § 0:10 0:81 § 0:07 1:67 § 0:26 1:37 § 0:15b

14c 106 133 § 24 0:68 § 0:15 0:59 § 0:06 1:83 § 0:34 2:41 § 0:13b

a Standard deviations were estimatedby a parametricbootstrap (1000 bootstrap samples).
b m-value.



only the di¡erence between the general Hassell^Varley
and the ratio-dependent functional response became
smaller or even indetectable (with the estimated m being
close to unity).

The mechanisms inducing predator dependence range
from direct interference (Beddington 1975) over anti-
predator behaviour (Abrams 1984) or aggregation and
hunting behaviour (Cosner et al. 1999) to spatial hetero-
geneity combined with di¡erent time-scales (Poggiale et
al. 1998). In our system, aggregation (due to local prey
depletion rather than hunting behaviour; Free et al. 1977)
seems the most plausible explanation.Veilleux (1976) also
detected predator dependence and enumerated two other
potential explanations: (i) Didinium is, in fact, capable of
distinguishing between starved and well-fed prey and
selectively attacks the latter, (ii) while there is no direct
interference between Didinium individuals, they may
share a prey; this is observed, especially at high predator
concentrations. However, the information is too scant to
decide if one of these mechanisms can account for the
detected predator dependence. At the level of abstraction
on which we worked (modelling a population as a single
state variable), predator dependence could also emerge as
a combined result of several mechanisms.

While we insisted in }1 on the generality of our
approach by taking non-parametric functional responses,
it should be tested whether the parametric forms (that
are more accessible for theoretical analysis and much
simpler to parameterize) already give a su¤ciently good
description. Figure 4 shows the reconstructed non-
parametric Hassell^Varley type functional responses
and the ¢tted parametric Hassell^Varley type II func-
tional responses. The latter seem to perform qualita-
tively quite well and have the advantage of having only
three parameters. Other parametric forms such as the
DeAngelis^Beddington or Crowley^Martin functional
responses also performed as well or even better (table 1),
so they represent equally valid candidates, but since they
are functions of two independent arguments the Hassell^
Varley type II form may be advantageous in theoretical
work. If there are not su¤cient data to estimate the addi-
tional parameter m then table 2 suggests that the ratio-
dependent type II model (which outperformed in the
parametric ¢ts all other functional responses of the same
complexity) might also be a good approximation, in any
case a better one than the Holling type II model.

The strength of the detected predator dependence
(m ˆ 0:66 ¡ 2:41) requires some additional comments.
Originally m was introduced as a parameter in the
interval (0, 1) (Hassel 1978). However, this was due to its
use in the discrete model of Nicholson and Bailey; recent
estimates in the context of continuous models (Stow et al.
1995; Ponsard et al. 2000) were often larger than unity. It
is presently not clear whether m > 1 is biologically
reasonable in a di¡erential equation model. Abrams
(1997) pointed out that anti-predator behaviour can lead
to m > 1, but further work is needed in this respect.

In conclusion, the non-parametric approach has
allowed us to compare for the Paramecium^Didinium
interaction two fundamental hypotheses (prey versus
predator dependence) rather than speci¢c functional
forms. Our results con¢rm recent ¢ndings that even in
such a simple protozoan system, predator dependence

occurs and can be quite strong. Allowing for delayed
e¡ects was crucial for detecting predator dependence: in
previous analyses of the same data with non-delayed
predator^prey models, predator dependence appeared to
be negligible. For theoretical work which includes
predator dependence we suggest that the Hassell^Varley
type II form (or even the simpler ratio-dependent type II
form) may be an adequate and su¤ciently £exible para-
metric model.

This research was done while C.J. was hosted by North Carolina
State University. We thank the participants of the Biomathe-
matics Graduate Program for interesting discussions. Additional
thanks go to two reviewers and to Roger Arditi for helpful com-
ments on the manuscript.
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