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Organisms can learn by individual experience to recognize relevant stimuli in the environment or they
can genetically inherit this ability from their parents. Here, we ask how these two modes of acquisition
affect signal evolution, focusing in particular on the exaggeration and cost of signals. We argue first, that
faster learning by individual receivers cannot be a driving force for the evolution of exaggerated and costly
signals unless signal senders are related or the same receiver and sender meet repeatedly. We argue instead
that biases in receivers’ recognition mechanisms can promote the evolution of costly exaggeration in sig-
nals. We provide support for this hypothesis by simulating coevolution between senders and receivers,
using artificial neural networks as a model of receivers’ recognition mechanisms. We analyse the joint
effects of receiver biases, signal cost and mode of acquisition, investigating the circumstances under which
learned recognition gives rise to more exaggerated signals than inherited recognition. We conclude the
paper by discussing the relevance of our results to a number of biological scenarios.
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1. INTRODUCTION

The evolution of signal form has recently received a lot
of attention (reviewed in Bradbury & Vehrencamp 1998;
Enquist & Arak 1998; Ryan 1998). Determinants of form,
such as the coding and transmission of information,
receiver biases and strategic factors, have been considered.
Here, we consider another potential determinant of signal
form, namely how recognition of the signal is acquired
by receivers. We distinguish between genetically inherited
recognition and recognition learned by individual
receivers, based on their own experiences with signal send-
ers. In the former case, receivers are born with knowledge
obtained during their species’ evolutionary history; in the
latter, receivers are born naive and will make mistakes
while learning the appropriate reactions to the senders’
signals.

Both inherited and learned recognition occur in nature
(Hogan & Bolhuis 1994). For example, female frogs
recognize the call of conspecific males without any specific
learning (Blair 1964; Salthe & Mecham 1974). Similarly,
snakes recognize food without learning (Arnold 1981).
Examples of where learning is important include mate rec-
ognition in birds (ten Cate 1994) and predators learning
to avoid unpalatable prey (Edmunds 1974). Why this
diversity exists is an important issue, but is not the topic
of this paper. Rather, we ask whether individually learned
and genetically inherited recognition have different conse-
quences for the evolution of signal form. In particular, we
are interested in the degree of exaggeration and cost of
the signal, noting that exaggeration often entails a bigger
cost for senders (either costs in producing the signal or
other costs, such as easier detection by predators).
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An important factor for the evolution of costly signals
is conflict between individuals (Dawkins & Krebs 1978;
Arak & Enquist 1995). Typically, conflict is due to indi-
viduals preferring different courses of action (in game-
theoretical analyses, such conflicts can be seen in the pay-
off matrix of a game). However, in this paper we assume
that senders and receivers both benefit from receivers
accurately recognizing senders. Nevertheless, conflict can
occur due to a lack of knowledge in receivers, causing
them to respond in ways that are suboptimal for both
themselves and senders. For example, a naive bird may
attack a distasteful bug. Once a receiver has learned to
recognize senders, the conflict diminishes. Note that, in
the case of learned recognition, the conflict reappears with
every individual born to the population, whereas in the
case of inherited recognition, conflict disappears once rec-
ognition has been successfully coded in the genes.

This last remark points out that signal evolution may
be affected by whether signal recognition is inherited or
individually learned, but gives little clue as to what the
difference might be. To date, most theoretical studies of
signalling seem to assume genetically inherited recognition
(e.g. Grafen 1990; Bradbury & Vehrencamp 1998). The
only signalling context, to our knowledge, in which the
role of learning has been extensively studied is the
evolution of aposematic coloration (Leimar et al. 1986;
Guilford 1990; Mallet & Joron 1999). In this context, it
is sometimes said that unprofitable prey may benefit from
using an exaggerated signal because receivers will learn
more quickly, thus making fewer mistakes that are costly
for both prey and predator.

However, when a sender and a receiver meet, the send-
er’s fitness depends in many cases on the receiver’s
response only, not on what the receiver learns from the
encounter. If a would-be aposematic prey is killed by a
predator, for example, it does not matter to the dead prey
whether its signal has been effectively learned or not. More
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generally, learning by receivers has fitness consequences
for senders only if the same sender and receiver meet
repeatedly or if the receiver meets relatives of the sender
(Luce & Raiffa 1957; Hamilton 1964). In this paper, we
ignore these possibilities to study the simpler case of unre-
lated senders and single encounters between senders and
receivers. Under such circumstances, exaggerated signals
cannot evolve simply because they are easier to learn.
Rather, there must be a direct benefit for a mutant bearing
an exaggerated signal, compared with the rest of the
sender population that employs a less exaggerated one.

Biases in receiver recognition mechanisms can poten-
tially provide such a benefit (Leimar et al. 1986; Guilford
1990). For example, if receivers learn to respond to a
stimulus, an exaggerated form of the stimulus (e.g. bigger,
louder or brighter) may elicit a stronger response (Hinde
1970; Mackintosh 1974). It will be advantageous for send-
ers to exploit such biases only to the extent that the exag-
gerated signal is better recognized by receivers and does
not carry too high a cost. As receivers will eventually
recognize signals without mistakes if recognition is
inherited, we may conjecture that senders may benefit
from exaggerated, costlier signals mainly in the case of
learned recognition. In the following, we examine theor-
etically the coevolution between senders and receivers in
the case of both inherited and learned recognition, con-
sidering both cost-free and costly exaggeration. To assess
the role of receiver biases, we use artificial neural networks
as the receiver recognition mechanism. These models are
known to exhibit biases similar to those of animals under
many circumstances (Ghirlanda & Enquist 1998; Kamo
et al. 1998; Phelps & Ryan 1998; Kamo & Iwasa 2000;
Phelps 2001).

2. THE MODEL

(a) Receivers and senders
As a model of receivers, we use feed-forward artificial

neural networks (see Haykin (1994) and Ghirlanda &
Enquist (1998) for a comprehensive presentation of arti-
ficial neural networks and a study of their response proper-
ties in biologically relevant settings, respectively). Here,
we use a network with three interconnected layers. The
first layer contains 10 input units, whose activation trans-
mits to five units in the middle layer by means of weights
(model synapses) that can amplify or attenuate the trans-
mitted signal. In turn, activation of middle-layer units
reaches one output unit by a second layer of connections.
The activation of the output unit (a number between zero
and unity) is the response of the network to the initial
stimulation.

A sender is described by specifying the effect of its sig-
nal, s, on the receiver’s input units. A signal is thus a set
of 10 numbers between zero and unity.

(b) Fitness
Receiver fitness is determined by the extent to which it

discriminates between the sender signal, s, and a second
stimulus, b, modelling background stimulation or other
stimuli that should be ignored. The optimal receiver
responses to s and b are assumed to be 0.9 and 0.1,
respectively. Formally, receiver fitness, fR, is calculated
based on the absolute differences eb and es (errors)
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between the actual and optimal receiver responses to b and
s, as follows

fR = �(1 � eb)(1 � es). (2.1)

Note that fR reaches its maximum value of 1 when both
errors eb and es are zero.

Sender fitness is determined by receiver responses to s
and signal cost. We assume that the same value (0.9) of
responding to s is optimal for both senders and receivers.
To calculate signal cost, we first define an exaggerated sig-
nal as one eliciting a strong response from receiver sense
organs. More precisely, the exaggeration x(s) of signal s is
calculated as

x(s) =
1
n�

n

k = 1

s2
k, (2.2)

where sk is the value of signal unit k and n is the number
of signal units, here equal to 10. Exaggeration so defined
varies between zero (if all signal units are zero) and unity
(if all signal units are unity) and we further assume signal
cost to be proportional to signal exaggeration. The full
expression for sender fitness, fS, may thus be written as:

fS = 1 � es � cx(s), (2.3)

where c is a non-negative number regulating signal cost.
The term 1 � es translates the assumption that accurate
recognition by receivers (small es) is beneficial to senders
as well, while the term �cx(s) is the negative contribution
of exaggeration-induced signal cost. In the following, we
analyse the evolution of both cost-free signals (c = 0) and
costly signals with different values of c.

(c) Learning
To model learning by individual receivers, we use the

well-known back-propagation algorithm (LeCun 1985;
Parker 1985; Rumelhart et al. 1986; Haykin 1994). This is
an iterative procedure whereby, at each iteration, network
weights are slightly modified to reduce the difference
between the actual output and the optimal response to
each stimulus. More iterations of the algorithm and a big-
ger difference between s and b both result in better
approximation of the optimal responses (figure 1). The
number of back-propagation iterations can thus be taken
to correspond to the amount of experience that receivers
have with the relevant stimuli. As a model of biological
learning, back-propagation is not fully realistic (e.g.
McLaren 1989; Mitchison 1989). However, in studies of
signal evolution we are not interested in the learning pro-
cess per se. It is enough that receivers, after experiences
with a given sender signal, react realistically to mutant sig-
nals: in other words, we need realistic models of generaliz-
ation. Previous studies have ascertained that feed-forward
neural networks, learning by back-propagation, generalize
similarly to real animals (Ghirlanda & Enquist 1998;
Phelps & Ryan 1998; Phelps 2001).

(d) Simulations
(i) Inherited recognition

For simplicity, we consider fairly large populations and
we assume that favourable mutations arise at a sufficiently
low rate to allow a successful mutant to invade the popu-
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Figure 1. Learning curves as a function of the amount of
experience (number of back-propagation iterations) and
signal exaggeration. The background (b) is a uniform
stimulus of value 0.02, and s is a uniform stimulus set at:
solid line, 1.0; short-dashed line, 0.5; solid and dotted line,
0.2; and solid and crossed line, 0.1. Long-dashed lines
represent optimal responses to s and b (0.9 and 0.1,
respectively). Note that discrimination becomes more
accurate when the amount of learning increases and when
the difference between the two stimuli increases.

lation before a fitter one arises. Under such conditions,
each population may be assumed to be dominated by one
phenotype, called the resident. During each generation, a
mutant arises, and its fitness is compared with that of the
resident phenotype. The phenotype with higher fitness is
retained in the population. Furthermore, because mutants
are single individuals in a large population, the fitnesses
of both the mutant and the resident phenotypes in one
population are calculated based on the interaction with
only the resident phenotype in the other population (see
Enquist & Arak (1993, 1994) and Kamo et al. (1998) for
further details and applications).

The background stimulus b is fixed throughout the
course of evolution; all of its units are set at 0.02. Units
of s are set at 0.02 (the same as b) at the beginning of
each simulation and change by mutation by adding a small
random number from a Gaussian distribution (� = 0 and
� = 0.05) to a few signal units, with the constraint that all
unit values stay between zero and unity. On average, one
unit is mutated when generating a mutant. Receivers
mutate by adding a random number from a Gaussian dis-
tribution (� = 0 and � = 0.01) to several of their network
weights. An average of two weights are changed each time
a mutant is generated.
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(ii) Learned recognition
We also examine coevolution where receivers do not

inherit any information from the previous generation. In
this case, the receiver population does not evolve and it
can be modelled simply as a single network whose weights
are set at random at the beginning of each generation.
Senders evolve in the same way as with inherited recog-
nition. As mutants are rare, we assume that receivers learn
for some time based on the resident sender alone, without
experience of the mutant. This is modelled by a number
of back-propagation iterations where the network learns
to discriminate s from b, to an extent that depends on
both the characteristics of s and the number of learning
iterations (cf. figure 1). After a number of experiences
with the resident sender, receivers will meet the mutant.
The fitness of the latter, relative to the resident, can now
be assessed by means of equation (2.3). That is, we check
whether, following initial experiences with the resident
sender, the mutant is recognized more accurately than the
resident and how much it pays for its signal. The sender
with the higher fitness becomes the resident in the next
generation (the transitional period where, in an actual
population, both mutant and resident types would be
abundant can be ignored since the network will prefer the
same sender throughout).

3. RESULTS

Generally, simulations reached a steady state after a
number of generations, which is a condition in which the
observed quantities did not fluctuate appreciably. The
evolutionary trajectories are shown in figure 2. Repli-
cations with the same simulation parameters yielded
almost the same steady-state values. In the case of learned
recognition, the steady state was reached within less than
1000 generations (due to evolution of the sender signal).
In the case of inherited recognition, between 10 000 and
30 000 generations were needed. Optimal receiver
responding was attained in the case of inherited recog-
nition, both with cost-free and costly signals (recall that
the same receiver response is optimal for both senders and
receivers). In the case of learned recognition and cost-free
signals, extreme exaggeration evolved, as it pays mutant
senders to exploit even small biases for exaggerated signals
in receivers. That such biases exist is known from previous
studies (Ghirlanda & Enquist 1998) and is also shown
below. By contrast, when exaggeration is costly, there is a
trade-off between the gain yielded by exaggerating the sig-
nal and the loss caused by its greater cost.

The most intriguing result is that senders evolve a more
exaggerated, costlier signal when recognition in receivers
is learned rather than inherited (cf. figure 2c,d). To study
this effect in fuller detail, we have run a set of simulations
where we varied the amount of experience of receivers
with the resident sender, before encountering the mutant.
In these simulations, the most exaggerated and costly sig-
nals were obtained for intermediate amounts of experience
(figure 3). The figure shows a case where intermediate
levels of exaggeration evolve; more extreme values are
observed with less costly exaggeration (see figure 5).

To understand this result, we have explored receiver
biases during the evolutionary process as follows. At each
generation, we start with the signal that has evolved so far



1768 M. Kamo and others Learning and signal evolution

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

010000 20000 30000 40000 10000 30000 50000

1000 2000 3000 1000 2000 3000

non-costly costly

generations

le
ar

ne
d

in
he

ri
te

d

(a)

(b)

(c)

(d )

Figure 2. Coevolution between senders and receivers. Evolutionary trajectories of exaggeration (solid and dotted line), receiver
response to S� (solid and crossed line), receiver response to S� (dashed line) and sender fitness (solid line) are shown for
(a) inherited recognition versus non-costly signals, (b) learned recognition versus non-costly signals, (c) inherited recognition
versus costly signals, and (d ) learned recognition versus costly signals. Long-dashed lines represent optimal responses. We
used c = 1 for costly signals (see equation (2.3)) and 200 back-propagation iterations for learned recognition. All values are the
average of 10 replicates.
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Figure 3. Signal exaggeration evolved in simulations with
learned recognition as a function of amount of experience
(number of back-propagation iterations). Cost parameter, c,
is 1. The dashed line corresponds to inherited recognition.
Bars on both lines denote s.e.

and try to improve it by mutation. That is, we generate a
new signal and test whether it elicits from receivers a
response that is closer to the optimal. We repeat this step
1000 times, each time mutating the signal that has so far
elicited the response closest to the optimal. We call the
signal thus obtained the ‘best’ signal. Note that evolution
is not affected because receivers are not learning about the

Proc. R. Soc. Lond. B (2002)

test signals. In figure 4a, we show the receivers’ output to
the best and to the evolved signal as a function of the
amount of experience in each generation. We see that sen-
ders would not gain much by switching to the best signal
when receivers learn either a little or a lot (receivers show
little bias). At intermediate amounts of learning, receivers
exhibit a larger bias and switching to the best signal would
yield bigger fitness gains to mutant senders. In figure 4b,
we also see that the best signal is considerably more exag-
gerated (costlier) than the evolved one, especially for small
amounts of experience. This further inhibits the evolution
of exaggeration when receivers learn little.

Finally, we have explored the joint effect of signal cost
and amount of learning (figure 5). The results can be pre-
dicted, given the above discussion. When exaggeration is
cheap (small c in equation (2.3)), exaggerated signals
evolve easily because it is advantageous to exploit even
small receiver biases. When exaggeration is costly, exag-
geration evolves only for intermediate amounts of
learning.

4. DISCUSSION

Exaggerated, costly signals may evolve for a number of
reasons. For instance, signals may be exaggerated in order
to get through to the receiver. Alternatively, the cost may
be crucial for maintaining the communication of reliable
information (Zahavi 1975; Grafen 1990). Exaggerated sig-
nals may also evolve in an arms race between senders and
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Figure 4. Receiver biases as a function of amount of
experience. Cost parameter, c, is 1. (a) Comparison of
receiver output to the signal evolved by sender (open circles)
and the ‘best’ signal (filled circles) (whose output is closest
to target, see text). Dashed line, s target. (b) Exaggeration of
evolved (open circles) and best (filled circles) signals. Each
data point is the average of 10 replicates. The standard error
in the exaggeration of the best signal varied between 0.064
and 0.003.

receivers, in which the sender tries to manipulate the
receiver and the receiver tries to resist being manipulated
(Dawkins & Krebs 1978; Arak & Enquist 1995; Enquist &
Arak 1998). This requires that there is an evolutionary
conflict between senders and receivers (Arak & Enquist
1995).

In this paper, we have studied another possible expla-
nation for exaggeration in cases where the sender and
receiver both benefit from the same receiver response.
When signal recognition is learned rather than genetically
inherited, our simulations show that costlier exaggeration
may evolve. The reason for this is that mutant senders
bearing a more exaggerated signal may elicit a response
closer to the optimal from receivers. This is a consequence
of the generalization gradient emerging during learning. In
our simulations, the amount of exaggeration that actually
evolves is limited by its cost: when the cost was removed,
extreme exaggeration evolved both under learned and
inherited recognition. This strategic scenario agrees with
the results from a different type of model that was applied
to the evolution of aposematic coloration (Leimar et al.
1986).

Evolutionary processes that involve learning are difficult
to study. To our knowledge, no fully satisfactory model
of learning exists today. We have chosen artificial neural
networks as models of receivers because they do not con-
strain signal form and are known to generalize realistically
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when novel signals appear (Ghirlanda & Enquist 1998).
Nevertheless, available learning algorithms for neural net-
works, including the back-propagation one used here, are
difficult to relate to real learning events (learning models
such as those proposed by Rescorla & Wagner (1972)
and Blough (1975) have similar advantages and
disadvantages). Our simulations involved several simplifi-
cations of the actual learning sequence, but they capture
the main difference between learned and inherited recog-
nition: that receivers are born naive and will thus make
mistakes while learning the appropriate behaviour.

To conclude, we discuss reality. For what signalling
contexts will our results be relevant? Learned aposema-
tism is an obvious case: predators and unprofitable preys
have common interests, but these can not be exploited as
long as the predator is inexperienced. Note, however, that
our model potentially applies to all situations where send-
ers benefit from being accurately recognized by receivers
(examples are interactions between pollinators and flow-
ers, and between fruit eaters and fruits). As stressed in § 1,
the model is not meant to predict why recognition is
learned or inherited in each particular system. Neverthe-
less, the simulation results provide us with some definite
predictions about the co-occurrence of learned versus
inherited recognition and signal exaggeration. First, we
expect signals that are learned by the receiver to be more
exaggerated than signals for which recognition is geneti-
cally inherited. Warning signals are often learned by pred-
ators (Edmunds 1974; Guilford 1990), although genetic
factors are also known to play a part. Inherited recognition
is predicted to occur in conjunction with less colourful
appearances. A potential example of dangerous but incon-
spicuous organisms is snakes (with a few exceptions).
Interestingly, this is associated with innate avoidance
responses in frogs (Ewert 1980) and with strong genetic
predispositions to develop fear for snakes in humans and
monkeys (Mineka & Cook 1988). Note that in the latter
case we have left the domain of prey–predator interac-
tions.

We may also conjecture that less-striking signals will be
found in systems where a specialist predator has been
associated with the same unprofitable prey species for a
long time. In these cases, inherited recognition may
evolve, whereas if predators are generalists (relying more
on learning) we expect prey to develop more exaggerated
signals. Our simulations also indicate that signals that are
either rarely or very often encountered by receivers might
be less exaggerated than signals encountered an inter-
mediate number of times (figure 3). Thus, rare and very
common species should be less colourful than those of
intermediate density. Because in our simulations we did
not consider performance before and during learning as
relevant for fitness, the conclusion about rare species is
uncertain. That individuals of common species should
carry less-exaggerated signals seems to be a more robust
prediction, particularly when signalling only occurs at
short distances.

It is probably possible to derive further predictions from
our results. For instance, an anonymous reviewer has sug-
gested that exaggeration of signals in Müllerian mimicry
systems should decrease as more unpalatable species join
the system, because the same signal becomes increasingly
common. We are, at present, unable to evaluate this and
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Figure 5. (a) Signal exaggeration as a function of signal cost and amount of experience by receivers. More exaggerated signals
are indicated as lighter areas. For example, black corresponds to 0 � x(s) � 0.1 and white to 0.9 � x(s) � 1. (b) Sender fitness
as a function of signal cost and length of learning phase. Colour coding as in (a).

other predictions. As recalled in § 1 and at the beginning
of this section, many factors can affect the evolution of
exaggeration. Not all of these are mutually exclusive (for
instance, receiver biases and kinship in senders might con-
tribute independently). We therefore expect that extensive
studies, including both comparative analysis and tracing
of the ontogeny of recognition, will be necessary to assess
the relative importance of each factor in concrete biologi-
cal situations.
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