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The evolution of selfing in hermaphrodites has been studied to reveal the demographic conditions that
lead to intermediate selfing rates. Using a demographic model based on Ricker-type density regulation,
we assume first that, independent of population density, inbred individuals survive less well than outbred
individuals and second, that inbred and outbred individuals differ in their competitive abilities in density-
regulated populations. The evolution of selfing, driven by inbreeding depression and the cost of outcross-
ing, is then analysed for three fundamentally different demographic scenarios: stable population densities,
deterministically varying population densities (resulting from cyclical or chaotic population dynamics) and
stochastic fluctuations of carrying capacities (resulting from environmental noise). We show that even
under stable demographic conditions evolutionary outcomes are not confined to either complete selfing
or full outcrossing. Instead, intermediate selfing rates arise under a wide range of conditions, depending
on the nature of competitive interactions between inbred and outbred individuals. We also explore the
evolution of selfing under deterministic and stochastic density fluctuations to demonstrate that such
environmental conditions can evolutionarily stabilize intermediate selfing rates. This is the first study, to
our knowledge, to consider in detail the effect of density regulation on the evolution of selfing rates.
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1. INTRODUCTION

The evolution of self-fertilization has been a focus of inter-
est in evolutionary biology and is considered as being
driven by both ecological and genetic factors (Uyenoyama
et al. 1993). Although widespread in plants, hermaphro-
ditism also exists in animals (Jarne & Charlesworth 1993),
underlining the role of selfing as a fundamental genetic
system of sexual reproduction. Explanations for the evol-
ution of selfing are based on the dynamics of selfing genes:
Fisher (1941) was the first to point out that a gene causing
selfing will experience a twofold gain in transmission,
compared with a gene causing outcrossing. However, this
strong selective advantage of selfing (resulting in a cost
of outcrossing) is counteracted by the tendency of selfed
progeny to have reduced fitness owing to increased levels
of homozygosity (inbreeding depression; Charlesworth &
Charlesworth 1987). The balance between these two
antagonistic selection pressures is key to the evolution of
selfing in hermaphrodites. However, models incorporating
both selection pressures predict that complete selfing or
full outcrossing are the only two evolutionarily stable
selfing rates that can result from this balance (Lloyd 1979;
Lande & Schemske 1985; Charlesworth et al. 1990; some
exceptions based on ecological mechanisms like dispersal
limitation or pollen discounting are reviewed in Uyenoy-
ama et al. (1993)). Such results conspicuously contrast
with empirical observations that demonstrate a high diver-
sity of intermediate selfing rates, in particular in plants
(Barrett et al. 1996).
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One limitation of previous models is their simplified
treatment of population dynamics. However, it is obvious
that inbreeding depression lowers population growth rates
and must thus be expected to impact on population
dynamics (Halley & Manasse 1993; Saccheri et al. 1998).
Moreover, empirical evidence indicates that competitive
interactions can modify the magnitude of inbreeding
depression, an effect that has so far remained unexplored
in theoretical studies. Darwin (1876) observed that the
relative height of selfed plants in many plant species
decreases with the presence of competitors. This pattern
of competitive interaction has recently been confirmed in
many taxa, including house mice (Meagher et al. 2000),
Drosophila (Bijlsma et al. 1999) and plants (Schmitt &
Ehrhardt 1990; Wolfe 1993; Cheptou et al. 2000). More-
over, studies on Drosophila have demonstrated that com-
petitive ability is the one component of fitness that is most
severely affected by inbreeding (Lynch & Walsh 1998).

Although much studied elsewhere in theoretical ecology
(Tilman 1988), the consequences of competitive interac-
tions have not been incorporated in models dealing with
inbreeding depression (see, however, Lloyd (1980)). As
population density may influence the severity of inbreed-
ing depression, it can, in turn, modify the selective advan-
tage of selfing. This realization has led Uyenoyama et al.
(1993) to emphasize the necessity of accounting for demo-
graphic details and competitive interactions in future
models for the evolution of selfing.

In this paper, we construct a general demographic
model for hermaphrodites and employ it to study the
evolution of selfing. Based on Ricker-type density regu-
lation (May & Oster 1976), the fitness of inbred and out-
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bred progeny is derived as a function of the underlying
ecological parameters. Because of the inherent frequency
dependence of selection on reproductive traits in density-
regulated populations (Maynard Smith 1982; Morgan et
al. 1997), we carry out an evolutionary invasion analysis
within the framework of adaptive dynamics theory (Metz
et al. 1992, 1996; Dieckmann 1997). For simplicity, the
evolution of selfing rates is modelled phenotypically,
which is a classical approach in models of evolutionary
game theory (Maynard Smith 1982). On this basis, we
derive expressions for the outcome of selfing evolution
governed by inbreeding depression and the cost of
outcrossing. The evolution of selfing is first considered
under stable population dynamics before we extend our
analysis to non-equilibrium population dynamics and
fluctuating environments. The main conclusions from this
study are that both population dynamics and the nature
of competitive interactions critically affect the evolution of
selfing and are likely to give rise to evolutionarily stable
intermediate selfing rates.

2. MODEL DESCRIPTION

In this section, we describe a general demographic
model for an annual hermaphroditic organism. Self-fertil-
ization occurs at a rate R, and each individual produces S
ovules. In a monomorphic population and in the absence
of selection, the growth ratio of the population is therefore
given by the sum of SR inbred zygotes and S(1 � R) out-
bred zygotes.

(a) Inbreeding depression and density regulation
As a result of inbreeding depression, the organism’s

growth ratio can be lowered in two ways. First, we define
a density independent and constant component of
inbreeding depression, denoted by �0, which describes the
decreased relative fitness of inbred individuals (Lloyd
1992). When the population density Nt at time t is close
to zero, its dynamics can be described by

Nt�1 = S[R (1 � �0) � (1 � R)] Nt. (2.1)

These dynamics do not yet incorporate density regu-
lation. Second, based on Ricker’s model (May & Oster
1976; Warner & Chesson 1985), we therefore consider the
differential probabilities Fin and Fout for inbred and out-
bred individuals to survive density regulation,

Fin = exp(�fin Nt /K), (2.2a)

Fout = exp(�foutNt /K), (2.2b)

where K is the population’s carrying capacity. Because in
each generation before density regulation the fractions of
inbred and outbred individuals are given by the selfing rate
R and by 1 � R, respectively, fin and fout are given by

fin(R) = aR � c (1 � R), (2.3a)

fout(R) = bR � d (1 � R), (2.3b)

where the competition coefficients a and b measure the
competition effect exerted by inbred on inbred individuals
and by inbred on outbred individuals, respectively. Simi-
larly, c and d define the effect of outbred on inbred and
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of outbred on outbred individuals, respectively. The
dynamics of the density-regulated population with selfing
rate R is thus described by the following difference
equation,

Nt�1 = S [R (1 � �0) exp(�fin Nt /K)

� (1 � R) exp(�foutNt /K)] Nt. (2.4)

Given a population density Nt, the inbreeding
depression � can be determined. It is defined as 1 minus
the relative fitness of selfed progeny (Charlesworth &
Charlesworth 1987),

� = 1 �
(1 � �0) exp(�fin Nt /K)

exp(�foutNt /K)
. (2.5)

For the sake of simplicity, we choose the unit of
population density such that K = 1 for the evolution of
selfing (except when fluctuating carrying capacities are
considered).

(b) Dynamical properties of the demographic
model

The equilibrium density Neq is found by solving equ-
ation (2.4) for Neq,t�1 = Neq,t. The non-trivial equilibrium
Neq � 0 can be obtained analytically for R = 0,

Neq = K log(S)/d (2.6a)

and for R = 1,

Neq = K log(S(1 � �0))/a. (2.6b)

For other selfing rates, equilibrium densities are
determined numerically.

The non-trivial equilibrium may be dynamically stable
or unstable. A full bifurcation analysis is not straightfor-
ward because of the number of parameters. However, for
parameters a, b, c, d of the same order of magnitude (such
as those used in this paper), the demographic behaviour
is dominated by the fecundity S. The equilibrium is stable
for low fecundity, whereas, analogously to Ricker’s model
(May & Oster 1976), cyclical and chaotic dynamics appear
for higher fecundities. Figure 1 illustrates the dynamical
behaviour for two particular sets of parameters.

(c) Mutant growth rate and evolutionary invasion
analysis

Our approach utilizes the framework of adaptive
dynamics theory, which is based on the concept of
invasion fitness (Metz et al. 1992, 1996; Geritz et al.
1998). The ability of a mutant phenotype to invade a
given resident population is evaluated by studying the
growth ratio of the mutant when it is rare. As is customary
in evolutionary ecology, we assume a separation of eco-
logical and evolutionary time-scales (e.g. Doebeli &
Dieckmann 2000) such that mutations are rare enough for
mutants to appear in populations that have come close to
their ecological equilibrium.

The fitness of an individual is measured as the num-
ber of gametes transmitted to the next generation
(Uyenoyama et al. 1993) and is thus given by the sum of
three components: selfed zygotes, outcrossed zygotes and
zygotes of other individuals produced by fertilization with
exported male gametes (Lloyd 1992). Selfed zygotes
receive two gametes from their mother, whereas
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Figure 1. Bifurcation diagrams for the demographic model described by equation (2.4). From left to right: stable equilibria
(white); cyclic dynamics with two, four and eight cycles or more (grey to black); and chaotic dynamics (white). Parameters:
(a) a = c = 1, b = d = 1.5 and �0 = 0.7; (b) a = d = 1, b = 0.5, c = 1.3 and �0 = 0.2.

outcrossed zygotes receive only one. We assume that the
number of male gametes used for self-fertilization is negli-
gible. Thus the selfing rate does not influence the export
of male gametes. As long as the mutant phenotype is rare,
it competes virtually exclusively with resident phenotypes.
Accordingly, the dynamics of a mutant phenotype with
selfing rate R� in a resident population with selfing rate
R is

N�t�1 = S[R� (1 � �0) exp(�fin Ntn/K)

� 1
2(1 � R� � 1 � R) exp(�fout Nt /K)]N�t , (2.7)

where N�t is the density of mutants at time t. The ratio
N�t�1/N�t defines the growth ratio of the mutant at time t,
and thus the mutant’s fitness in the resident’s environ-
ment, W(R�,R) (Metz et al. 1992). Values of W(R�,R)
larger than unity imply that the mutant can grow and
invade the resident population, whereas values of W(R�,R)
smaller than unity imply that the mutant dies out.

The fitness gradient g(R) is given by the first derivative
of W with respect to R� evaluated at R. A positive value
of g(R) means that, in the vicinity of R, mutants with
R� � R can invade the resident phenotype R, whereas a
negative value of g(R) means that mutants with R� � R
can invade (Geritz et al. 1997). Evolutionarily singular
phenotypes R∗ are defined as those that lead to a vanishing
selection gradient, g(R∗).

Two properties of singular phenotypes are regularly
considered (Dieckmann 1997; Geritz et al. 1998). First, a
singular phenotype R∗ is convergence-stable or evol-
utionarily attainable (Eshel 1983; Christiansen 1991) if a
resident population that is close to but not at R∗ can be
invaded by mutants that are closer to R∗. A convergence-
stable singular phenotype (or convergence-stable strategy)
is an evolutionary attractor in the sense that gradual evol-
ution by small mutational steps will converge towards it,
whereas a singular phenotype that is not convergence-
stable acts as an evolutionary repellor. Second, a singular
phenotype R∗ is locally evolutionarily stable if no nearby
mutant can invade the resident population at R∗. The
properties of singular phenotypes are characterized either
by analytical criteria or by the graphical evaluation of so-
called pairwise invasibility plots (PIPs), in which the sign
of W � 1 is depicted for every possible combination of
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mutant and resident phenotypes (Metz et al. 1996; Dieck-
mann 1997; Geritz et al. 1997, 1998). Examples of such
plots are shown in figure 2.

3. EVOLUTION OF SELFING UNDER STABLE
DEMOGRAPHIC CONDITIONS

(a) The singular selfing rate and its stability
For a non-trivial demographic equilibrium Neq, the

singular selfing rate R∗ for which the selection gradient
vanishes,

g(R∗) =
∂W(R�,R)

∂R� |
R� = R = R

∗
= 0, (3.1)

is obtained as

R∗ =
log(2(1 � �0))/Neq � c � d

(a � d) � (b � c)
, (3.2a)

provided that (a � d) � (b � c) � 0. As shown in Appen-
dix A, solving equation (3.1) is equivalent to solving for
� = 1

2 with � being a function of R∗ and Neq; this means
that, at the singular selfing rate, the cost of outcrossing is
exactly balanced by inbreeding depression. The equilib-
rium density Neq at the singular selfing rate R∗ is obtained
from equation (2.4),

Neq =
log(S (1 � 1

2R
∗))

bR∗ � d(1 � R∗)
, (3.2b)

(the detailed calculations are given in Appendix A). The
singular selfing rate R∗ and the corresponding equilibrium
density Neq are then obtained by solving equations
(3.2a,b) numerically.

The singular selfing rate would be locally evolutionarily
stable if R∗ were a local maximum of the fitness func-
tion W,

∂2W(R�,R)
∂2R� |

R� = R = R
∗

� 0. (3.3a)

However, from the linearity of the fitness function in
R�, equation (2.7), we immediately see that, at the singular
selfing rate, the fitness function’s second derivative with
respect to the mutant phenotype is zero, which means that
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Figure 2. The two possible evolutionary outcomes of selfing evolution under stable demographic conditions. The resident
selfing rate R varies along the horizontal axis and the mutant selfing rate R� along the vertical axis. Each of the two PIPs
(Geritz et al. 1998) depicts the sign of W(R�,R) � 1, where W is the mutant’s invasion fitness (its time-averaged growth ratio)
in the resident’s environment. Grey areas indicate positive values: here, the mutant can invade. In the white areas, W � 1 is
negative and the mutant cannot invade. On the main diagonal, W � 1 has to vanish because the resident phenotype is neutral
in its own environment. At the singular selfing rate R = R∗, W � 1 also vanishes: under the linear model in equation (2.7) any
mutant is neutral at R∗. The convergence stability of R∗ is determined by the relative position of grey areas around R∗.
(a) Here, R∗ is convergence stable (an evolutionary attractor) because whatever is the initial resident population, any mutant
closer to R∗ will be selected for. The resulting phenotypic substitutions are shown as arrows, and R∗ evidently represents the
outcome of this evolutionary substitution process (black dot). (b) Here, R∗ is not convergence stable (an evolutionary repellor)
because the course of evolution leads away from R∗. The evolutionary outcomes of selfing evolution depend on the initial
condition in R and are given by the lower and upper bounds of the selfing rate (black dots at R = 0 and R = 1, respectively).

all mutations are neutral at the singular selfing rate
(Meszéna et al. 2000).

The singular selfing rate is convergence stable if, at R∗,
the selection gradient g is a decreasing function of R
(Geritz et al. 1998),

dg(R)
dR |

R = R∗
= �∂2W(R�,R)

∂R∂R�
�

∂2W(R�,R)
∂2R� �|

R� = R = R∗
� 0.

(3.3b)

Since the second term in the square bracket vanishes
due to the linearity of the fitness function, the convergence
criterion reduces to

∂2W(R�,R)
∂R∂R� |

R� = R = R∗
= [�(a � c) � (b � d)]Neq

� ( fin � fout)
dNeq

dR |
R = R∗

� 0,
(3.4a)

with

dNeq

dR |
R = R∗

=
[R∗ (c � a) � 2(1 � R∗) (d � b)] Neq � 1

R∗ fin(R∗) � 2(1 � R∗) fout(R∗)
,

(3.4b)

(the detailed calculations are given in Appendix B). From
these results we can conclude that only two types of con-
figuration are possible for the PIPs describing the evol-
ution of the selfing rate (see figure 2).

In the general demographic model investigated here, the
competitive effects of inbred on inbred (competition coef-
ficient a), inbred on outbred (b), outbred on inbred (c)
and outbred on outbred (d) individuals are all allowed to
be different. However, in the special case a = c and b = d,
competitive effects become independent of the frequency
of inbred and outbred individuals (see equations (2.3)).

Proc. R. Soc. Lond. B (2002)

We refer to this case—in which inbreeding depression is
only affected by the total density of inbred and outbred
individuals (see equation (2.5))—as the ‘density-
dependent model’. By contrast, the general case without
any restrictions on the competition coefficients a, b, c and
d—in which inbreeding depression is not only affected by
population density but also by the relative frequencies of
inbred and outbred individuals—is referred to as the
‘frequency-dependent model’.

(b) Evolution of selfing in the density-dependent
model

In the most trivial case in which inbred and outbred
individuals are equally affected by density, a = b = c = d,
the selection gradient never vanishes and depends only on
�0. For �0 � 1

2 we have g(R) � 0 for all R and complete
selfing at R = 1 will evolve, whereas for �0 � 1

2 we have g(R)
� 0 for all R and complete outcrossing at R = 0 will evolve.
These simple results directly correspond to the classical
predictions (Lloyd 1979).

For the slightly more general density-dependent model,
a = c and b = d, equations (3.2) do not apply, because the
denominator in (3.2a) vanishes. In this case, the singular
selfing rate is instead determined from

R∗ = 2 [1 � exp(b Neq)/S], (3.5a)

with

Neq =
log(2(1 � �0))

a � b
. (3.5b)

The condition for convergence stability of R∗ in the
density-dependent model is given by a � b (see Appendix
B). The biological interpretation of this result is straight-
forward. As can be seen from equation (2.5), the condition
a � b implies that inbreeding depression is a monoton-
ically decreasing function of the density. Because at R∗ the
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Figure 3. Evolution of selfing rates under stable
demographic conditions as a function of fecundity S. (a)
Density-dependent model. All depicted selfing rates are
convergence stable. Parameters: a = c = 1, b = d = 1.5 and
�0 = 0.7. (b) Frequency-dependent model. For small S, two
singular selfing rates are found, one is convergence stable
(attractor, continuous line) and the other is not convergence
stable (repellor, dashed line). Parameters: a = 1, b = 0.6,
c = 1.1, d = 1 and �0 = 0.35.

density Neq decreases with the selfing rate (see equation
(3.4b)) a further increase of selfing rates becomes increas-
ingly difficult because of the simultaneous increase of
inbreeding depression. This effect can stabilize intermedi-
ate selfing rates. An important conclusion from this is that,
in the density-dependent model, a necessary condition for
the evolution of intermediate selfing rates is that inbreed-
ing depression decreases with population density. As
� = 1

2 at the singular selfing rate, this implies �0 � 1
2 as a

necessary condition for evolution to result in intermediate
selfing rates. Figure 3a illustrates how, in the density-
dependent model, the resultant intermediate selfing rates
increase with fecundity S.

(c) Evolution of selfing in the frequency-dependent
model

We now consider the evolution of selfing in the general
model, which allows for differential competitive interac-
tions between all four combinations of inbred and outbred
types. The singular selfing rate R∗ is given by equations
(3.2) and its convergence stability is determined by
inequality (3.4a). The expression on the left-hand side of
this inequality has two terms. The first term is directly
determined by the four competition coefficients, whereas
the second term depends on how the equilibrium density
varies around the singular selfing rate. In most cases, the
second term is small compared with the first one.
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To facilitate understanding, let us explore the case a = d,
which means that the competitive effects exerted by inbred
on inbred individuals equal the effects exerted by outbred
on outbred individuals. Let us also assume that the com-
petitive effects exerted by outbred on inbred individuals
are high (c � a = d), whereas those exerted by inbred on
outbred individuals are low (b � a = d). In contrast to the
density-dependent model, inbreeding depression is now
an increasing function of density (see equation (2.5)).
Under these conditions, stable intermediate selfing rates
can be maintained. Figure 3b illustrates how, in the fre-
quency-dependent model, the resultant intermediate
selfing rates decrease with fecundity S.

In the general frequency-dependent model, we have
thus identified an additional second mechanism that can
lead to the evolutionary origin and maintenance of inter-
mediate selfing rates. Contrary to the results for the merely
density-dependent model, this phenomenon occurs even
if inbreeding depression increases with density. If within-
type competitive effects are equal for inbred and outbred
types, a = d, the evolution and maintenance of intermedi-
ate selfing rates occurs if the competitive effect of inbred
on outbred individuals, b, is sufficiently lower than the
competitive effect of outbred on inbred individuals, c, with
sufficiency being determined by the magnitude of the
second term in inequality (equation (3.4a)). This means
that the outbred individuals have to excel in the between-
type competition with the inbred individuals. The
between-type advantage of outbred individuals required
for intermediate selfing rates can even be lower if they also
have a direct within-type advantage, a � d, whereas it
must be higher if the within-type advantage instead fav-
ours inbred individuals, a � d.

4. EVOLUTION OF SELFING IN FLUCTUATING
POPULATIONS

In this section, we consider the outcome of selfing evol-
ution by relaxing the assumption of stable population
dynamical equilibria. Fluctuations in population density
can arise because of the demographic properties of the
model. Specifically, because generations are discrete, a
high density in one generation induces high mortality and
thus low density in the next generation: this can lead to
deterministic cyclical or chaotic dynamics. Another option
is stochastic fluctuations in the carrying capacity K; here,
we explore a simple case of environmental fluctuations in
which the carrying capacity in a given generation is given
by K1 with probability p and by K2 with probability 1 � p.

As the mutant growth ratio given by equation (2.7) is
not constant over time when densities fluctuate, the fitness
function W(R�,R) is determined numerically as the time-
averaged growth ratio of the mutant population. This ratio
is easily obtained by introducing a mutant at a very low
frequency into the stationary resident environment and
observing its dynamics, as described by equation (2.7), for
a few hundred generations. Graphical illustration of the
results in terms of PIPs is then straightforward.

Our aim here is to show that the convergence stability
and evolutionary stability of singular selfing rates is cru-
cially affected by fluctuating population densities, and that
therefore the evolution of selfing can take a radically dif-
ferent course under such conditions. For greater clarity,
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Figure 4. Evolution of selfing rates under deterministic density fluctuations. The panels at the top illustrate population density
fluctuations at R∗, whereas the panels at the bottom show the corresponding PIPs. (a,b) Population densities exhibit a two
cycle; the singular selfing rate is evolutionarily stable but not convergence stable. Parameters: a = c = 1.3, b = d = 1, �0 = 0.2 and
S = 10 (c,d ) Population densities exhibit a four cycle; the singular selfing rate is both evolutionarily stable and convergence
stable. Parameters: a = c = 1.3, b = d = 1, �0 = 0 and S = 15.

we focus our analysis on the density-dependent model.
This shows most clearly how density fluctuations can
broaden the scope for the evolution of intermediate selfing
rates, which otherwise is rather limited in the merely
density-dependent model. For the same reason, we con-
sider the case a = c � b = d, for which inbreeding
depression increases with density. As we have shown
above, this case does not allow for the evolutionary main-
tenance of intermediate selfing rates under stable demo-
graphic conditions.

(a) Deterministic demographic fluctuations
We choose the fecundity S to be sufficiently large for

non-equilibrium population dynamics to ensue. Figure 4a
illustrates the population dynamics for the case of two
cycles. Figure 4b shows the resultant PIP. Comparing this
plot with figure 2a,b, we see that the density fluctuations
cause the singular selfing rate to become evolutionarily
stable and inequality (equation (3.3a)) is now fulfilled:
once the population has reached R∗, no mutant can
invade. The singular selfing rate R∗ is not convergence-
stable because, in a resident population near R∗, a mutant
closer to R∗ cannot invade; inequality (equation (3.3b))
therefore is not fulfilled. This first example thus illustrates
that the evolutionary stability of the singular selfing rate
can be qualitatively affected by density fluctuations.

As a second example we consider a four-cycle popu-
lation dynamic, figure 4c. Figure 4d shows the resultant
PIP. We immediately see that the singular selfing rate now
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is evolutionarily stable as well as convergence stable. The
second example thus illustrates that the convergence stab-
ility of the singular selfing rate can be qualitatively affected
by density fluctuations.

(b) Stochastic environmental fluctuations
It is interesting to confirm whether the conclusions for

deterministic density fluctuations also hold if such fluctu-
ations are stochastic; a common mechanism for the latter
is random variations in the carrying capacity of a popu-
lation between generations (Mathias et al. 2001). We show
here that the same qualitative results apply.

For this purpose, we choose a low value for the fec-
undity S that does not give rise to cyclical or chaotic
dynamics. In the first example, we consider a small vari-
ance of the carrying capacity (K1 = 1, K2 = 3, and p = 1

2).
The resultant population dynamics are depicted in figure 5a
and the corresponding PIP in figure 5b. In the second
example, similar to the two-cycle dynamics, the singular
selfing rate R∗ becomes evolutionarily stable. A larger vari-
ance of the carrying capacity (K1 = 1, K2 = 5, and p = 1

2)
results in a convergence-stable singular selfing rate
(figure 5c,d).

These two examples of stochastic density fluctuations
reveal a very interesting property of evolution around the
singular selfing rate R∗: the dependence of the two types
of stability on the dynamics of the population. This allows
us to identify a third mechanism for the evolutionary ori-
gin: the maintenance of intermediate selfing rates. Under
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Figure 5. Evolution of selfing rates under stochastic density fluctuations. The panels at the top illustrate population density
fluctuations at R∗, whereas the panels at the bottom show the corresponding PIPs. (a,b) The singular strategy is evolutionarily
stable but not convergence stable. Parameters: a = c = 1.3, b = d = 1, �0 = 0.3, S = 4.5, K1 = 1, K2 = 3 and p = 0.5. (c,d) The
singular strategy is both evolutionarily stable and convergence stable. Parameters: a = c = 1.3, b = d = 1, �0 = 0.3, S = 5, K1 = 1,
K2 = 5 and p = 0.5.

stable demographic conditions, convergence-stable inter-
mediate selfing rates require inbreeding depression to
decrease with selfing rates, (a = c � b = d). When popu-
lation densities fluctuate, this condition no longer applies
and intermediate selfing rates evolve under a wider range
of ecological conditions. Although we have shown only a
few specific examples here, increasing the variance of den-
sity fluctuations generally facilitates the existence of con-
vergence-stable intermediate selfing rates.

5. DISCUSSION

Based on the antagonistic selection pressures resulting
from inbreeding depression and the cost of outcrossing,
previous models have predicted that only complete selfing
or full outcrossing are possible as outcomes of the evol-
ution of selfing rates (Lloyd 1979). The same conclusion
holds when inbreeding depression is caused by partially
recessive deleterious mutations (partial dominance
hypothesis (Charlesworth & Charlesworth 1987)),
because inbreeding depression decreases with selfing rate
(Charlesworth et al. 1990); the evolution of selfing then
experiences a positive feedback. In general, the mainte-
nance of partial selfing instead requires the gain in fitness
to decrease with selfing rate, thus resulting in a negative
feedback.

In this paper, we have shown that embedding studies
on the evolution of selfing in population dynamical models

Proc. R. Soc. Lond. B (2002)

of inbreeding depression can radically modify these con-
clusions, even though the evolution of selfing remains gov-
erned by inbreeding depression and the cost of
outcrossing. Specifically, we have identified three types of
negative feedback that all allow for the evolutionary origin
and subsequent maintenance of intermediate selfing rates.

First, a negative feedback on selfing can arise when
inbreeding depression decreases with density (as demon-
strated by our merely density-dependent model). It is
questionable whether this condition applies to many natu-
ral populations as it is generally assumed that stressful
conditions (in this case, increasing density) lead to the
increase of inbreeding depression (Wright 1977). Beyond
this widely accepted rule of thumb, however, the general
pattern is probably not that simple. An empirical study by
Cheptou et al. (2001) could not identify any effect of den-
sity on inbreeding depression in the outcrossing plant
Crepis sancta, whereas H. P. Koelewijn (unpublished
results) has found that inbreeding depression in Plantago
coronopus actually decreases with density, which, accord-
ing to our analysis here, could create a negative feedback
selecting for intermediate selfing rates.

Second, for the general frequency-dependent model
analysed in this paper, we have identified another biologi-
cal mechanism for creating the required negative feed-
back. Even when inbreeding depression increases with
density, the evolutionary maintenance of intermediate
selfing rates is expected if outbred individuals excel in
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competition with inbred individuals. No empirical data are
yet available to confirm or refute that such a competitive
asymmetry can occur. Our model suggests analysing the
nature of competitive interactions within and between
inbred and outbred types by estimating the corresponding
competition coefficients directly from experimental stud-
ies.

Third, we have shown that fluctuations in population
densities can induce a negative feedback on selfing. This
result agrees with recent work by Cheptou & Mathias
(2001) that has shown that stochastic inbreeding
depression can maintain intermediate selfing rates (see
also Cheptou & Schoen 2002). To a certain extent, our
results can be considered as a particular case of fluctuating
inbreeding depression caused by fluctuating population
density. However, it is interesting to note that stochastic
variations in carrying capacity generate the same type of
negative feedback. In natural populations, variation in car-
rying capacities is a rather common phenomenon
(Mathias et al. 2001) and can result from a wide range of
natural causes, like variations in precipitation, tempera-
ture, nutrient inflow, prey abundance, or a species’
exposure to predators or interspecific competitors.

This paper emphasizes that linking the fitness associated
with particular selfing rates to the environmental con-
ditions experienced by individuals expressing such rates
modifies the evolution of selfing by influencing inbreeding
depression. This implies that the dynamics of deleterious
mutations causing inbreeding depression is not only affec-
ted by inbreeding itself (which has been studied in a sup-
posedly constant selective environments by considering
the genetic processes that purge deleterious mutations
(Charlesworth et al. 1990)), but also by the ecological and
environmental conditions experienced by individuals.
Kondrashov & Houle (1994) distinguished types of
mutation depending on the dependence of their
expression on environmental conditions and showed that
the estimation of mutation rates in Drosophila is affected
by the environments in which these mutations originate.
Recently, the process of purging of deleterious mutations
has also been found to be less efficient under benign
environmental conditions than in harsh environments
(Bijlsma et al. 1999). Clearly, future theoretical work on
these issues could benefit from combining the study of
genetic effects with an ecologically explicit perspective on
fitness as developed in this paper.

It should be noted that taking into account other eco-
logical mechanisms beyond intraspecific competition,
such as pollination mechanisms, can modify the trans-
mission bias of selfing (changing in turn, the cost of
outcrossing) and thus also allow for the maintenance of
intermediate selfing rates (Holsinger 1996). The present
paper has demonstrated that no such interspecific interac-
tions need be considered for understanding qualitative
departures from classical expectations regarding the evol-
ution of selfing.

APPENDIX A: SINGULAR SELFING RATE AT THE
STABLE DEMOGRAPHIC EQUILIBRIUM

Assuming a stable demographic equilibrium Neq, the
growth ratio of a mutant is given by equation (2.7),
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W(R�,R) = S{R�(1 � �0) exp(�[a R � c(1 � R)] Neq)

� 1
2(1 � R � 1 � R�)(1 � R)

× exp( � [b R � d (1 � R)] Neq )}. (A 1)

The singular selfing rate is obtained from solving

∂W(R�,R)
∂R� |

R� = R = R
∗

= S{(1 � �0)

× exp(�[a R∗ � c (1 � R∗)] Neq)

� 1
2 exp(�[b R∗ � d (1 � R∗)] Neq)}

= 0, (A 2)

(it appears that equation (A 2) implies � = 0.5), which
leads to the solution

R∗ =
log(2(1 � �0))/Neq � c � d

(a � d) � (b � c)
, (A 3)

for (a � d) � (b � c) � 0. At R∗, we obtain from equ-
ation (A 2)

(1 � �0) exp(�[a R∗ � c (1 � R∗)] Neq) =
1
2exp(�[b R∗ � d (1 � R∗)] Neq). (A 4)

Substituting equation (A 4) into equation (2.4) gives

S[1
2R � (1 � R∗)] exp(�[b R∗ � d (1 � R∗)] Neq) = 1,

(A 5)

which allows us to determine Neq at R∗,

Neq =
log(S (1 � 1

2R
∗))

b R∗ � d (1 � R∗)
. (A 6)

Solutions (Neq, R∗) are found numerically by solving
equations (A 3) and (A 6).

For (a � d) � (b � c) = 0, solving equation (A 2) yields

Neq =
log(2 (1 � �0))

c � d
(A 7)

and R∗ is then obtained from substituting equation (A 7)
into equation (A 6).

For the density-dependent model, a = c and b = d,
explicit solutions (Neq, R∗) can be found,

R∗ = 2[1 � exp(b Neq)/S] (A 8)

and

Neq =
log(2 (1 � �0))

a � b
. (A 9)

APPENDIX B: CONVERGENCE STABILITY AT THE
STABLE DEMOGRAPHIC EQUILIBRIUM

Because of the linearity of equation (A 1) in R�, the cri-
terion for convergence stability reduces to

∂2W(R�,R)
∂R∂R� |

R� = R = R∗
� 0. (B 1)

From equation (A 2) one obtains
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∂2W(R�,R)
∂R∂R� |

R� = R = R∗
= (1 � �0)��(a � c) Neq

� [a R∗ � c (1 � R∗)]
dNeq

dR |
R = R∗

�
× exp(�[a R∗ � c (1 � R∗)] Neq)

� 1
2��(b � d) Neq � [b R∗ � d (1 � R∗)]

dNeq

dR |
R = R∗

�
× exp(�[b R∗ � d (1 � R∗)] Neq). (B 2)

At R∗, equation (A 4) can be used to show that con-
dition (B 2) is equivalent to

[�(a � c) � (b � d)] Neq � ( fin � fout)
dNeq

dR |
R = R∗

� 0.

(B 3)

The first derivative in this expression is obtained by dif-
ferentiating equation (2.4) with respect to R and evaluat-
ing the result at (Neq, R∗), which gives

G = S {R (1 � �0) exp(�[a R � c (1 � R)] Neq)

� (1 � R) exp(�[b R � d (1 � R)] Neq} = 1. (B 4)

Differentiating the implicit function G,

dG =
∂G

∂Neq
dNeq �

∂G
∂R dR = 0, (B 5)

gives

dNeq

dR
= �

∂G/∂R
∂G/∂Neq

. (B 6)

This yields

dNeq

dR |
R = R∗

=
[R∗ (c � a) � 2(1 � R∗) (d � b)]Neq � 1

R∗fin(R∗) � 2(1 � R∗) fout(R∗)
.

(B 7)

In the density-dependent model, a = c and b = d, the cri-
terion for convergence stability reduces to

� ( fin � fout)
dNeq

dR |
R = R∗

� 0. (B 8)

It can easily be shown that the derivative in this
expression is negative. As fin = a = c and fout = b = d, con-
vergence stability in the density-dependent model applies
if a � b.
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The dynamics of adaptation and evolutionary branching.
Phys. Rev. Lett. 78, 2024–2027.

Geritz, S. A. H., Kisdi, E., Meszéna, G. & Metz, J. A. J. 1998
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