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Understanding the persistence of measles:
reconciling theory, simulation and observation
Matt J. Keeling* and Bryan T. Grenfell
Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

Ever since the pattern of localized extinction associated with measles was discovered by Bartlett in 1957,
many models have been developed in an attempt to reproduce this phenomenon. Recently, the use of
constant infectious and incubation periods, rather than the more convenient exponential forms, has been
presented as a simple means of obtaining realistic persistence levels. However, this result appears at odds
with rigorous mathematical theory; here we reconcile these differences. Using a deterministic approach,
we parameterize a variety of models to fit the observed biennial attractor, thus determining the level of
seasonality by the choice of model. We can then compare fairly the persistence of the stochastic versions
of these models, using the ‘best-fit’ parameters. Finally, we consider the differences between the observed
fade-out pattern and the more theoretically appealing ‘first passage time’.
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1. INTRODUCTION

Localized extinctions are a common feature of all small
populations and have been observed and modelled for ani-
mals (Stacey & Taper 1992; Lande 1993; Hanski et al.
1995; Holyoak & Lawler 1996; Ludwig 1996; Sutcliffe et
al. 1997; Bascompte & Rodriguez-Trelles 1998; Marion et
al. 2000), plants (Ouborg 1993; Tilman 1994; Swinton &
Gilligan 1996) and diseases (Bartlett 1957, 1960; Black
1966; Grenfell 1992; Keeling 1997; van Herwaarden
1997; Caraco et al. 1998; Earn et al. 1998). In 1957, Bart-
lett made the seminal observation that the number of
localized extinctions, or fade-outs, of measles was related
to the population size of the community. Small popu-
lations demonstrated many extinctions, whereas large
populations showed very few; similar results have also
been observed for other diseases and also larger organ-
isms. This led to the notion of the critical community size
(CCS), which is defined as the smallest population size
that does not exhibit disease extinctions. The CCS has
been estimated for a variety of communities, including cit-
ies in England and Wales (Bartlett 1957), cities in the
United States (Bartlett 1960; Bolker & Grenfell 1996) and
isolated islands (Black 1966). Surprisingly, its value is
remarkably consistent between datasets, lying between
three and five hundred thousand.

Given the robust nature of the CCS and the associated
pattern of fade-outs, many researchers have attempted to
capture these features using stochastic event-driven mod-
els (Bartlett 1956; Grenfell 1992; Grenfell et al. 1995;
Bolker & Grenfell 1996; Ferguson et al. 1997; Keeling
1997; Keeling & Grenfell 1997). However, the persistence
of real-world systems is an emergent phenomenon and
arises from the interaction between dynamics and stochas-
ticity. Such a phenomenon cannot be built into a model
a priori and can only be determined by repeated simulation
of the stochastic system—although recently some progress
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has been made towards more analytical approaches
(Andersson & Djehiche 1998; Swinton 1998; Nasell 1999;
Andersson & Britton 2000; Keeling 2000). Therefore,
each new stochastic model must be simulated and com-
pared with the available fade-out data, which can often be
a computationally intensive process.

The earliest models all vastly overestimated the CCS,
being unable to demonstrate the levels of persistence
observed. More complex stochastic models that included
more heterogeneities, such as age-structure or spatial-
structure, did far better but still underestimated the
amount of persistence (Bolker & Grenfell 1995; Grenfell
et al. 1995; Ferguson et al. 1997; Keeling 1997). In 1997,
Keeling and Grenfell proposed a simple modification to
the standard models that vastly increased persistence by
forcing the incubation and infectious periods to be closer
to fixed intervals, rather than the standard exponential dis-
tribution that is commonly implemented. These more
constant periods agree well with observations of disease
transmission within households (Hope-Simpson 1952;
Bailey 1956) and demonstrate the high frequency ‘pulsing’
detectable at the start of many epidemics (Keeling &
Grenfell 1997).

With such constant periods, however, there appears to
be a discrepancy between theory and simulation. Work on
SIR-type (susceptible, infectious, recovered) models has
shown theoretically that constant periods destabilized dis-
ease dynamics (Grossman 1980; Nassell 1999; Anders-
son & Britton 2000; Lloyd 2001), whereas the numerical
simulations of Keeling & Grenfell (1997) showed far
greater persistence for these constant periods. This differ-
ence between theory and simulation can be resolved by
realizing that all models should be able to accurately
reproduce the general biennial pattern of measles epi-
demics observed before vaccination. That is, by forcing a
model to be an accurate description of the observed
measles dynamics, the parameter values are governed by
our choice of model. The previous theoretical work kept
the parameters fixed while varying the model and there-
fore has not necessarily been comparing reliable models
of measles.
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Figure 1. The total number of reported measles cases from the major cities of England and Wales. Biennial cycles are clearly
evident from 1950 until vaccination started in the late sixties.

Using deterministic models of various sorts, § 2 explores
which parameters provide the best fit to the observed data
for each model type. In § 3 we abandon the deterministic
framework and use event-driven stochastic models, which
is necessary to capture the phenomena of extinction and
persistence. With these models we consider two measures
of persistence: the average number of extinctions (or fade-
outs) per year and the probability of extinction within a
given time-frame.

2. FITTING MODELS TO DATA

Between 1950 and 1968, measles in large communities
in England and Wales showed a clear biennial signature,
with a major epidemic every other year (figure 1). We
therefore propose that, before vaccination, measles (as
least in England and Wales) had an underlying determin-
istic 2-year cycle (Schenzle 1984; Anderson & May 1992).
In particular, we can find the mean observed biennial pat-
tern Xobs and the variance about it, Vobs,

Xobs(t) =
1
9�

8

� = 0

Î(1950 + 2∗� + t) 0 � t � 2, (2.1)

Vobs(t) =
1
8�

8

� = 0

[Î(1950 + 2∗� + t) � Xobs(t)]2, (2.2)

where Î(t) is the proportion of the population infectious
at that time, as estimated from the number of reported
cases. Throughout, we have used data from London (the
largest city in the UK) for comparison with our determin-
istic models.

We now want to compare the results of a deterministic
model against the observations and determine a least-
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squares fit. If I∗(t) is the proportion of infectious individ-
uals on the deterministic attractor of the model, then we
define the error between the model and observations, EV,
to be,

EV =
1
2�

2

0

(I∗(t) � Xobs(t))2

Vobs(t)
dt. (2.3)

Note that for mathematical simplicity we have implicitly
assumed that the attractor of the deterministic model is
biennial. This error, EV, measures the deviation of the
model from the observed attractor relative to the observed
variation at that point. As such, minimizing EV gives a
weighted least-squares fit. A second error measure, E1, has
been used to confirm the generality of the results,

E1 =
1
2�

2

0

(I(∗t) � Xobs(t))2dt, (2.4)

where, for conformity, we first scale the population size
and observed data such that the average number of infec-
tious cases per year is one. This alternative measure of the
error is simply the variance about the average observed
attractor; hence, minimizing E1 results in a standard least-
squares fit.

Using the two error measures given above, we can now
refine the parameters of any given model so as to achieve
a good match between the simulated attractor and the
observed dynamics. For completeness, we will consider a
variety of models, which are composed from three funda-
mental elements. (Appendix A gives the underlying differ-
ential equations that correspond to these deterministic
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Figure 2. Comparison between household observations and the distribution of infectious period for the three models. (a) The
daily probability of infection from households where one individual is infectious and one is susceptible (data from Hope-
Simpson 1952; Bailey 1956). (b, c and d) The probability that an individual infected at time zero is exposed (light grey) or
infectious (dark grey) at a later time. ((b) exponential SEIR, (c) gamma SEIR and (d ) constant SEIR.)

models.) These elements can be assembled in different
combinations to generate a multitude of models.

The most basic element is whether measles is modelled
as SIR or SEIR (susceptible, exposed, infectious,
recovered) (Anderson & May 1992). We insist that the
infectious and incubation periods conform to the observed
durations (Hope-Simpson 1952; Bailey 1956) so that, for
the SIR model, the average infectious period is 13 days,
whereas for the SEIR model, the average exposed period
is 8 days while the average infectious period is 5 days.
Throughout this paper we shall concentrate on the more
realistic SEIR-type models, although results are also given
for the simpler SIR models. We also stipulate that the
value of R0, averaged around the attractor, is 17
(see Appendix A), again conforming to observations
(Anderson & May 1992).

The second element is the distribution of the infectious
(and exposed) periods. Although much of the original
theory of epidemics allows a wide range of assumptions
about the periods (Kermack & McKendrick 1927), here
we concentrate on three distinct forms (figure 2). The per-
iods can either be the standard exponential distributions,
derived by individuals moving from the exposed to the
infectious class and then into the recovered class at a con-
stant rate (Anderson & May 1979, 1992; May & Anderson
1979); a constant distribution, where all individuals
remain exposed or infectious for a fixed amount of time
(Keeling & Grenfell 1997); or a gamma distribution,
where the exposed and infectious periods are broken down
into a series of subclasses through which individuals move
at a constant rate (Anderson & Watson 1980; Lloyd

Proc. R. Soc. Lond. B (2002)

2001). The gamma distribution model allows us to slide
continuously from the exponential distribution (where the
variance is greatest) to the fixed-period model (where the
variance is zero), by increasing the number of subclasses.
Here, for convenience, we have chosen the number of sub-
classes such that an individual spends an average of one
day in each subclass.

The final element is the form of the seasonality and
again, two approaches are possible. The earliest and math-
ematically most convenient approach is to use sinusoidal
forcing of the contact rate (Aron & Schwartz 1984;
Olsen & Schaffer 1990; Rand & Wilson 1991).

�(t) = b0(1 + b1sin(2�t)). (2.5)

Recently, term-time forcing has proved more popular
due to its mechanistic derivation and the observation of
its signature in the case notification data (Schenzle 1984;
Bolker 1993; Earn et al. 2000; Finkenstädt & Grenfell
2000),

�(t) = b0(1 + b1term(t)), (2.6)

where ‘term’ is �1 during school holidays and +1 during
term-times. The fact that R0 is fixed allows us to obtain a
value for b0,

b0 =
R0

inf. period × �1 + b1sin(2�t)� or (2.7)

b0 =
R0

inf. period × �1 + b1term(t)�
,

where �.� is the geometric average. However, the level of
the seasonality, b1, is still undetermined.
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Figure 3. Graphs showing the best fit biennial cycle from four different model types ((a),(b): the standard exponential SEIR;
(c),(d): the gamma SEIR; (e),(f ): the constant SEIR and (g),(h): the constant SIR) and two types of forcing (the left column
is term-time and the right column is a sine wave). The deterministic cycle (solid line) is superimposed on the average biennial
cycle from London (dotted line), with the shaded region showing two standard deviations. The inset graphs show the error,
EV, as a function of the seasonal forcing b1, the large dot marks the minimum.

We find the appropriate level of seasonality by minimiz-
ing the error (obtaining a least squares fit) between the
model and the average biennial cycle. Figure 3 compares
the average observed epidemic cycle in London, Xobs, with
the deterministic attractor, I∗, when the error, EV, is mini-
mized; the inset graphs show this error against the level
of seasonality, b1. Table 1 gives the numerical values of b1

that minimize the error for all 12 possible models. Two

Proc. R. Soc. Lond. B (2002)

key factors emerge. First, the constant period SIR models
(figure 3g,h) fail to capture the observed biennial cycle and
therefore must be rejected as a model of measles. This
failure is interesting because it shows that details can be
very important and that the slight delay induced by the
exposed period is necessary to capture the dynamics. The
second factor is that the standard exponential models
require much higher levels of seasonality than the more
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Table 1. Optimum level of seasonality, b1 and the associated error, E, for the six different model types and the two kinds of
seasonal forcing.
(Note for comparison that the PRAS model (Keeling & Grenfell 1997) has an error of only EV = 0.31.)

model term-time sinusoidal

EV E1 EV E1

b1 error b1 error b1 error b1 error

exponential SIR 0.55 1.02 0.32 1.56 0.20 0.64 0.12 0.84
exponential SEIR 0.51 1.18 0.29 1.44 0.18 0.64 0.11 0.85
gamma SIR 0.16 0.69 0.15 1.65 0.05 0.50 0.05 1.42
gamma SEIR 0.22 0.82 0.13 1.14 0.09 0.49 0.05 0.80
constant SIR 0.22 2.34 0.21 4.78 0.08 2.41 0.07 7.95
constant SEIR 0.17 0.76 0.10 1.12 0.07 0.48 0.04 0.82

narrowly distributed periods of the gamma and constant
models. This is in agreement with the theory of Grossman
(1980) and the results of Lloyd (2001), showing that mod-
els with less variability in their infectious and exposed per-
iods are more unstable, and therefore that much lower
levels of seasonality are required to excite biennial oscil-
lations. However, we have constrained our model to be a
good fit to the observed measles dynamics; hence each
model has an associated value of b1, and this value must
be sufficiently large to produce biennial oscillations but
not so large that more complex dynamics arise (Lloyd
2001).

It should be noted that such a method of fitting models
to data also has some associated problems. We are fitting
the results of a deterministic, homogeneous system of
equations to the observations from London, which is
inherently stochastic, heterogeneous and may be affected
by changes in birth rate, schooling patterns etc. Small vari-
ations in the precise timing of the major epidemic between
biennia will lead to an average profile that has a lower
maximum and a major epidemic of longer duration than
any single realization. Also, a single measurement of the
error cannot capture all the qualitative features of the
model; the sinusoidally forced models have slightly lower
errors than the term-time forcing and yet do not repro-
duce the characteristic abrupt changes that are caused by
the beginning and ending of school terms. Thus, while all
models should be made to satisfy some best-fit criterion,
there is no clear candidate for what this criterion should
be.

It should now be clear that if we wish to compare the
behaviour of a variety of models, we should first insist that
all the models capture the observed dynamics. Here we
have fine-tuned our models by fitting the seasonality para-
meter b1. In general, we could fit several parameters by
this method, including R0 and the infectious and incu-
bation periods, although this would be more compu-
tationally challenging. By selecting the optimal b1, all
viable models now possess similar dynamics and hence
similar stability properties (all have a stable deterministic
biennial cycle); we can therefore compare the effects on
persistence of the various model assumptions (using
stochastic simulations) without the results being obscured
by differing underlying attractors.

Proc. R. Soc. Lond. B (2002)

3. MEASURES OF PERSISTENCE

In the previous section, for reasons of speed and con-
venience, we have used deterministic models where popu-
lation levels are considered to be real numbers and
infinitesimal changes occur over infinitesimal time-scales.
However, to model extinctions and therefore persistence,
we need to move to a stochastic framework (Renshaw
1991), where events occur randomly—but with an under-
lying rate given by the differential equations—and popu-
lation levels are always integers. These stochastic models
share many of the qualitative features observed in the case-
report data for measles, including variation about the
attractor (Keeling & Grenfell 1999) and stochastic extinc-
tions. Obviously, due to the random nature of these mod-
els, an exact match between reported cases and the model
output is virtually impossible. Instead, while checking that
the underlying biennial pattern remains, we concentrate
on capturing one of the most interesting features of sto-
chastic systems: its persistence.

Two measures of persistence have been used in ecology
and epidemiology. One is the number (or total duration)
of extinctions in a population with immigration (Bartlett
1957; Grenfell 1992; Keeling 1997), which compares well
with localized extinctions in a metapopulation or main-
land–island model (Gilpin & Hanski 1991; Hanski & Gil-
pin 1997). This is the fade-out pattern observed by
Bartlett (1957) that leads to the well-known critical com-
munity size. However, the actual level of immigration is a
very difficult parameter to ascertain and, as shown below,
may have a strong impact on the persistence of the disease.
The other measure of persistence is defined for an isolated
population with no immigration, and is found by calculat-
ing the expected time to extinction (often called the first
passage time) or by calculating the probability of extinc-
tion during a given period (Ludwig 1996; Donalson &
Nisbet 1999; Farrington & Grant 1999; Nasell 1999;
Saether et al. 2000). This measure is a very convenient
abstraction as it does not rely on the presence of an
unknown external source of imports. However, it does not
compare readily with any biological quantity—there are
no totally isolated populations—hence we cannot easily
compare model results with observations of the real world.

Figure 4a gives the observed pattern of fade-outs from
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Figure 4. The average number of fade-outs per year against
population size. (a) Comparison of the observed results from
England and Wales (1944–1968) (dots), against the most
accurate mechanistic model to date, the stochastic PRAS
model (black line) (Keeling & Grenfell 1997). The grey
hashed region is the 95% confidence interval from 200
simulations of a 24 year period (this time-scale was chosen
to correspond with the prevaccination era in England and
Wales). (b and c) Results from the three different models,
exponential SEIR (red lines), gamma SEIR (blue lines) and
constant SEIR (green lines). Two types of seasonal forcing
were used, term-time forcing (solid line and filled circles)
and sinusoidal forcing (dashed line and open diamonds).

Proc. R. Soc. Lond. B (2002)

England and Wales (1944–1968) together with the results
of the pulsed realistic age structured model (PRAS) model
(Keeling & Grenfell 1997) that combines age structure
and narrow distributions of periods. Figure 4b,c shows the
fade-out pattern for the six different SEIR models shown
in figure 2 (exponential, gamma and constant, all with
either sinusoidal or term-time forcing). Following the
work of Bartlett (1960), the import rate, Z, of infectious
individuals into the population is taken to be:

z = k�population size.

In figure 4a,b, the proportionality constant, k, is 0.01,
whereas in figure 4c, the constant is 0.02. Three key obser-
vations can be made from these graphs. First, (by compar-
ing figure 4b,c) the level of imports is crucial in
determining the pattern of fade-outs—obviously as more
disease flows into the community the number of fade-outs
decreases. Second, comparing figure 4a with 4b, the
extra structural heterogeneity introduced in the age-
structured (PRAS) model leads to increased persistence
compared with the SEIR models. Finally, from figure 4b,c
it is clear that the models with narrowly distributed per-
iods (gamma SEIR and constant SEIR) have similar high
levels of persistence, whereas the models with exponen-
tially distributed periods exhibit more fade-outs.

For isolated populations with no imports, the prob-
ability of extinction during a 30 year period after transients
shows different behaviour (figure 5a). The distinction
between the six models is less clear, although again, the
more narrow distributions have slightly higher persistence,
as do those with sine wave forcing patterns.

Figure 5b shows how difficult it is to compare the results
from isolated populations with those populations with
imports and to real data. All three lines give the probability
of extinction during a 30 year period for the exponential
SEIR model—as in figure 5a. The black (no imports) and
red (with imports) lines are derived from multiple stochas-
tic simulations, starting with the disease present and iter-
ating the model forwards for 30 years. From these two
lines, it is clear that imports significantly increase the per-
sistence of measles in any community. By contrast, the
blue line is taken from a single long simulation and shows
the probability that, upon reintroduction, measles persists
for 30 years. The lower level of persistence for this model
formulation is a strong indication that extinctions are
temporally correlated; after a local extinction, any sub-
sequent import is most likely to give rise to a short-
duration epidemic. Thus, the theoretically appealing prob-
ability of extinction (calculated from multiple simulations)
cannot even be used to inform us about the duration of
persistence in real populations (that represent a single long
simulation), and hence, cannot be compared with the
observed case reports.

The grey circles are the number of fade-outs from the
England and Wales data before vaccination. (a and b) average
0.01√pop.size imports per year, whereas
(c) averages 0.02√pop.size. The results are the average of 10
simulations of 100 years after a 20 year transient period. We
note that exponential SIR and gamma SIR have persistence
levels comparable with their SEIR counterpart.
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Figure 5. Probability of extinction during a 30 year
realization for the exponential SEIR model. We note that
although the same qualitative features hold, the differences
shown here are far less dramatic for models with more
constant infectious periods. (a) Results are for 100
simulations of 30 years with no imports, after a transient
period of 10 years with imports (labelled as in figure 4). (b)
Comparison between exponential SEIR models, with (black)
and without (red) imports. The blue line shows the
probability that an epidemic/endemic period lasts for more
than 30 years, results are from 10 simulations of 300 years
each.

4. CONCLUSIONS

If we wish to evaluate the performance of a model, then
all aspects of its behaviour should be compared with
observations. To assess the persistence of various disease
models we must always return to the case reports. For
measles, we must insist that the (deterministic) model is
a good description of the disease, matching the observed
biennial pattern of cases; only then can the persistence of
the (stochastic) model be judged. Ideally, one should seek
a stochastic model that matches the observed behaviour
at a range of population sizes, birth rates and vaccination
levels. For diseases such as whooping cough, where sto-
chasticity is fundamental to the observed dynamics
(Keeling et al. 2001; Rohani et al. 2001), such a compre-
hensive search may be vital, although computationally
intensive.

By fitting the seasonality, b1, so as to minimize the error
between the deterministic pattern and the observed bien-

Proc. R. Soc. Lond. B (2002)

nial cycles, three main features are revealed. First, the SIR
model cannot readily capture the dynamics when the more
realistic constant infectious period is used, although inter-
estingly a discrete time SIR-type model that implicitly
assumes constant infectious periods provides one of the
most accurate models of measles (Finkenstät & Grenfell
2000). Hence subtle differences between model choices
can have a dramatic effect on the accuracy of results.
Second, in agreement with the theoretical predictions of
Grossman (1980) and the simulations of Lloyd (2001),
the models with less variable infectious periods (the con-
stant and gamma distributions) are less stable and there-
fore require far lower levels of seasonality to force the
resonance of biennial cycles. Finally, the models with
sinusoidal forcing provide a slightly better fit to the data,
despite the fact that they fail to reproduce the dramatic
changes driven by the greater mixing during school terms.
This can be explained by our over-simplistic form for the
term-time forcing; the presence of age-structure and non-
random mixing means that the changes in contact rate due
to the opening and closing of schools become smeared
out (Finkenstädt & Grenfell 2000). We note that an age-
structured model with term-time forcing and constant
infectious periods (the PRAS model, Keeling & Grenfell
(1997)) has the lowest error of all. We therefore believe
that the more mechanistic term-time forcing is the more
appropriate form of seasonality.

To examine questions of disease persistence we need
to move to a stochastic (event-driven) model where the
individual nature of the population becomes important.
Two main measures of persistence were compared, the
probability of extinction and the number of fade-outs.
Although considering the probability of extinction (or
time to extinction) of an isolated population is more
intuitively appealing and mathematically tractable
(Nasell 1999; Andersson & Britton 2000), there are no
observational data to compare with model results. We
are therefore forced to look at the fade-out pattern for
populations with a realistic level of infectious immi-
gration. This comparison with data is vital if we want to
obtain the most accurate model of measles and not just
a model that persists well. The results of many stochastic
simulations support the earlier work of Keeling &
Grenfell (1997), showing that the measles models with
narrow distributions (constant and gamma) possess far
greater levels of persistence. It is interesting to note that
for diseases without seasonality the situation would be
reversed; the greater stability of the exponential period
would lead to greater persistence.

In conclusion, the ideology of this paper should hold
when comparing various mathematical models for any bio-
logical system. There is often very little choice in para-
meter values if our models are to mimic the observed
behaviour; it is the observables rather than parameters that
should be fixed to allow fair comparisons of different
models.

This research was supported by The Royal Society (M.J.K.)
and the Wellcome Trust (B.T.G.).

APPENDIX A

Throughout the models we set the birth and death rates
to be equal (B = d = 5 × 10�5 days�1), so that the popu-
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lation size remains constant. We also modified the value
of b0, such that the average R0 is always 17 irrespective of
the value of b1.
(i) Standard (exponential) SEIR

dS
dt

= B � �(t)SI � dS,

dE
dt

= �(t)SI � aE � dE,

dI
dt

= aE � gI � dI,

dR
dt

� gI � dR.

(ii) Gamma SEIR

dS
dt

= B � �(t)S�N
n = 1

In � dS,

dE1

dt
= �(t)S�N

n = 1

In � aME1 � dE1,

dEn

dt
= aMEn�1 � aMEn � dEn ∀2 � n � M,

dI1

dt
= aMEM � gNI1 � dI1,

dIn
dt

= gNIn�1 � gNIn � dIn ∀2 � n � N,

dR
dt

= dNIN � dR.

This has subdivided the exposed and infectious class into
M and N distinct subclasses, respectively. Throughout we
have used M = 8 and N = 5 such that individuals spend on
average one day in each class.

(iii) Constant SEIR

dS
dt

= B � �(t)S�
T1

T0

I(t,�)d� � dS,

I(t,0) = �(t)S�
T1

T0

I(t,�)d�,

∂I
∂t = �dI(t,�) �

∂I
∂�

,

dR
dt

= I(t,T1) � dR,

where T0 is the exposed period and T1�T0 is the infectious
period. This constant period model is equivalent to the
gamma model when M and N tend to infinity. Instead of
writing the model as a partial differential equation, it can
also be written as a time delay.

dS
dt

= B � �(t)SI � dS,

Proc. R. Soc. Lond. B (2002)

dI
dt

= �(t � T0)S(t � T0)I(t � T0)e�dT0

� �(t � T1)S(t � T1)I(t � T1)e�dT1 � dI,

dR
dt

= �(t � T1)S(t � T1)I(t � T1)e�dT1 � dR.
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