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The major role played by environmental factors in determining the geographical range sizes of species
raises the possibility of describing their long-term dynamics in relatively simple terms, a goal which has
hitherto proved elusive. Here we develop a stochastic differential equation to describe the dynamics of
the range size of an individual species based on the relationship between abundance and range size, derive
a limiting stationary probability model to quantify the stochastic nature of the range size for that species
at steady state, and then generalize this model to the species-range size distribution for an assemblage.
The model fits well to several empirical datasets of the geographical range sizes of species in taxonomic
assemblages, and provides the simplest explanation of species-range size distributions to date.
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1. INTRODUCTION

Species differ enormously in the sizes of their geographical
ranges. Some are narrowly distributed, and others occur
over areas that may be many orders of magnitude larger
(Brown et al. 1996; Gaston 1996). For a given taxonomic
assemblage, the frequency distribution of species range
sizes (the species-range size distribution) tends to be
strongly right-skewed, with the smallest size class being
the modal one. That is, most species are rather restricted
in their geographical occurrence, and only a few are wide-
spread (Anderson 1977, 1984a,b; Pagel et al. 1991; Gas-
ton 1994, 1996, 1998; Brown et al. 1996; Gaston &
Chown 1999).

Much of the discussion of the determinants of the shape
of species-range size distributions has focused on the roles
of speciation and extinction processes (e.g. Anderson
1985; Flessa & Thomas 1985; Chown 1997; Gaston
1998; Gaston & Chown 1999). Speciation adds new
ranges and, depending on its mode, may reduce the sizes
of those of the ancestral species (e.g. through vicariance).
Extinction removes ranges. Although they clearly deter-
mine the number of species that are extant at any one
time, it is unlikely, however, that these processes are suf-
ficient themselves to explain the species-range size distri-
butions that are actually observed. Rather, the form of
these distributions will be set principally by the temporal
dynamics (expansions and contractions) of the range sizes
of species between their first appearance and their ultimate
demise (Webb & Gaston 2000). These dynamics in turn
will be determined by the environmental tolerances and
capacities of species (and the effects of selection on these
features), how abiotic and biotic conditions change, and
how species are able to respond to these changes (e.g. dis-
persal and colonization abilities). Indeed, the influence of
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environmental changes on geographical ranges is well
established, with local populations being founded and lost,
and range limits moving as conditions alter in ecological,
let alone evolutionary, time (Burton 1995, 2001; Spicer &
Gaston 1999; Dynesius & Jansson 2000; Hewitt 2000).

The importance of environmental factors, and the
ability of species to respond, in influencing geographical
range sizes raises the possibility of developing a stochastic
theory of species-range size distributions. At any one time,
the majority of species will have passed beyond the
strongly determinate phase of range expansion associated
with their initial geographical spread, and the colonization
of, and establishment in, new habitats (figure 1). Sub-
sequent changes in range size will reflect both non-random
and random temporal variations in the environment. The
consequences of both are, however, difficult to predict.
Even non-random environmental changes may have com-
plex effects because these changes are themselves spatially
heterogeneous and temporally complex (with cycles com-
monly acting on several time-scales in addition to any
broader directional trends), and because for any given
species the individuals on which they are acting commonly
exhibit both phenotypic and genotypic variation, and thus
different responses to a particular alteration of conditions
(Spicer & Gaston 1999). Thus, even when local popu-
lation dynamics and shifts of particular range boundaries
may be interpretable in terms of local conditions, changes
in the size of whole ranges may often appear essentially
stochastic (see § 5).

In this study we first develop a stochastic differential
equation (SDE) to describe the dynamics of the range size
of an individual species. Based on this SDE, a limiting
stationary probabilistic model is derived to quantify the
stochastic nature of the range size for that species at steady
state. This model is then generalized to the species-range
size distribution for an assemblage on the assumption that
each individual species follows a similar stochastic process
to that shown in figure 1, but equilibrium range sizes vary
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Figure 1. Dynamics of range size. The dashed curve shows
the stochastic dynamics of the range size of a species,
whereas the smooth solid curve shows the deterministic
growth. At a certain point, the range reaches a dynamic
equilibrium about which its size fluctuates.

from one species to another. The model is finally tested
using several empirical datasets of the geographical range
sizes of species in taxonomic assemblages.

2. MODEL

(a) SDE of range size
Let x(t) be the abundance of a population at time t.

The dynamics of x(t) are traditionally modelled with an
ordinary differential equation, such as the logistic
growth model,

dx(t) = rx(t)�1 �
x(t)
k �dt, (2.1)

where r is the specific growth rate and k is the environ-
mental carrying capacity supporting the population at
x(�), i.e. the population approaches k as t → �.

In reality, populations seldom grow in a deterministic
manner, but rather in a stochastic one. An approach to
modelling stochastic growth is to view the specific growth
rate r as being subject to stochastic environmental fluctu-
ations, which is equivalent to adding a white noise term
to equation (2.1) (e.g. May 1974),

dx(t) = rx(t)�1 �
x(t)
k �dt � �x(t)dw(t), (2.2)

where dw(t) is Gaussian white noise with N(0,dt). Here,
at steady state (i.e. as t → �) the population fluctuates
along the deterministic equilibrium k. This gives rise to a
gamma probability distribution for the population
(Dennis & Costantino 1988).

The relationship between the abundance x(t) and the
range size y(t) of a species can be expressed in terms of a
power model (Gaston 1994; Leitner & Rosenzweig 1997;
Harte et al. 2001),

y(t) = ax(t)b, (2.3)

where a and b are parameters. Both abundance x(t) and
range size y(t) are random variables and dependent on
time in equation (2.3). The SDE for y(t) can therefore be

Proc. R. Soc. Lond. B (2002)

derived according to the following transformation
(transforming x(t) to y(t)) for the Ito stochastic differential
(Karlin & Taylor 1981, p. 347)

dy(t) = �∂y(t)
∂x(t)

rx(t)�1 �
x(t)
k � �

∂y(t)
∂t

�
1
2

∂2y(t)
∂x(t)2 �2x(t)2�dt �

∂y(t)
∂x(t)

�x(t)dw(t). (2.4)

Substituting the appropriate derivatives of equation
(2.3) and further replacing dx(t)/dt by equation (2.2), we
arrive at an SDE for range size,

dy(t) = y(t)�4�r � (1 � �)�2

2�2 �
2r�
�k

y(t)��dt

�
2�

�
y(t)dw(t), (2.5)

where, in terms of the parameters in equation (2.3),

� = �1
a�

1
b

and � =
1
b
.

This SDE (equation (2.5)) describes the stochastic
dynamics of the range size of a species, and is of the logis-
tic type, with a trajectory as shown in figure 1.

(b) Steady-state probabilistic distribution of range
size

If � = 0, the SDE (equation (2.5)) becomes a determin-
istic differential equation. When time is sufficient, the
range size y(t) of a species will reach a stable equilibrium
(figure 1), y( � ) = (k/�)1/�. In the stochastic setting, � �
0, the range size of the species fluctuates above and below
this equilibrium. Therefore, at the steady state, the range
size approaches an approximately limiting, stationary pro-
babilistic distribution of the form

f(y) = �exp� 2
�2�g(y)

y
dx � 2log(y)�, y � 0, (2.6)

for an SDE dy = yg(y)dt � �ydw(t) (see Dennis & Costan-
tino 1988). � is a constant that makes equation (2.6) a
probability density function (PDF), i.e. the integration of
f( y) over the support of y equals 1.

Applying equation (2.6) to the SDE of equation (2.5),
results in the stationary PDF for range size y

f(y) = �y
�r

�2
�

�

4
�

7
4exp� �

�r
�2k

y��, 0 	 y 	 � . (2.7)

Solving for constant � by setting the integration of equa-
tion (2.7) over 0 	 y 	 � to be 1, we obtain a stationary
distribution for the range size y of a species that is a gen-
eralized gamma distribution

f(y) =
��ck�


�(
)
y�
�1exp� �

c
k
y��, y � 0, (2.8)

where 
 =
r

�2 �
3

4�
�

1
4

and c =
�r
�2.

The PDF (equation (2.8)) describes the steady-state
distribution of range size for a species that fluctuates above
and below the equilibrium range (figure 1). 
 and � are
the two parameters determining the shape of the distri-
bution. The shape of f( y) shifts from monotonically
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Figure 2. The probability densities for the inverse range sizes of species to illustrate the validity of the exponential assumption
for equation (2.9). The smooth curves are the fittings of the Weibull distribution to the inverse of range sizes for four
assemblages: (a) bumble-bees; (b) New World birds (overall); (c) primates; (d ) woodpeckers. See § 4 for descriptions of the
datasets.

decreasing to unimodal when 
 (or �) varies from small
to large. On the other hand, c/k is a position parameter.
A small k (the carrying capacity) (or a large c) leads the
distribution to be concentrated in the small range classes,
whereas a large k makes the distribution more evenly dis-
tributed from small to large range classes. If there were
time-series of measurements of the range size of a species,
the data would be expected to follow this distribution.
Unfortunately, such data are not available.

There is variation between species in the growth rate of
range size, reflecting differences in their population
growth rates. This variation has been accounted for in the
SDE (2.2) through the stochastic term, and thus in equ-
ation (2.5). If all species had the same equilibrium range
size, equation (2.8) would be sufficient to describe the dis-
tribution of range sizes for a species assemblage. However,
in reality, there is also variation between species in the
equilibrium range size, resulting from differences in equi-
librium population k. Variation in equilibrium range size
can be accounted for by considering the carrying capacity
k in equation (2.8) to be a random variable. To simplify,
here we assume the inverse of k to follow an exponential
distribution

f�z =
1
k� = �exp(��z), z � 0. (2.9)

This assumption is simple yet not unreasonable. This
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can be approximately corroborated because if we assume
that the observed range size of each species had indeed
reached the deterministic equilibrium, the inverse of these
range sizes (i.e. 1/y) would be expected to follow the Wei-
bull distribution. The Weibull distribution is derived
through variable transformation according to equation
(2.3) at x(t) = k. We have found this to be the case for
several datasets (including those employed below; see
figure 2), probably reflecting the pattern of resource par-
titioning among the species in an assemblage (see § 5).

A compound distribution of equation (2.8) can be con-
structed by assuming the exponential distribution of equ-
ation (2.9) for 1/k

f(y) =
�c


�(
 )
y�
�1�

�

0

z
exp(�cy�z)�exp(��z)dz. (2.10)

The integration in equation (2.10) leads to the distri-
bution

f(y) = �

y�
�1

( � y�)
�1, y � 0 (2.11)

where  = �/c. This is the PDF of a Pearson type VI distri-
bution and it accounts for the stochastic effects on the
growth rate of range size and for variation in the equilib-
rium range sizes of an assemblage of species. As for the
distribution of typical range size data, equation (2.11) can
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Figure 3. Shapes of the probability model (equation (2.11)) for five numerical examples. (a) The probability density functions
for the original data (solid line, � = 1.0, 
 = 0.5,  = 1000; dotted line, � = 1.0, 
 = 0.5,  = 20; long dashes, � = 1.0, 

= 1.0,  = 20; dot and dashed line, � = 1.0, 
 = 1.0,  = 100; dashed line, � = 1.5, 
 = 1.5,  = 20). The curves are strongly
right-skewed, except in the fifth case (dashed line) which has a mode at y = 5. (b) The corresponding densities for the log-
transformed data.

Table 1. The maximum-likelihood estimates of the parameters of equation (2.11) (± s.e.) and the results of KS and �2 goodness-
of-fit tests to 10 range size datasets.

p-value p-value
data � (s.e.) 
 (s.e.)  (s.e.) (KS test) (�2-test)

bumble-bees 1.603 (0.0652) 1.137 (0.197) 23.169 (0.687) 0.25 0.38
New World birds (breed) 1.607 (0.0188) 1.120 (0.0291) 17.738 (0.407) 0.00 0.00
New World birds (overall) 1.464 (0.0185) 1.309 (0.0302) 11.700 (0.399) 0.00 0.00
Procellariiforms 1.811 (0.0396) 0.493 (0.0344) 5000.001 (757.079) 0.48 0.12
mammals 0.903 (0.0369) 0.543 (0.269) 448.531 (2.026) 0.24 0.88
primates 1.780 (0.0351) 0.303 (0.338) 941 239.652 (86.334) 0.48 0.88
suckers 0.644 (0.112) 1.471 (1.013) 1137.978 (6.572) 0.43 0.20
sunfishes 0.740 (0.371) 2.975 (0.500) 5000.027 ( 928.477) 0.24 0.09
wildfowl 2.192 (0.0827) 0.441 (0.106) 1248.085 (13.044) 0.086 0.0038
woodpeckers 1.866 (0.0906) 0.904 (0.0820) 51.478 ( 6.332) 0.35 0.86

show a mode at very small range sizes and be strongly
skewed to the right (figure 3).

3. PARAMETER ESTIMATION AND GOODNESS-OF-
FIT

The maximum-likelihood estimates of the parameters of
equation (2.11) are easy to compute. Given observed
range sizes for n species y = {y1, y2,… yn}, the joint PDF
of equation (2.11) is f( y). The log-likelihood function of
equation (2.11) is

l(�,
,;y) = �n
i = 1

log(f(y)). (3.1)

The maximum-likelihood estimates of the three para-
meters (�, 
, ) are obtained by maximizing the log-likeli-
hood function (equation (3.1)). The maximization of the
likelihood function is evaluated using the iterative New-
ton–Raphson method, and the Hessian matrix used in the
Newton–Raphson method (constructed from the second-
order derivatives of the log-likelihood function) is used to
derive the asymptotic standard errors for the estimates.

Proc. R. Soc. Lond. B (2002)

The goodness-of-fit of the model to the observed range
data is tested using both the Kolmogorov–Smirnov (KS)
test and the �2-test. The null hypothesis is: does the sam-
ple arise from the hypothesized distribution (equation
(2.11))? For continuous data, the KS test is generally
more powerful than the �2-test and is more likely to reject
the null hypothesis.

4. EMPIRICAL EVALUATION OF THE STOCHASTIC
MODEL

(a) Data
We have acquired geographical range size data for 10

assemblages of species covering a wide range of taxonomic
groups (details of the varied methods employed for the
calculation of range sizes are provided in the references
cited): (i) bumble-bees—global overall range sizes of 241
species (P. H. Williams, unpublished data; Gaston 1996);
(ii) New World birds—breeding range sizes for 3901 spec-
ies (Blackburn & Gaston 1996); (iii) New World birds—
overall range sizes for 3906 species (Blackburn & Gaston
1996); (iv) Procellariiform seabirds—global overall range
sizes for 108 species (Chown et al. 1998; Gaston & Chown
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Figure 4. (a–j) The log-transformed observed (histograms) and fitted (smooth curves) PDFs for the 10 empirical datasets.
(k,l) The CDFs f( y), on which the KS test is based, for the wildfowl and woodpecker data, respectively. The stepped curves
are the empirical f( y), while the dashed curves are the hypothetical (estimated) f( y).

1999); (v) North American nonaquatic mammals—overall
range sizes for 523 species (Pagel et al. 1991); (vi) pri-
mates—global overall range sizes for 150 species
(Wolfheim 1983); (vii) North American suckers—overall
range sizes for 58 species (Pyron 1999); (viii) North
American sunfishes—overall range sizes for 29 species
(Pyron 1999); (ix) wildfowl—breeding range sizes of 170
species (Webb et al. 2001); and (x) woodpeckers—global
overall range sizes of 214 species (Blackburn et al. 1998).

(b) Results
For the majority of the datasets, the fit of equation

(2.11) to the range size distributions was quite satisfac-
tory. Although the results of the KS test and of the �2

goodness-of-fit test were not necessarily in full agreement
in every case, for only two datasets (both for New World
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birds) did both tests fail (table 1). The rejection of these
two datasets by the KS test is in a large part due to the
large number of species (more than 3900). With such a
large sample, even a small difference between the observed
cumulative distribution function (CDF) and the hypo-
thetical CDF would result in the rejection of the null
hypothesis, although the largest difference between the
two CDFs for the datasets is ca. 0.07. Given the difficulty
of measuring range sizes for so many species at such a
large scale, it is almost inevitable that there are a few ‘out-
lier’ species. A third dataset (that for wildfowl) marginally
passed the KS test but failed the �2-test, which is obvi-
ously caused by the unexpectedly high number of species
in the third class of the range size distribution (see the
PDF for wildfowl of figure 4). A similar explanation
applies to the sunfish data, which passed the KS test but
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marginally met the �2-test owing to the excessive number
of species in the sixth class of the range size distribution
(table 1; figure 4). In these cases poor fits are for datasets
that do not exhibit a simple frequency distribution, often
because the numbers of species per class (and thus overall)
are rather low. Nevertheless, regardless of the statistical
tests, equation (2.11) captures the overall shape of the dis-
tributions for all of the datasets, with a close match in
the position of the mode and in the direction of any skew
(figure 4).

(c) Derivation of the range size–abundance power
model

The derivation of equation (2.11) is based on the power
model (equation (2.3)) for the relationship between range
size and population size. The derivation can be reversed,
so as to derive the power model from the probabilistic
model (equation (2.11)). The parameters a and b of equ-
ation (2.3) can be computed from the three parameters
(�, 
 and c) of equation (2.11) as

a = �4�
 � � � 3
4�c �1

�
and b =

1
�

.

Whilst � and 
 can be read directly from equation (2.11),
c can only be obtained if we know either r and � of the
stochastic logistic equation (2.2) (see notation for equ-
ation (2.8)) or � of equation (2.9) (see notation for equ-
ation (2.11)). Unfortunately, neither set of parameters is
readily determined given a set of range size data. Further-
more, a is a factor that converts abundance (x) into a
range size for a species. It has to depend on the measure-
ment unit (e.g. m2, km2 or ha) used for the observed range
sizes and the activity range of individuals (e.g. m2 may be
an appropriate measurement unit for plants, but may not
be so for animals). Nevertheless, from equation (2.11) we
can at least obtain the exponent of equation (2.3). In other
words, we at least are able to predict the observed range
sizes up to a proportion: y � xb. For example, for the wild-
fowl data, the maximum-likelihood estimates of the two
parameters in equation (2.11) are: � = 2.192, 
 = 0.441
(see ‘wildfowl’ in table 1). From these values, equation
(2.3) is obtained as

y = 1.015c�0.456 x0.456 = ax0.456 � x0.456. (4.1)

Although we know the range sizes for the wildfowl in
figure 4 are measured as the number of grid cells occu-
pied, with each cell being ca. 611 000 km2, it is still not
clear how the conversion factor a should be determined.
Nevertheless, if the stochastic model (equation (2.11)) is
reasonable, it is expected that the range sizes predicted
based on equation (4.1) should be linearly related to the
observed range sizes used to parametrize equation (2.11);
i.e. equation (4.1) predicts the observed range sizes up to
y � x0.456. This can be tested because independent esti-
mates have been made of the global population size (x) of
each of the wildfowl species (see Webb et al. (2001) and
references therein). Figure 5 shows that the power model
(equation (4.1)) predicts the observed range sizes for the
wildfowl extraordinarily well, even though in terms of the
results of both the KS test and the �2-test, equation (2.11)
does not provide a particularly good fit (table 1).

Proc. R. Soc. Lond. B (2002)

5. DISCUSSION

The stochastic hypothesis of range size dynamics is gen-
erally upheld by the results reported in this study. In parti-
cular, equation (2.11) seems to capture reasonably well
the pattern of variation in range sizes of species in a taxo-
nomic assemblage.

The formulation of equation (2.11) makes several sig-
nificant assumptions. First, it assumes a power model for
the relationship between population size and range size.
The power model has been widely used for describing the
range size–abundance relationship (Gaston 1994;
Leitner & Rosenzweig 1997; Harte et al. 2001), although
it is only one of a number of models that have been
employed in this context (He et al. 2002; Holt et al. 2002).
The simplicity of the power model allows the derivation
of an explicit stationary probabilistic density function for
range size that would be difficult to achieve with more
complex formulations. However, over the ranges of vari-
ation in abundances commonly observed, different range
size–abundance models are frequently not strongly differ-
entiated; the power model captures the form of real range
size–abundance relationships well (Holt et al. 2002), and
we would not anticipate the use of alternatives to change
markedly the conclusions drawn herein. Where fits to
empirical data are less good, the principal weakness of the
power model is likely to lie in overestimating the range
sizes of species that have large population sizes (which
may often aggregate more strongly than the model
indicates), and with possibly some underestimation at
small population sizes (Holt et al. 2002). Nonetheless, for
the one dataset for which such a test is possible, the wild-
fowl, the form of the power law range size–abundance
relationship assumed from equation (2.11) makes for a
reasonable prediction of observed range sizes, particularly
given that global estimates of the population sizes of these
species are inevitably only approximate (though doubtless
better than for any other group of at least moderate species
richness), and the range sizes are measured in quite a
crude fashion (which is invariably the case at global
scales).

Second, equation (2.11) is derived on the assumption
that the range sizes of species are at equilibrium with the
environment, in as much as whilst range sizes vary, they
do so about some equilibrium level. This assumption may
break down in the face of strong directional change in
environmental conditions (e.g. climate change, habitat
destruction (see Parmesan 1996; Burgman & Lin-
denmayer 1998; Parmesan et al. 1999; Channell & Lomol-
ino 2000)), or in the face of phenotypic or genotypic
changes that enable a species to utilize previously unex-
ploited resources and thereby colonize fresh areas (see
Lewontin & Birch (1966) for a rare possible empirical
example of the latter). The former is the more significant
concern, and in the extreme could undermine the model.
However, ‘natural’ directional changes in environmental
conditions (especially climate) may often result in the geo-
graphical ranges of species shifting in location rather than
necessarily responding with systematic changes in extent,
and there is evidence that species in some assemblages
have retained quite stable range sizes over long periods
(e.g. Jablonski 1987; Riddle 1996). This may make the
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Figure 5. (a) The predicted range sizes versus the observed range sizes for 170 wildfowl species. The prediction was made from
y = x0.456 of equation (4.1). The line is the regression of the predicted on the observed range sizes. (b) The observed and
predicted range–abundance relationships. The prediction (the smooth curve) is that of equation (4.1), arbitrarily setting a
= 0.0707 ( y = 0.0707x0.456).

equilibrium assumption more appropriate than it may
seem at first.

Human activities have undoubtedly exerted marked
directional changes in the geographical range sizes of spec-
ies, although the extent to which these forces are funda-
mentally different from those that have shaped range size
distributions in the past remains unclear (for discussion
see Gaston & Blackburn (2000)). Certainly these activities
have eradicated some species from large proportions of
their distributions (primarily through habitat destruction),
and have opened up novel opportunities for others to
extend their distributions (primarily through habitat
change and accidental or intentional introductions
(Lockwood & McKinney 2001)). However, the majority
have not been strongly influenced in this way; their ranges
instead have been subjected to increasing fragmentation
whilst maintaining their broad extent of distribution.
Given that it is this broad extent that is being modelled
here, once again the equilibrium assumption may not be
an unreasonable first approximation.

The third significant element of equation (2.11) is that
it is derived on the assumption that carrying capacity k is
a random variable. For simplicity, population dynamics
models usually assume k is a constant. In reality, however,
this is unlikely to be the case because the equilibrium
population level is subject to a wealth of, often stochastic,
factors. For an assemblage, k obviously varies from species
to species, reflecting the different capabilities in sharing
(partitioning) resources. Therefore, the assumption of a
random k is reasonable at both population and assemblage
levels. The importance of stochasticity in explaining range
size–abundance patterns is also emphasized by Hanski
(1982), although our results do not necessarily support his
bimodal distribution of range sizes. An important differ-
ence between our approach and Hanski’s core–satellite
model is that the former explicitly takes account of popu-
lation dynamics while the latter considers species coloniz-
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ation and extinction processes. Following an argument
that has more usually been applied to species-abundance
distributions (but also non-biological systems, such as the
gross national products of different countries), the fre-
quency distribution of carrying capacities can be explained
in terms of the action of multiplicative factors and the cen-
tral limit theorem. If the carrying capacity of each species
is a consequence of multiple factors operating essentially
independently, and the differences between these
capacities are expressed as differences in exponential
growth, then one might expect that a right-skewed distri-
bution of species carrying capacities would tend to result,
with those for most species tending to be rather small and
those of only a small proportion tending to be large
(MacArthur 1957; May 1975; Gotelli & Graves 1996; but
see Pielou 1975). This makes a great deal of biological
sense, in as much as most of the resource bases exploited,
and environmental spaces occupied, by species tend to be
limited, and only a few tend to be extensive. However, the
details of the shape of carrying capacity distributions is
extremely difficult to establish, likely to vary from one
taxon to another, and any assumptions regarding its form
are ultimately somewhat speculative.

The stochastic hypothesis of range size dynamics seems
to provide a reasonable prediction of variation in geo-
graphical range sizes amongst the species in a taxonomic
assemblage. Of course, this does not mean that the pro-
cesses embodied in the model necessarily give rise to the
patterns of variation that are observed. If they do not, the
fit of model and data suggest that at worst the actual pro-
cesses are quite well characterized by the stochastic
hypothesis.
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