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Directionality theory, a dynamic theory of evolution that integrates population genetics with
demography, is based on the concept of evolutionary entropy, a measure of the variability in the age of
reproducing individuals in a population. The main tenets of the theory are three principles relating the
response to the ecological constraints a population experiences, with trends in entropy as the population
evolves under mutation and natural selection. (i) Stationary size or £uctuations around a stationary size
(bounded growth): a unidirectional increase in entropy; (ii) prolonged episodes of exponential growth
(unbounded growth), large population size: a unidirectional decrease in entropy; and (iii) prolonged
episodes of exponential growth (unbounded growth), small population size: random, non-directional
change in entropy.

We invoke these principles, together with an allometric relationship between entropy, and the
morphometric variable body size, to provide evolutionary explanations of three empirical patterns
pertaining to trends in body size, namely (i) Cope’s rule, the tendency towards size increase within
phyletic lineages; (ii) the island rule, which pertains to changes in body size that occur as species migrate
from mainland populations to colonize island habitats; and (iii) Bergmann’s rule, the tendency towards
size increase with increasing latitude. The observation that these ecotypic patterns can be explained in
terms of the directionality principles for entropy underscores the signi¢cance of evolutionary entropy as a
unifying concept in forging a link between micro-evolution, the dynamics of gene frequency change, and
macro-evolution, dynamic changes in morphometric variables.
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1. INTRODUCTION

An organism’s size imposes constraints on its physiology
and determines its life-history and ecological traits. Size is
a relatively easy trait to measure precisely; accordingly, it
has been an important index in empirically delineating
temporal and spatial ecotypic patterns in evolution. This
article invokes a new synthesis of population genetics with
ecology, based on the concept, evolutionary entropyöa
measure of the variability in the age of reproducing
individuals in a population (Demetrius 1974)öto provide
adaptive explanations of three ecotypic patterns: changes
in body size within phyletic lineages (Cope 1886);
changes in body size as species migrate from mainland to
islands (Foster 1964; Lomolino 1985); and trends in body
size within species across latitudes (Bergmann 1847).

Cope’s rule asserts that in certain vertebrate lines there
is a general trend towards size increase over geological
time. The island rule posits that relative to mainland
populations, there is a widespread tendency for small
mammals to evolve to large body size on islands and
large mammals to evolve to smaller size. Bergmann’s rule
asserts that within many species of birds, mammals and
reptiles, body size tends to increase with increasing
distance from the equator. There is now substantial
empirical support for the validity of these rules; however,
explanations of the patterns are varied and controversial.
In the case of Cope’s rule, a common rationale is that
proposed by Stanley (1973) and Gould (1988). These
authors claim that size change within phyletic lineages is
a statistical property. According to the model, size
increase is a consequence of random evolution away from
small size: since the founding species are small, the range
of size can only expand in one direction. As regards the

island rule, it has been proposed (see Bonner 1988, ch. 3)
that since islands have small populations, a necessary
condition for the operation of genetic drift, the size di¡er-
ences between the mainland and island groups may be
due to stochastic e¡ects. With respect to Bergmann’s size
clines, a common model, originally advanced by
Bergmann and expanded by Mayr (1956) and Rensch
(1960), among others, is based on the notion of size as a
physiological adaptation for energy conservation. Heat
production in organisms is proportional to volume,
whereas heat loss varies with surface area. The larger the
organism the greater the volume in proportion to the
surface area, hence the easier it is for large organisms to
conserve heat in cooler climates.

These models view ecotypic patterns in body size as
the outcome of either statistical processes or physiological
adaptation, rather than the result of natural selection.
There is, however, strong evidence (see the discussion in
Bonner (1968), as regards Cope’s rule and the island rule,
and the analysis in Partridge & Coyne (1997), with
respect to Bergmann size clines) that the size di¡erences
that describe these ecotypic norms have a genetic basisö
a condition which points to natural selection on genetic
variation as the driving mechanism. Consistent with this
selection hypothesis, a body of literature has emerged
proposing explanations of the di¡erent ecotypic patterns
based on various criteria of selective advantage. Thus,
Brown & Maurer (1986) proposed as a model for Cope’s
rule, that size increase within phyletic lineages derives
from the advantages of large size in tolerating short-term
variation in the physical environment. Damuth’s (1993)
rationale for the island rule resides on the postulate of an
optimum body size and the claim that on islands where
the species’ usual competitors and predators are absent,
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evolution towards the optimum body size will occur.
McNab (1971), in his argument in support of Bergmann’s
rule, claims that the correlation of body size with latitude
re£ects the size of the available prey and the selective
advantage that increased size confers on predators subject
to competition for the available prey. These arguments,
although they all appeal to selective criteria, are not
embedded in any theory of evolutionary dynamics, and
hence do not provide any genetic mechanism that would
drive changes in body size over evolutionary time.

The neo-Darwinian theory asserts that macro-
evolutionary changes, such as trends in body size, are the
outcome of the micro-evolutionary processes of popula-
tion genetics. Accordingly, any evolutionary explanation
of ecotypic patterns must be based on models that
integrate the dynamics of gene frequency change with
dynamic changes in morphometric and morphological
variables under di¡erent ecological constraints.

The Standard model, the Wright^Fisher model of
population genetics, has often been invoked to explain
macro-evolutionary patterns in terms of the dynamics of
gene frequency change (see for example, the studies of
long-term evolution of bacterial populations described in
Elena & Lenski (1997)). However, the Standard model is
essentially concerned with the dynamics of gene
frequency change under viability selection. Fitness in this
model refers to the number of o¡spring that a typical
individual of a given genotype is expected to bring up to
reproductive age. It is usually represented relative to the
corresponding viability of a particular genotype, which is
assigned the value 1. The cornerstone of the Standard
model is Fisher’s fundamental theorem of natural selec-
tion, which predicts an increase in mean ¢tness. As is
now generally conceded (see for example, Karlin 1992),
Fisher’s theorem pertains uniquely to local instantaneous
changes in mean ¢tness: the theorem is an assertion
about the relative viabilities of individuals in the popula-
tion, a condition, which may have little relevance to
properties such as absolute survival and reproduction of
the population. The Standard model, with its focus on
viability selection, essentially ignores the impact of
ecological factors on evolutionary change. The model
furthermore assumes that individual di¡erences in
fecundity and mortality due to di¡erences in age, size or
physiological conditionöproperties which play a crucial
role in long-term evolutionöcan be neglected in des-
cribing the dynamics of gene frequency change.

Directionality theory (Demetrius 1992, 1997, 2000)
de¢nes a new class of models that integrates Mendelian
processes with demography. A cornerstone of this theory
is the concept of evolutionary entropy, a demographic
parameter that describes the variability in the age of
reproducing individuals in a population. Entropy is the
rate of increase of an e¡ective population size, a quantity
de¢ned by assigning weights to individuals in the di¡erent
age classes according to the frequency distribution of the
genealogies they generate (Demetrius 1983). Direction-
ality theory considers evolution as a two-step process,
involving mutation where new types are introduced into
the population, and natural selection, which modulates
the outcome of competition between the incumbent and
the mutant types. The main tenets of the theory are a
series of directionality theoremsöextensions of Fisher’s

fundamental theorem of natural selectionöwhich
describe the global changes in entropy that ensue as one
population replaces another under the mutation^selection
dynamics. Directionality theory thus forges a link
between the local dynamics of gene frequency change and
the global dynamics of changes in the life-history proper-
ties of a population. In this article we will invoke certain
scaling relations between life-history parameters and the
morphometric variable body size, to establish an allo-
metric relationship between entropy and body size, thus
generating a link between population genetics and the
dynamics of morphometric change. This article exploits
this new synthesis to provide evolutionary genetic
explanations of Cope’s rule, the island rule and
Bergmann size clines.

2. DIRECTIONALITY THEORY

Darwin’s theory of evolution by natural selection postu-
lates that adaptation, that marvellous ¢t of organisms to
the environment, is the outcome of a gradual dynamic
process that operates on two time-scales. The ¢rst
process, which acts on a short time-scale, is the intro-
duction of new variation by mutation. This event is
random in the sense that it is not related to the current
needs of the organism nor to the exigencies of the envir-
onment. The second process, which occurs over a much
longer time-scale, is the selective event. It discriminates
between types according to their capacity to survive and
reproduce in the existing environment. This selective
process is deterministic in the sense that the ultimate
¢xation of the new type within the population will be
induced by the response of the organism to the environ-
mental condition. According to the mutation^selection
dynamic, the less ¢t organisms, that is, the individuals
less well adapted to the environmental condition, will be
replaced by the more ¢t, with the process ultimately
driving the population to a state of optimal ¢tness and
adaptation to the environment.

Fitness in Darwin’s theory has a variety of connotations
depending on the behavioural features and ecological
situation being considered. It includes, according to
context, physiological and behavioural features such as
visual acuity, muscular strength and foraging ability.
These attributes confer a capacity to survive and repro-
duce in a given environment, and are expected to
improve over generations under the force of selection.

An operational measure of ¢tness, the Malthusian
parameter, was proposed by Fisher (1930), to provide a
mathematical representation of Darwin’s theory. The
Malthusian parameter, a function of the age-speci¢c
fecundity and mortality of the individuals in a popula-
tion, describes the rate of increase of total population
numbers. In populations of e¡ectively in¢nite size, the
Malthusian parameter determines the condition for inva-
sability of a new allele (see for example, Charlesworth &
Williamson 1975; Pollack 1976). As shown, however, in
Demetrius & Gundlach (1999), this condition no longer
obtains in populations of ¢nite sizeöinvasability in ¢nite
size populations is a stochastic process that depends on
the Malthusian parameter and the demographic variance,
the variance in the ages at which reproduction occurs.
These invasability conditions can be expressed in terms of
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a unique demographic parameter, evolutionary entropy, a
measure of the rate of increase of an e¡ective population
size. Directionality theory invokes entropy as a new
operational measure of Darwinian ¢tness, and exploits
this parameter to provide a quantitative model of the
Darwinian process.

(a) Evolutionary entropy
The ¢tness measure entropy can be analytically

expressed in terms of the life-history characteristics of a
population, as de¢ned by the net reproductive function
V(x) (see ¢gure 1), a product of l(x), the probability that
an individual born at age zero survives to age x, and
m(x), the mean number of o¡spring produced at age x.

The growth rate of a population, with life-history
properties described by the net reproductive function
V(x), is the unique real root, r, of the Lotka equation:

1 ˆ
1

0
exp( ¡ rx)V(x) dx. (1)

The function p(x) ˆ exp( ¡ rx)V(x) is a probability
density function that describes the age of the mother of a
randomly chosen newborn. Evolutionary entropy,
denoted H, is given by H ˆ S/T, where

S ˆ ¡
1

0

p(x) logp(x) dx; T ˆ
1

0

xp(x)dx.

The function S is a measure of the degree of iteroparity of
the population, that is, the variability in the age of repro-
ducing individuals in the population. The quantity T
describes the generation time, the mean age of individuals
at the birth of their o¡spring.

We shall assume that the probability density function
p(x) is bounded, and that the random variable X which
de¢nes p(x) has a ¢nite variance. We also restrict the
model to distributions p(x) which ensure that S is positive.
In this case, S can be interpreted as a measure of the
dispersion of the net reproductive function.

The population growth rate, or the Malthusian para-
meter, as de¢ned by equation (1), can be expressed as the
sum of two functions, evolutionary entropy H, and the
reproductive potential F:

r ˆ H ‡ F, (2)

where

F ˆ

1

0

p(x) log V(x) dx

1

0

xp(x) dx
.

The numerator in the function F, is the total net o¡spring
averaged over the di¡erent age classes.

We infer from equation (2) the following implications:

F50 ) r5H ; F40 ) r4H .

Accordingly, the function F can be used to classify popu-
lations in terms of their growth rate: F50 (bounded
growth) describes a population whose growth rate is
bounded by entropy; F40 (unbounded growth) repre-
sents a population whose growth rate always exceeds
entropy.

Evolutionary entropy parameterizes the changes in
genetic and phenotypic composition that occur when new
types are introduced into the population by mutation,
and the ancestral and mutant types compete due to selec-
tion. We distinguish between the di¡erent events that
determine the global change in entropy.

(i) Mutation
The mutation model considers a population at demo-

graphic equilibrium described in terms of a stable age
distribution and an entropy H. Random mutations occur
in a small subset of the population. These mutations will
transform the net fecundity distribution V(x) into a func-
tion V ¤(x), which we assume can be represented by the
change V ¤(x) ˆ V 1‡ ¯(x)(x), where ¯(x) is monotonic in x
(Demetrius 1992).

Let Dr and DH denote the changes in the demographic
variables r and H which result from the mutation event.
For mutations with small e¡ects, we have

Dr ˆ F¯1, DH ˆ ¡¼2¯2, (3)

where ¯1¯240, with the parameter ¼2, the demographic
variance, given by

¼2 ˆ

1

0

p(x)W(x)2 dx

1

0

xp(x)
, (4)

here, W(x) ˆ ¡xF ‡ log V(x).
We also have that the change in the demographic

variance ¼2 due to mutational changes in V(x) is given by
D¼2 ˆ ®¯3, where ¯2¯340 and ®, the correlation index is
given by

® ˆ 2¼2 ¡ 3¼2

T

1

0
xp(x)W(x) dx ‡

1
T

1

0
p(x)W(x)3 dx .

The equation (3) implies, since ¼240, the following
set of mutation relationships: F50 ) DrDH40;
F40 ) DrDH50.

The correlation index ® may in general assume positive
and negative values. However, numerical studies of
typical life-tables, that is, life-tables de¢ned by a net
reproductive function V(x) with the unimodal form given
in ¢gure 1, show that ®40. Accordingly, we obtain that
the relation, DHD¼250 holds.
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(ii) Invasion^extinction
The conditions for invasability of a mutant gene can be

analysed in terms of a synthesis of di¡usion processes and
the ergodic theory of dynamic systems (Demetrius &
Gundlach 1999). Di¡usion processes have been exploited
by Kimura (1962) and Gillespie (1974) to study the inva-
sion dynamics of populations with non-overlapping
generations. The analysis in Demetrius & Gundlach
(1999) appeals to ideas from the ergodic theory of dyna-
mical systems to extend the classical invasion analysis to
populations described by overlapping generations. These
new studies show that the outcome of competition
between the incumbent allele and the mutant type is a
stochastic event determined by the parameter s, where

s ˆ Dr ¡ 1
N

D¼2,

with N denoting the population size.
The above expression for s indicates that the conditions

for invasion will be determined by the parameters Dr and
D¼2. In view of the correlations between the changes Dr
and DH, and the changes DH and D¼2, we can express
the invasion conditions uniquely in terms of the demo-
graphic parameter DH, and a set of ecological constraints
on growth rate and population size de¢ned in terms of
the parameters F and ®. We recall that the population
growth is said to be bounded, if F50, and unbounded if
F40. We now characterize a population size as bounded,
if N5®/F, and unbounded, if N4®/F.

The invasive criteria, expressed in terms of the
measure of selective advantage given by s ˆ DH , and the
constraints on growth rate and population size, are repre-
sented in table 1.

(iii) Selection dynamics: long- term
The invasion^extinction dynamic process describes the

dynamics of new alleles on a short time-scale. In the
event that the new alleles become established in the
population, the new types will mate with the ancestral
types according to the Mendelian laws, thus generating
new genotypes. The selective process now unfolds on a
time-scale that is much longer than the invasion event.
During this process, ecological factors will regulate the
evolutionary dynamics and the number of genotypes will
vary with respect to density-dependent and frequency-
dependent e¡ects. This process can be described in terms
of the dynamic systems generated by the di¡erent

genotypes. As shown in Demetrius (1992), this coupled
dynamic system will converge to a new steady state
described by a new entropy. Moreover, if DH denotes the
change in entropy as the population evolves from one
demographic equilibrium to the next, and DH denotes the
change in entropy that characterizes the invading
mutant, we have

DHDH40. (5)

The directionality principles for evolutionary entropy
are theorems describing global changes in entropy. These
theorems are a consequence of the local changes in
entropy resulting from the invasion of new mutants, and
the correlation between local and global changes
described by equation (5). The directionality theorems
can be expressed in terms of the relationships between
(i) ecological constraints, as de¢ned by bounds on the
population growth rate, and bounds on the population
size, and (ii) global changes in entropy as one popula-
tion replaces another under the combined action of
mutation and selection. We have H(i) populations with
bounded growth: a unidirectional increase in entropy;
H(ii) populations with unbounded growth and large
population size: a unidirectional decrease in entropy;
H(iii) populations with unbounded growth and small
population size: random, non-directional changes in
entropy.

We will now derive an allometric relationship between
the entropy function S and body size, and use this
property, together with the directionality principles for
entropy given by H(i), H(ii) and H(iii) to provide
explanations of Cope’s rule, the island rule and
Bergmann size clines in terms of population genetics.

3. ENTROPY AND BODY SIZE

Body size, more than any other descriptive property, is
the fundamental factor that de¢nes the physiological and
morphological requirements, as well as the ecological
constraints of the organism. Individuals of di¡erent sizes
perform similar functionsöa condition that is expressed
in terms of a nonlinear scaling of life-history and physio-
logical variables, Y, with body size, W . This scaling
relation can be expressed as a power function (Kleiber
1961): Y ˆ aW b.

Here, a denotes a proportionality constant that varies
with the nature of Y and the kind of organism. The
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Table 1. Invasion criteria

ecological constraints demographic condition selective outcome

bounded growth (F50) DH40 mutant invades almost surely (a.s.)
DH50 mutant becomes extinct a.s.

unbounded growth (F40) DH50 mutant invades a.s.
unboundedpopulation size (N4®/F) DH40 mutant becomes extinct a.s.

unbounded growth (F40)
boundedpopulation size (N5®/F)

DH50 mutant invades with a probability that increases
withpopulation size

DH40 mutant becomes extinct with aprobability that
increases with population size



exponent b is known to fall into certain patterns deter-
mined by the dimension of the variable Y : volume rate,
such as metabolic rate (b � 3=4); and cycle time, such as
generation time (b � 1=4) (Calder 1984; Peters 1983). We
will exploit these empirical relations to show that (up to
additive constants) the entropy function S is isometric to
body size:

S ˆ kW . (6)

In deriving equation (6), we consider a population of
organisms with net reproductive function V(x) and we
assume that reproduction occurs only over part of the life
span, between ages ¬ and !, say. The quantity
¡f1/V(x)gfdV(x)/dxg represents the rate of net o¡spring
production, denoted g(x), of individuals at age x.

Now the metabolic rate, denoted P, is the rate at which
chemical energy is being transformed from nutrients into
the biochemical energy within the organism. This rate
can be measured by the total heat production of the
organism, or by the amount of oxygen used in oxidation
processes.

The quantity P will typically be a function of age.
Studies based on multicellular organisms and cells (cf.
Trincher 1965) show that P increases during the growth
phase of the organism, then decreases to some value that
is maintained constant during the stationary phase of the
adult organism. We will assume that, during this
stationary phase, the energy generated by the metabolic
processes is allocated uniquely to survivorship and repro-
duction. When this condition holds, the rate of net
o¡spring production, g(x), which can be assumed
constant in the adult organism, will be proportional to
the metabolic rate P, and we have

¡ 1
V(x)

dV(x)
dx

ˆ kP (7)

where k40. Write E ˆ !

¬
p(x) log V(x) dx. By integrating

(7) we obtain

E ˆ ¡
!

¬

kPxp(x) dx ˆ ¡kP
!

¬

xp(x) dx ˆ ¡kPT , (8)

where T denotes the generation time.
In view of the allometric relationships P ¹ W3=4 and

T ¹ W1=4, we obtain from equation (8) the isometric
relationship E ˆ ¡kW, where k denotes a proportionality
constant.

Now, we observe from equation (2) that rT ˆ E ‡ S.
We now distinguish between two constraints on popu-

lation growth rate: the stationary phase (r ˆ 0), and the
exponential phase (r40). Under stationary growth
constraints (r ˆ 0), we have E ‡ S ˆ 0, hence S ˆ kW
and the isometric relationship equation (6) holds.

Under exponential growth conditions (r40), we have
S ˆ kW ‡ rT . Now, in view of the allometric relations
r ¹ W¡1/4, T ¹ W1=4 (see Calder 1984; Peters 1983) the
product rT is independent of body size, hence
S ˆ kW ‡ c, where c denotes a positive constant.

We should point out at this juncture that there exist
several e¡orts to give a theoretical basis for the empirical
relationships between body size, and the parameters
generation time and metabolic rateöthe scaling laws we
have invoked to derive equation (6). Models based on

mechanical considerations are described in McMahon
(1973); network models involving structural and hydro-
dynamic constraints are treated in West et al. (1997). The
class of assumptions considered by each of these authors
imposes certain limits on the range of applicability of
these models. However, as noted in Hemmingsen (1960),
the scaling relationships are universalöthey apply to
cellular systems, plants and animalsögroups of organ-
isms that di¡er signi¢cantly in terms of the mechanical,
structural and hydrodynamic constraints they experience.
The restricted domain of application of the di¡erent
theories indicates that the problem of understanding the
empirical relationships between body size and metabolic
rate valid across all taxa remains unresolved.

4. TRENDS IN BODY SIZE: COPE’S RULE,

THE ISLAND RULE AND BERGMANN’S RULE

We will now invoke the principles expressed by H(i),
H(ii) and H(iii) to derive a set of directionality principles
for the entropy function S, and then use equation (6) to
predict evolutionary trends in body size.

(a) Directional changes in the entropy function S
The entropy function S is given by the relationship

S ˆ HT . The perturbation analysis (Demetrius 1992)
shows that the change DS due to small perturbations of
the net fecundity function V(x) is given by

DS ˆ »¯, (9)

where » ˆ 1
0 p(x)W(x) logp(x) dx, with W(x) given by

equation (4) and ¯340.
Typical net reproductive functions V(x), see ¢gure 1,

are positive and concave. Computing the second
derivative of W(x) shows that W(x) is also concave.
Moreover, by the mean value theorem, we have,
» ˆ W(¹)

1
0 p(x) logp(x) dx, where 05¹51. Hence

» ˆ ¡SW(¹).
Numerical studies of typical net reproductive functions

show that W(¹)40, hence »50. We conclude from
equations (3) and (9) that DHDS40. We can therefore
appeal to the directionality principles H(i), H(ii) and
H(iii) to infer similar dependencies between ecological
constraints and directional trends in the entropy function
S. We have S(i) bounded growth conditions: a unidirec-
tional increase in S; S(ii) unbounded growth conditions,
large population size: a unidirectional decrease in S ;
S(iii) unbounded growth conditions, small population
size: random, non-directional changes in S.

(b) Directional trends in body size
Now bounded growth pertains to populations with

stationary size or populations the total numbers of which
vary around some constant value, whereas unbounded
growth refers to populations that spend the greater part
of their evolutionary history in the exponential growth
phase. Hence, in view of the isometric relation between S
and body size, we can now infer the following series of
relations between the response to ecological constraints,
and trends in body size, namely W(i) populations that
spend the greater part of their evolutionary history with
total population numbers constant or varying around
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some constant value: a unidirectional increase in body
size; W(ii) large populations that spend the greater part
of their evolutionary history in the exponential growth
phase: a unidirectional decrease in body size; W(iii)
small populations that spend the greater part of their
evolutionary history in the exponential growth phase:
random, non-directional changes in body size.

(i) Cope’s rule
The predictions expressed in W(i), W(ii) and W(iii)

provide a new perspective on Cope’s rule. Our analysis
points to the context-dependency of evolutionary trends
in body size: a unidirectional increase in size will only
prevail when ecological factors induce bounded growth
conditions; a unidirectional decrease in size or a random
non-directional trend will emerge when the ecological
constraints induce a state of unbounded population
growth. The context dependency of trends in body size is
illustrated by the horse clade, an example discussed in
Jablonski (1996). This clade has often been considered to
be a canonical example of Cope’s rule. However, a more
detailed study (MacFadden 1986), has shown that the
pattern of size changes in North America and Europe are
quite distinct. The clade in North America can be charac-
terized by two phases: a static condition, during the early
part of the group’s history, and a unidirectional increase
in body size from the late Miocene to the Pleistocene. The
Plio^Pleistocene lineage in Europe, however, is described
by a unidirectional decrease in body size. These di¡er-
ences in the North American and European patterns are
correlated with the di¡erent ecological constraints that
de¢ne the two regions. These correlations underscore our
prediction that evolutionary trends in body size are
modulated by the ecological constraints that the species
endure. The predictions also elucidate the empirical
observation that trends over long-term and trends over
short-term scales have di¡erent signatures. The demo-
graphic condition de¢ned by small population size and
rapid exponential growth evidently can only prevail over
short periods of time; consequently, we predict that
random non-directional changes in body size will only be
observed over short periods of a species’ evolutionary
history. Most mammals spend the greater part of their
evolutionary history with a total population size that is
constant or varying around some constant value. Hence,
in accordance with W(i), most mammalian lineages over
the long term will be characterized by an increase in
body size.

(ii) The island rule
The relationships between the response to ecological

forces and trends in body size, as described by W(i) and
W(ii), also provide an explanation of the island rule
(Foster 1964; Van Valen 1973). This empirical general-
ization pertains to changes in body size that occur as
species migrate from mainland populations to colonize
island habitats. These patterns can be classi¢ed in terms
of the body size (large, medium, small) of the mainland
population as follows: (i) large size: evolution toward
smaller sizes; (ii) medium size: no particular trend in size
change; (iii) small size: evolution toward larger sizes. The
explanation of the island rule we advance derives from
(a) the relationship between ecological constraints and

trends in body size, as described by W(i) and W(ii) and
(b) the observation that populations in mainland and
island populations will be subject to di¡erent ecological
forces. As noted in Sondaar (1977), among others, carni-
vores, the main predators of large mammals, are typically
widespread on the mainland but largely absent in island
populations. However, birds of prey, the main predators
of medium-sized organisms, such as insectivores and lago-
morphs, will be equally present on the mainland and
islands. In the case of large mammals, the absence of
predators on islands entails that in island habitats these
populations will spend the greater portion of their
evolutionary history in the exponential growth phase, a
condition that will result in a unidirectional decrease in
size. In the case of medium-sized mammals, the presence
of predators on both the mainland and the island implies
that medium-sized species will be subject to similar
ecological constraints in both environments. Since the
mainland population would be characterized by a size
optimal for these ecological conditions, we infer that the
island colonists, subject to the same ecological constraints
as their mainland ancestors, will undergo very little
change in size. Small organisms, as in the case for
medium-sized species, will be subject to the same group
of predators, namely birds of prey, on the mainland as on
islands. Founder populations of small organisms on
islands will initially increase rapidly in numbers and soon
exhaust the island resources. These resource limitations
will result in constraints on population numbers, conse-
quently, small-sized populations will spend the greater
part of their evolutionary history in the stationary phase,
or £uctuating around some constant population size,
conditions that entail a unidirectional increase in size.
This model thus predicts that as species migrate from
mainland to island habitats, there will be a decrease in
body size (in large organisms), no particular change in
size (in medium-sized organisms), and an increase in body
size (small organisms). The factors of competitive release
and resource limitation that drive our analysis have also
been invoked in Lomolino (1985) to explain the island
rule. Lomolino’s argument, however, was based uniquely
on ecological considerations. The model we have
described derives from an evolutionarygenetic argumentö
a consequence of the directionality principles for evolu-
tionary entropy, expressed by H(i), H(ii) and H(iii).

(iii) Bergmann’s rule
The allometric relationship between entropy and body

size and the directionality principle for entropy also
provides an adaptive explanation for Bergmann’s rule, the
observation that species exhibit latitudinal clinesölarger
size in colder regions, smaller size in warmer regions. In
order to explain the Bergmann cline, we ¢rst observe that
di¡erent geographical regions will di¡er in terms of
resource productivity. In colder regions, the duration of
abundance of forage is shortöa condition that will
impose limits on the population growth rate, corre-
sponding to stationary or near-stationary states. In the
tropics, the wet season will allow a greater abundance of
forage, and consequently, organisms will experience a
respite from severe competition. This situation will induce
frequent and prolonged episodes of rapid exponential
growth. Hence populations in the colder climates will
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evolve under constraints that induce prolonged episodes
of stationary growth, whereas in warmer climates, their
evolutionary history will be characterized by extended
episodes of exponential growth. We can therefore invoke
the directionality principle for entropy to predict Berg-
mann size clines: large body size in races that occupy
colder climates, smaller body size in races that dwell in
warmer climates. We conclude that the Bergmann size
clines are the consequence of the evolutionary response of
di¡erent groups to ecological forces: larger size is an
evolutionary adaptation to the bounded growth condi-
tions that result from the resource limitations which
de¢ne races evolving in colder climates.

5. CONCLUSION

The explanations of Cope’s rule, the island rule and
the Bergmann size cline advanced in this article point to
the directionality principle for evolutionary entropy as a
unifying tenet in understanding patterns of macro-
evolutionary change in terms of the dynamics of gene
frequency change. Entropy, a demographic variable,
represents an operational measure of Darwinian ¢tness.
This claim derives from two main properties that the
entropy parameter characterizes: (i) invasion criteria:
the conditions for establishment of a mutant allele;
(ii) directionality: the parameterization of the evolu-
tionary process as one population replaces another under
mutation and selection. Entropy is also allometrically
related to body size. The directionality principles for
entropy thus provide a basis for understanding ecotypic
patterns involving body size in terms of micro-
evolutionary processes.
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