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I use a model of avian migration based on maximization of overall migration speed to compare the
strength of selection acting on foraging performance and £ight speed. Let the optimal foraging behaviour
be u¤ and the optimal £ight speed be v¤. It is shown that at this optimum, the ratio of the strength of
selection on foraging to the strength of selection on £ight speed is ³ ˆ ¡(u¤2P®00/v¤2®P 00), where ® is the
rate of energy expenditure during £ight and P is the rate at which energy is gained during foraging. The
dimensionless ratio P=® is the ratio of time spent building up fuel to time spent £ying which
A. Hedenstro« m and T. Alerstam showed was much greater than unity. Although ³ depends on this ratio,
it also depends on the curvatures of the functions, as represented by ®00 and P 00. I use this simple example
to make some general points about the strength of selection.
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1. INTRODUCTION

Because the rate at which a bird or mammal uses energy
is typically very much larger in £ight than in other
activities, it is tempting to believe that there must be
strong selection pressure on £ight behaviour. Hedenstro« m
& Alerstam (1997) present an analysis that is relevant to
an evaluation of the strength of selection on £ight speed.
They show in the context of avian migration that a bird
is likely to spend much more of the total journey time
foraging than £ying. They also show that the bird is
likely to spend more energy on foraging than on £ight.
These results suggest that there may be stronger
selection pressure on foraging than £ight speed during
migration, but this view cannot be substantiated without
further analysis. In the absence of such an analysis, it is
not clear if selection pressure should depend on time
spent or energy spent. In this paper I use a migration
model of Alerstam & Lindstro« m (1990) in the form
discussed by Hedenstro« m & Alerstam (1995) to obtain
results about the strength of selection acting on
deviations from optimal foraging and optimal £ight
speed.

We can take the strength of selection acting on beha-
viour u to be @F/@u, where F is ¢tness (cf. the directional
selection gradient, Lande & Arnold 1983). In the context
of migration, Alerstam & Lindstro« m (1990) introduced
the idea of investigating various simple currencies that
might be directly related to ¢tness. The case on which I
will focus here is time minimization, i.e. the assumption
that ¢tness is maximized by minimizing journey time or
(equivalently) by maximizing the overall speed of migra-
tion, S. Then

@F
@u

ˆ
dF
dS

@S
@u

.

It may not be easy to estimate dF /dS, which means that
we cannot comment on the absolute magnitude of @F/@u
on the basis of @S/@u. We can, however, ¢nd the relative

magnitude of selection on behaviours u and v by means of
the ratio

@S=@u
@S=@v

ˆ
@F=@u
@F=@v

.

If we are interested in the strength of selection for beha-
viour that maximizes migration speed, the analysis needs
to be taken a bit further. When S is maximized then @S/@u
and @S/@v are zero. In this case, the cost of deviation from
the optimum will depend on higher order derivatives.
Consider ¢rst a small deviation ¢u from the optimal value
u¤ of u. It follows from a Taylor series expansion that the
change in S is 1

2(¢u)2(@2S/@u2) plus higher order terms. In
this paper I will work with the cost associated with a
proportional change ¢u/u¤. (This change is dimension-
less.) The change in S as a result of this proportional
change in u will be 1

2
u¤2(¢u/u¤)2(@2S/@u2). Thus we can

take 1
2u¤2(@2S/@u2) to be a measure of the cost of a propor-

tional deviation from u¤. By an analogous argument, the
cost of a proportional deviation from the optimal value v¤

of v is 1
2
v¤2(@2S/@v2). Both of these expressions are dimen-

sionless. Once again we cannot measure the absolute e¡ect
of deviations from the optimum in terms of ¢tness, but we
can estimate the relative magnitude by taking the ratio of
these expressions.

2. THE MODEL

I consider the model of Alerstam & Lindstro« m (1990)
as extended by Hedenstro« m & Alerstam (1995). The bird
travels a distance D between refuelling sites. If it £ies at
speed v, it expends energy during £ight at a rate P(v).
While on the ground the bird has a choice of foraging
option. If it chooses option u, then its net rate of energetic
gain is ®(u). The time spent £ying is D/v and the energy
spent on £ight is (D/v)P(v). The time taken to replace this
energy is (D/v)(P(v)/®(u)) and so the total time T for the
journey is given by the equation
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T ˆ
D
v

1 ‡
P(v)
®(u)

. (1)

The overall speed of the migration is

S ˆ
D
T

,

ˆ
v®(u)

®(u) ‡ P(v)
:

(2)

As Hedenstro« m & Alerstam (1995) point out, S is
maximized by maximizing the net rate of gain ®. The
value of u that results in this maximum will be denoted
by u¤. The optimal £ight speed v¤ can be found from the
condition @S/@v ˆ 0. From equation (2),

@S
@v

ˆ
(® ‡ P)® ¡ v®P0

(® ‡ P)2 : (3)

It follows that v¤ satis¢es the equation

® ‡ P ˆ vP0, (4)

(Alerstam & Lindstro« m 1990; Alerstam 1991; Hedenstro« m
& Alerstam 1995).

Two other speeds that are discussed in the context of
optimal £ight are the minimum power speed vmp and the
maximum range speed vmr (see Hedenstro« m & Alerstam
(1995) for a review). At vmp , the rate of expenditure while
£ying is minimized, and hence the time that can be spent
in the air per unit energy spent is maximized. At vmr, the
distance £own per unit of energy spent v/P is maximized.
At vmp , P0 ˆ 0, and at vmr, vP0 ˆ P. Given that P0

increases with v above vmp , then these conditions together
with equation (4) mean that vmp5vmr5v¤.

3. THE STRENGTH OF SELECTION

The strength of selection for optimal foraging beha-
viour is proportional to u2(@2S/@u2) evaluated at u¤. It
follows from equation (2) and the condition that
®0(u¤) ˆ 0 that

@2S
@u2

u¤

ˆ
P(v)®00(u¤)v

(®(u¤) ‡ P(v))2 : (5)

The strength of selection for optimal £ight speed is
proportional to v2(@2S/@v2) evaluated at v¤. From equa-
tions (3) and (4) it can be seen that

@2S
@v2

v¤
ˆ ¡ P00(v¤)®(u)v¤

(®(u¤) ‡ P(v¤))2 . (6)

Let

³ ˆ
u¤2@2S/@u2

v¤2@2S/@v2
,

where both partial derivatives are evaluated at u¤ and v¤.
Then

³ ˆ ¡ u¤2P(v¤)®00(u¤)
v¤2®(u¤)P00(v¤)

. (7)

(Exactly the same equation for ³ results if we work with
minimizing journey time rather than maximizing migra-
tion speed. Note that ®00(u¤)50 and so ³ is positive.)

By de¢nition, ³ is the ratio of the selection pressure on
foraging to the selection pressure on £ight speed at the
joint optimum. Equation (7) shows that the ratio
P(v¤)/®(u¤) is one component of ³. P is the rate of energy
expenditure during £ight and ® is the net rate of energetic
gain while foraging, so P/® is dimensionless. It can also
be seen that ³ depends on the curvature of P and ®, as
indicated by the second derivatives. P 00 depends on the
bird’s power curve P, which in turn depends on the bird’s
morphology. ®00 depends on the foraging options that are
available. As an example, let u be the bird’s search speed,
and assume that the rate at which it encounters food
items is qu (cf. Ware 1975). Items have energetic content e
and handling time h. The bird’s rate of energy expendi-
ture while foraging is m ‡ cu. It follows that the gross rate
of gain is equ/(1 ‡ hqu), and hence the net rate of gain
®(u) is given by the following equation:

®(u) ˆ
equ

1 ‡ hqu
¡ cu ¡ m: (8)

From the condition that ®0(u¤) ˆ 0, it can be shown that

u¤ ˆ
(eq/c)0:5 ¡ 1

hq
. (9)

It can also be shown that

®00 ˆ
¡2eq2h

(1 ‡ hqu)3 : (10)

It follows from equations (9) and (10) that

®00(u¤) ˆ ¡2q0:5hc1:5e¡0:5: (11)

4. THE RATIO P/gggggggg

We have seen that ³ depends on the ratio P/® evaluated
at u¤ and v¤. As Hedenstro« m & Alerstam (1997) point
out, this ratio is equal to the time spent building up fuel
at a refuelling site divided by the time spent £ying
between sites, i.e.

P
®

ˆ
refuelling time

flying time
.

This ratio occurs in several other contexts. From equation
(2) the overall speed of migration can be written as

S ˆ
v

1 ‡ P/®
, (12)

which makes it clear that the overall speed depends on
just the £ight speed and the dimensionless ratio P/®.

The ratio P/® also emerges if we consider the strength
of selection on £ight speed when speed is not optimal. At
vmp , P0 ˆ 0 and so it follows from equation (3) that

@S
@v vmp

ˆ
1

1 ‡ (P(vmp)/®)
. (13)

At vmr, P ˆ vP0, and so from equation (3)

@S
@v vmr

ˆ
1

(1 ‡ (P(vmr)/®))2 : (14)
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Because vmr4vmp and P is an increasing function, the rela-
tive strength of selection satis¢es the following inequality:

@S
@v vmp

@S
@v vmr

41 ‡
P(vmp)

®
. (15)

5. DISCUSSION

In this paper I have used a model of £ight speed and
forging during migration to investigate the strength of
selection acting on deviations from optimal behaviour. The
relative strength of selection on foraging as opposed to
£ight speed is ³ ˆ ¡(u2P®00/v®P 00), where all the functions
are evaluated at the optimum.The dimensionless ratio P/®
is the relative allocation of time to building up fuel as
opposed to £ying. Hedenstro« m & Alerstam (1997) argue
that this ratio is likely to be much larger than unity. This
means that all else being equal, selection will be stronger
on foraging than on £ight. The equation for ³ also shows
that the ratio ®00/P 00 is important, i.e. strength of selection
depends on the curvature of the underlying functions.

The equation for ³ is symmetrical, but there is an under-
lying asymmetry in the way that u and v interact. The
optimal value of v depends on P and ®, whereas the optimal
value of u depends on ® but is independent of P. Thus u¤

can be found without knowing v¤, but v¤ depends on u¤.
Charnov (1993) shows that dimensionless numbers can

be used in the analysis of a range of problems in evolu-
tionary biology. The dimensionless ratio P/® occurs in
several of the equations that I have obtained, including
the selection ratios (equations (7) and (15)). Hedenstro« m
& Alerstam (1997) show that the empirically derived
allometric equations, based mainly on data from small or
medium-sized passerines, imply that P/® is roughly 7. If
we take P/® to be an approximate invariant for these
birds (cf. Charnov 1993) then it follows from equation
(12) that their overall speed of migration is about one-
eighth of the £ight speed, and the strength of selection on
£ight speed at vmp is about eight times as great as it is at
vmr (equation (15)). If we do not assume invariance, then
this relative strength of selection decreases as ® increases.

Hedenstro« m & Alerstam (1998) present an analysis of
migration speed and obtain some general allometric
equations. They calculated migration speed S at vmp , vmr

and the optimal speed v¤ for a range of species under the
assumption that ® was equal to basal metabolic rate. They
found that £ying at vmr instead of v¤ reduced S by less than
1%, whereas £ying at vmp resulted in a reduction of
between 65 and 76%.This led them to conclude that selec-
tion on £ight speed is probably not very strong if speed is
between vmr and v¤. This analysis is based on a relatively
large change in behaviour. In contrast, my analysis is based
on small deviations either from v¤, vmr or vmp.

The model that I have used is simple. It ignores
constraints on energy expenditure (see Houston (1993),
Hedenstro« m & Alerstam (1995) and McNamara &
Houston (1997) for discussion of the e¡ects of such a
constraint on optimal behaviour) and assumes that maxi-
mizing migration speed will maximize ¢tness (for a

broader discussion of optimal migration, see Alerstam &
Hedenstro« m (1998) and Houston (1998)). These simpli¢-
cations limit the conclusions that can be drawn about
actual strengths of selection in the context of migration.
Such a speci¢c analysis is not, however, the main aim of
the paper. I have used a model of migration to illustrate
some general features of the relative strength of selection
acting on two behaviours.

One general feature is that we cannot judge the relative
importance of activities by comparing rates of energy
expenditure. Flight is energetically expensive, but £ight
has to be paid for by foraging, and this puts pressure on
foraging behaviour. This point also applies to compari-
sons of foraging behaviour and mating behaviour. Mating
behaviour may be very expensive in terms of energy, and
unlike foraging it makes a direct contribution to repro-
duction. It does not follow, however, that the strength of
selection on mating behaviour will be greater than the
strength of selection on foraging behaviour. As in the case
of £ight, the animal has to forage in order to gain enough
energy to mate e¡ectively, and as a result the strength of
selection on foraging may be greater than the strength of
selection on mating. Another feature of equation (7) that
will hold in general is that the strength of selection will
depend not just on the time allocated to activities but also
on the consequences of changing behaviour. When we are
considering deviations from an optimum, these conse-
quences will be represented by the second derivatives of
the functions that relate behaviour to performance. Any
claim about the strength of selection that does not include
the curvature of these functions is unlikely to be correct.

This paper has been improved as a result of discussions with
John McNamaraandcomments from Gudmundur Gudmundsson,
John Lazarus, J. McNamara and an anonymous referee. My
thanks to them all.
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