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In order to develop a better understanding of the evolutionary dynamics of HIV drug resistance, it is
necessary to quantify accurately the in vivo � tness costs of resistance mutations. However, the reliable
estimation of such � tness costs is riddled with both theoretical and experimental dif� culties. Experimental
� tness assays typically suffer from the shortcoming that they are based on in vitro data. Fitness estimates
based on the mathematical analysis of in vivo data, however, are often questionable because the underlying
assumptions are not ful� lled. In particular, the assumption that the replication rate of the virus population
is constant in time is frequently grossly violated. By extending recent work of Marée and colleagues, we
present here a new approach that corrects for time-dependent viral replication in time-series data for growth
competition of mutants. This approach allows a reliable estimation of the relative replicative capacity
(with con� dence intervals) of two competing virus variants growing within the same patient, using longi-
tudinal data for the total plasma virus load, the relative frequency of the two variants and the death rate
of infected cells. We assess the accuracy of our method using computer-generated data. An implemen-
tation of the developed method is freely accessible on the Web (http://www.eco.ethz.ch/� tness.html).
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1. INTRODUCTION

As evolutionary biologists will readily attest that measur-
ing the � tness of organisms in their natural environment
is notoriously dif� cult, but the quanti� cation of � tness is
the key to the understanding of the dynamics of evolution-
ary adaptation. HIV, because of its high mutation rate
(Mansky 1996) and its high rate of turnover (Wei et al.
1995; Ho et al. 1995), has a remarkable capacity for rapid
evolutionary adaptation, as is evidenced by its ability to
escape from speci� c immunity (Phillips et al. 1991;
Borrow et al. 1997; Goulder et al. 1997, 2001) or to evolve
resistance to retroviral inhibitors (Larder & Kemp 1989;
Larder et al. 1989; Boucher et al. 1990; Richman 1990;
StClair et al. 1991; Ho et al. 1994; Richman et al. 1994).
To predict the kinetics of evolutionary adaptation and ulti-
mately to improve the prescription of effective therapy, it
is thus necessary to quantify � tness differences between
virus variants. The increasing body of literature on viral
� tness, on the one hand, clearly demonstrates the aware-
ness in the � eld for the need of accurate quantitative � t-
ness estimates, but on the other hand, it reveals a shortage
of reliable mathematical procedures to estimate � tness and
an unawareness of the assumptions underlying the
methods currently used.

Many methods for quantifying viral � tness are based on
the relative growth kinetics of two virus variants growing
in competition either in vivo (Chao 1990; Goudsmit et al.
1996, 1997; Eastman et al. 1998; Zennou et al. 1998) or
in vitro (Holland et al. 1991; Martinez et al. 1991; Croteau
et al. 1997; Harrigan et al. 1998; Martinez-Picado et al.
1999, 2000; Yuste et al. 1999). In such studies, typically
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the ratio of the two variants is plotted logarithmically
against time, and the resulting slope is used as a measure
of � tness. As has been pointed out before (Marée et al.
2000), the underlying theory shows that this slope meas-
ures the absolute � tness difference and not, as is fre-
quently assumed, the selection coef� cient or the relative
� tness of the two variants. A key assumption behind this
procedure to calculate absolute � tness differences is that
the replication rates of the virus variants are constant in
time, or, equivalently, that the virus variants grow or
decline exponentially. However, this assumption is often
grossly violated both in vivo and in vitro, because many
factors that affect the replication rate, such as the density
of susceptible target cells, may change considerably over
time.

Even under conditions in which the replication rate of
the viral population can safely be assumed constant, the
quanti� cation of � tness in terms of absolute � tness differ-
ences is of limited use, as it does not allow a direct com-
parison between different experimental set-ups or
patients. This can be seen as follows: the replication rates
of wild-type virus, r, and mutant virus, r9, relate to each
other as r9 = (1 1 s)r, where s is the selection coef� cient
as de� ned in population genetics (Nagylaki 1992). The
absolute � tness difference is given by r9 2 r = rs, and hence
is proportional to r. The replication rate r, however,
depends on factors such as the target cell density, which
may vary between patients or experiments. Consequently,
the absolute � tness difference is a � tness measure that
depends on the speci� c growth conditions and is of limited
use for comparison between patients or experiments.

A more useful measure of viral � tness is the selection
coef� cient, s = 1 2 r9/r, which measures the replication
rates of the wild-type and mutant virus relative to each
other, and thus eliminates all factors that affect the repli-
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cation rate of both virus variants. To calculate the selec-
tion coef� cient s from the absolute � tness difference, an
estimate is needed for the replication rate r under the given
experimental conditions. Because this is usually not avail-
able, many researchers have simply divided the absolute
� tness difference by the generation time of the virus
(Goudsmit et al. 1996, 1997; Harrigan et al. 1998;
Martinez-Picado et al. 1999, 2000) to obtain an estimate
for the selection coef� cient. However, this calculation
makes yet another assumption that is frequently violated.
Dividing the absolute � tness by the generation time Tg

only yields the selection coef� cient if 1/Tg = r. However,
the reciprocal of the generation time only equals the repli-
cation rate in populations at equilibrium. While the
assumption of a virus population at equilibrium can some-
times be justi� ed in vivo (Goudsmit et al. 1996, 1997), it
is certainly questionable for the standard growth compe-
tition assays in vitro (Harrigan et al. 1998; Martinez-
Picado et al. 1999, 2000). Moreover, using the estimate
for the in vivo generation time of Tg = 2.6 (Perelson et al.
1996) for in vitro growth competition experiments is inap-
propriate, because its reciprocal value does not generally
equal the replication rate r realized in the particular experi-
mental set-up in vitro.

In order to overcome the dif� culties in obtaining accur-
ate estimates of the � tness effects of individual mutations,
we develop here a method that corrects for time-
dependent changes of the replication rate of the virus
population and reliably estimates the selection coef� cient,
based on an extension of a recently published approach
by Marée et al. (2000).

2. METHODS

(a) Estimation of selection coef� cient from two
time-points

As in Marée et al. (2000), we describe the dynamics of compe-
tition between wild-type (wt) and mutant (mt) virus by the fol-
lowing set of differential equations:

dW(t)/dt = [r(t) 2 d]W(t), (2.1)

dM(t)/dt = [(1 1 s)r(t) 2 d]M(t). (2.2)

The variables W(t) and M(t) denote the densities of cells
infected with wild-type and mutant virus, respectively, at time
t. The time-dependent function r(t), referred to here as the repli-
cation rate, describes the growth rate of the infected cell popu-
lation per infected cell. The replication rate is assumed to be
time dependent, because it depends on factors such as the avail-
ability of susceptible target cells that may change with time. The
parameter d represents the death rate of virus-producing
infected cells. The factor 1 1 s denotes the replicative capacity
of the mutant relative to the wild-type, where the parameter s is
the selection coef� cient as used in population genetics (Nagylaki
1992). The parameter s has also been referred to in the virus
dynamics literature as the selective advantage (if s . 0) or disad-
vantage (if s , 0) (Bonhoeffer et al. 1997a,b; Ribeiro et al. 1998;
Ribeiro & Bonhoeffer 2000). Note that the model assumes that
the difference between wt and mt virus is manifest in the repli-
cation rate rather than in the death rate. Furthermore, the model
assumes that the growth rate of both populations is proportional
to the corresponding infected cell densities. The rationale
behind this assumption is that the dynamics of free virus are
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typically fast in comparison with the infected cells (Perelson et
al. 1996; Nowak et al. 1996; Ramratnam et al. 1999) and thus
free virus can be assumed to be proportional to infected cells at
all times. In what follows, we therefore do not explicitly dis-
tinguish between free virus load and infected cell load. For
further discussion of the underlying assumptions see § 4.

Substituting the log mt/wt ratio h = ln(M/W ) and the log wt
virus load w = ln(W) in equations (2.1) and (2.2), Marée et al.
(2000) derived the following relationship between the selection
coef� cient and the values of h and w at the time-points t = 0
and t = T:

h(T ) 2 h(0) = s(w(T ) 2 w(0) 1 dT ). (2.3)

The key feature of this equation is that it allows an estimation
of the selection coef� cient s without explicit knowledge of the
replication rate r(t). The effect of a time-dependent replication
rate enters into equation (2.3) as a time average, as it can be
shown that the average rate of replication over the time interval
T is given by (w(T ) 2 w(0) 1 dT )/T.

The major advantage of estimating s based on equation (2.3)
is that it circumvents the problem of a time- and patient-
dependent replication rate, by making use of data for the growth
of the wild-type virus population. However, the method also has
some shortcomings for practical use. First, the estimation of the
selection coef� cient is based on two time-points only. Second,
equation (2.3) offers no statistical information regarding con� -
dence intervals for the estimated selection coef� cient. In the fol-
lowing section, we discuss how these shortcomings can be
overcome.

(b) Estimation of selection coef� cient from
time-series

Reformulating equation (2.3), we have the following relation-
ship between the data of pairs of successive observations

hi = hi21 1 s(wi 2 wi21 1 dti), (2.4)

where Ti is the time of the ith observation, ti =
Ti 2 Ti21,hi = h(Ti), and wi = w(Ti). Iterating this equation, we
obtain for the relationship between time-points i and 0

hi = h0 1 sti, (2.5)

where ti = (dTi 1 wi 2 w0) and Ti = S i
k = 1tk. Hereafter, we refer to

ti as rescaled time, although in a strict sense ti does not represent
a time, as it is dimensionless.

Given experimental data for the fraction of mutant virus f̂i,
the total virus load V̂i and the death rate of virus producing cells
d, we can calculate the expected values of the rescaled time t̂i,
and the log mt/wt ratio ĥi (see Appendix A). Substituting t̂i for
ti in equation (2.5), we can calculate hi for a given choice of the
selection coef� cient s and the initial log mt/wt ratio h0. To meas-
ure how well the data � t the model (equation (2.5)), we use the
penalty function

r(s,h0) = On
i = 1

(h0 1 st̂i 2 ĥi)
2

Var(h0 1 st̂i 2 ĥi)
. (2.6)

This penalty function corresponds to the total sum of squares
of a linear regression but weighted by the variance of (h0 1

st̂i 2 ĥi). In contrast to the usual linear regression, both coordi-
nates (i.e. t and h) are subject to experimental error, because
the calculation of t̂i and ĥi is based on f̂i, V̂i and d, which them-
selves are all subject to experimental error. The values of s and
h0 that best � t the data are determined by minimizing the pen-
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alty function. However, in contrast to a linear regression, the
best � t values of s and h0 can only be determined numerically,
because the variance in the denominator of equation (2.6) is a
nonlinear function of s.

The assumptions underlying the above procedure for estima-
ting the selection coef� cient are similar to those underlying
linear regression. In particular, it is assumed that the residuals
(ĥi 2 hi) and (t̂i 2 ti) and d have � nite variances.

(c) Methods for estimation of s
We compare three methods of estimating the selection coef-

� cient from experimental data. The � rst method, called here the
conventional method (CM), is equivalent to the methods cur-
rently used in the literature (Goudsmit et al. 1996, 1997;
Harrigan et al. 1998; Martinez-Picado et al. 1999, 2000) in
which the slope of the regression is rescaled by generation time.
CM estimates the selection coef� cient by regressing the log
mt/wt ratio against time and dividing the resulting regression
slope by the death rate of infected cells. As pointed out in § 1,
the slope of the regression of log mt/wt against time measures
the absolute � tness difference given by rs. If the virus population
is to a good approximation in equilibrium, then the replication
rate approximately equals the death rate, i.e. r < d. Hence,
dividing the slope of the regression rs by the death rate d we
obtain an estimate for the selection coef� cient. The advantage
of CM is that it requires only data for the log mt/wt ratio. There-
fore the selection coef� cient can be estimated in the absence of
data for the total virus load. The shortcoming is that the under-
lying assumptions of constant replication rate and constant
population size are frequently not ful� lled.

The second method, called the growth-corrected method
(GM), estimates the selection coef� cient based on penalty func-
tion equation (2.6). Because the calculation of the ti requires
knowledge of the log wt virus load, the estimation of the selec-
tion coef� cient with GM requires data on both virus load and
mutant frequency. However, the advantage over CM is that GM
corrects for the potential effects of time-dependent changes in
the replication rate. The disadvantage is that routines to deter-
mine the best � t of a straight line to data with errors in both
coordinates are not readily available in standard statistical pack-
ages. Therefore we have made an implementation of GM freely
accessible on the Web (http://www.eco.ethz.ch/� tness.html).

Finally, the third method, called the average method (AM),
computes the selection coef� cient between all pairs of successive
time-points according to Marée et al. (2000) (see equation (2.3))
and reports the mean and variance of these estimates. This
method serves as a comparison with the other methods, to assess
the improvement of the estimation of the selection coef� cient
through using a regression procedure.

(d) Simulation of data
To evaluate the accuracy of the estimation of the selection

coef� cient by the three methods described above, we generated
data using the following procedure. We performed numerical
simulations for the replication dynamics of wild-type and
mutant virus according to equations (2.1) and (2.2), with vary-
ing parameters d and s and different choices of the time-
dependent replication rate function r(t). At selected time-points,
Ti, the fraction of mutants fi = M(Ti)/(M(Ti) 1 W(Ti)) and the
total virus load Vi = M(Ti) 1 W(Ti) were stored and used to
generate Gauss-distributed data for f̂i and V̂i with the corre-
sponding means fi and Vi, and chosen variance s2

fi
and s2

Vi
. Of

the data thus generated, we took the longest stretch of consecu-
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tive time-points for which the fraction of mutant virus f̂i is
between sfi

and 1 2 sfi
. This selection procedure avoids a bias

in the estimation of the selection coef� cient that may arise,
because if the fraction of mutants is close to 1 or 0, the errors
are not symmetrically distributed around the mean. On the basis
of these data, we then determined the expected values and vari-
ances of ĥi and t̂i according to equations (A 1)–(A 4) (see
Appendix A) and used these to estimate the selection coef� cient
using all three methods.

3. RESULTS

Figure 1 illustrates the estimation of the selection coef-
� cient by the three methods CM, GM and AM based on
simulated datasets. The replication rate function chosen
for the simulation of the data decreases as the total virus
load increases. This simulates a decreased availability of
target cells as the virus load increases. The comparison
between the selection coef� cient used for the simulation
of the data and those estimated by the different methods
shows that CM can lead to grossly inadequate estimates
of the selection coef� cient.

To assess more systematically how well the three
methods estimate the selection coef� cient, we performed
extensive computer simulations. Table 1 shows the mean
estimate of the selection coef� cient s̄e st based on 100 simu-
lated datasets for all methods and different choices of the
parameter values and replication rate function. Both AM
and GM yield values of s̄e st that are not signi� cantly differ-
ent from the selection coef� cient srea l used for the gener-
ation of the data. Also, comparing the estimated s with
srea l on an individual basis for each of the 100 generated
datasets shows that GM and AM yield estimates of s that
are in most cases not signi� cantly different from srea l based
on the estimated standard deviation ss of s. CM, by con-
trast, almost always fails on this account. Importantly, it
consistently yields poor estimates for s even when the
underlying assumption, that the replication rate of the
virus population is constant in time, is ful� lled (see the
replication rate function 1 in table 1). The reason for the
poor estimates is that the other underlying assumption,
namely that death rate approximately equals the repli-
cation rate, is not justi� ed here (see § 2). This illustrates
how CM can yield � awed results, if the underlying
assumptions are violated.

GM generally leads to good estimates of s. Table 1
shows that the GM estimates a selection coef� cient that
is signi� cantly different from srea l for less than 5 out of 100
simulations. This indicates that GM slightly overestimates
the standard deviation of the estimate of s.

AM rarely leads to estimates of s which are signi� cantly
different from srea l. However, this is not because AM yields
estimates that are close to srea l, but because the estimates
of s have large standard deviation ss. Occasionally the
method yields estimates that are far from the srea l, resulting
in a large standard deviation of s̄est in some places in table 1.
This reveals a weakness of the method; if, by chance,
dti < wi21 2 wi for successive time-points, the method may
generate outliers, because the calculation of s involves
division by a number close to zero (see equation (2.4)).

Overall, the data in table 1 indicate that, based on the
accuracy of the estimate of s and the conservative estimate
of the corresponding standard deviation ss, GM is
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Figure 1. Comparison of the CM, GM and AM methods for the estimation of the selection coef� cient based on computer-
generated data. (a,b) The total virus load and the fraction of mutants generated by computer simulation as described in the
main text. The dashed lines indicate the numerical solutions of equations (2.1) and (2.2), which were used to generate data
with Gauss-distributed mean and chosen standard deviation (represented by points with error bars) as described in the main
text. The parameters for the simulation are s = 20.2, d = 0.5, sVi

= 0.1Vi, and sfi
= 0.05. For the replication rate, we chose

r(t) = 1 2 (W(t) 1 M(t))/1000 (see (c)). The replication rate thus decreases with increasing virus load, which could for example
be due to a decreased target cell availability. For the calculation of ĥi and t̂i (and their variances, see equations (A 1)–(A 4))
we used sd = 0.05. (d,e) The estimation of the selection coef� cient by CM (d) and GM (e). The corresponding estimate for
the selection coef� cient (± s.d.) by CM is s = 20.239 ± 0.001 and by GM is s = 20.200 ± 0.023. For this dataset, the selection
coef� cient estimated by CM is signi� cantly different (p , 0.001, t-test) from the ‘real’ selection coef� cient s = 20.2 used to
generate the data. Nevertheless, the goodness-of-� t probability, q, describing the probability that a � t as poor as this occurs by
chance, is q = 0.35, indicating a deceptively good � t. The selection coef� cient estimated by GM is not signi� cantly different
(p . 0.5) from the ‘real’ selection coef� cient (q-value 0.79). The estimated initial log mt/wt ratio for CM is h0 = 3.1 ± 0.4 at
t = 0 and for GM is h0 = 2.2 ± 0.3 at t0 = 0. AM (not shown in the � gure) estimates a selection coef� cient of s = 20.182
± 0.105, which is also not signi� cantly different ( p . 0.5) from the ‘real’ selection coef� cient. Note, however, that the standard
deviation of this estimate is four- to � vefold higher than that of GM.

superior to the other methods for obtaining reliable esti-
mates of the selection coef� cient and its standard devi-
ation. Generally, the estimates for the selection coef� cient
tend to be somewhat smaller (in absolute value) than srea l

for all methods. The possible reason for this lies in the
selection of the data used for the estimation procedures.
As discussed in § 2d, we select from the simulated data
the longest stretch of time-points for which all data for the
fraction of mutants, fi, lies between sf and 1 2 sf. Values
close to both cut-offs may sometimes re� ect time-points
where the true value of f is in fact outside the range, but
because of the generated random error, the simulated f
lies inside the range. This may lead to a bias in the data
that goes in the direction the observed systematic discrepancy
between the estimated and the real selection coef� cient.

4. DISCUSSION

The extensive numerical tests based on computer gener-
ated data clearly reveal the strengths and weaknesses of
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the different methods of estimation of the selection coef-
� cient. CM, which estimates the selection coef� cient from
the slope of the logarithmic mt/wt ratio scaled by the gen-
eration time of the virus, typically yields grossly inaccurate
estimates. The reason for the poor performance of this
method is that the underlying assumptions of a time-
constant replication rate and a total virus population in
steady state are frequently violated. Given that these
assumptions will frequently also be violated in real biologi-
cal systems, this argues that the results of this method (and
related methods used in the literature) need to be inter-
preted with considerable caution.

GM is based on an extension of the approach by Marée
et al. (2000), which allows an estimation of a selection
coef� cient between two time-points using data for the
total virus population growth to correct for a time- (and
experiment-) dependent replication rate. It estimates the
selection coef� cient from the slope of the logarithmic ratio
of mt to wt virus, whereby time is rescaled according to
the total virus population growth. GM is thus applicable
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Table 1. Statistical comparison of the CM, AM and GM methods (see § 2) with simulated datasets.
(Each block of three lines represents the estimation of the selection coef� cient by the three methods based on 100 independent
simulated datasets with, on average, eight observations for a given death rate, d, total time T and three replication rate functions
speci� ed below. The headers of the columns are as follows: sreal for the ‘real’ selection coef� cient used to generate the simulated
datasets; s̄est for the mean over 100 estimated selection coef� cients; ssest

for the standard error of the mean; and m for the number
of times that a t-test between the estimated s and sreal indicated a signi� cant difference, based on the standard deviation ss of the
individual estimate of s. The superscripts 1, 2 and 3 indicate that differences between sreal and s̄est were signi� cant based on a t-
test at a level p , 0.01, p , 0.005 and p , 0.001, respectively. Replication rate function 1 is given by r(t) = 2d and is thus constant
in time. Replication rate function 2 is given by r(t) = 2d(1 2(W(t) 1 M(t))/1000), and describes a replication rate that decreases
with increasing virus load, as would, for example, be expected under target cell limitation. Replication rate function 3 is given
by r(t) = d(1 1 sin(12t/T )). This function has no particular biological motivation. Rather it was chosen to test the performance
of the method under extreme � uctuations of the replication rate with time. In all simulations, we used sd = 0.1d, sfi

= 0.05 and
sVi

= 0.1Vi.)

replication rate function 1 replication rate function 2 replication rate function 3

method sreal s̄est ssest
m s̄est ssest

m s̄est ssest
m

parameters: d = 0.5, T = 40
CM 20.3 20.5632 0.083 100 20.5112 0.067 100 20.286 0.039 96
GM 20.3 20.287 0.034 3 20.288 0.029 5 20.296 0.026 1
AM 20.3 20.254 0.056 2 20.251 0.052 0 20.311 1.086 0

parameters: d = 0.5, T = 50
CM 20.2 20.3813 0.046 100 20.234 0.018 99 20.176 0.018 96
GM 20.2 20.192 0.021 3 20.194 0.018 6 20.194 0.016 2
AM 20.2 20.17 0.028 2 20.178 0.029 0 20.317 0.475 0

parameters: d = 0.5, T = 80
CM 20.1 20.1913 0.021 100 20.108 0.013 97 20.094 0.011 99
GM 20.1 20.096 0.01 3 20.1 0.011 0 20.098 0.01 2
AM 20.1 20.091 0.016 0 20.097 0.013 0 20.06 0.114 0

parameters: d = 0.5, T = 150
CM 20.05 20.0933 0.013 100 20.0922 0.013 100 20.0922 0.013 100
GM 20.05 20.047 0.006 7 20.046 0.006 6 20.046 0.006 6
AM 20.05 20.042 0.007 1 20.043 0.008 2 20.042 0.008 2

parameters: d = 1, T = 50
CM 20.1 20.1933 0.024 100 20.105 0.01 96 20.092 0.009 100
GM 20.1 20.096 0.011 6 20.098 0.009 2 20.099 0.009 0
AM 20.1 20.087 0.016 2 20.094 0.012 0 20.253 0.81 0

parameters: d = 0.1, T = 500
CM 20.1 20.1893 0.021 100 20.103 0.012 96 20.089 0.009 96
GM 20.1 20.095 0.01 5 20.096 0.011 5 20.097 0.01 3
AM 20.1 20.088 0.014 0 20.09 0.012 0 20.074 0.088 0

to growth competition of virus variants in growing, declin-
ing or � uctuating total virus populations. The numerical
tests show that GM reliably estimates the selection coef-
� cient for a variety of choices of time-dependent repli-
cation rate functions. GM takes the variances and
covariances of the log mt/wt ratio and the rescaled time
into account. In contrast to CM, it cannot be performed
easily with simple stastistical software packages.

AM is also based on the approach of Marée et al.
(2000), but unlike GM it does not involve a linear-
regression-type procedure. AM calculates a mean selec-
tion coef� cient by averaging over the selection coef� cient
between all pairs of successive time-points determined by
Marée et al.’s method. It thus serves as a comparison to
the growth-correcting methods to illustrate the gain in
accuracy of the estimate of the selection coef� cient by a
linear-regression-type procedure. However, AM can gen-
erate grossly inaccurate estimates of the selection coef-
� cient, because statistical � uctuations in the total virus
population can result in numerical problems due to
division by numbers close to zero.

Overall, the numerical tests of the methods indicate that
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GM yields the most reliable estimates of the selection
coef� cient and its standard deviation. The estimated
selection coef� cient is typically signi� cantly different from
the selection coef� cient used to generate the data in less
than 5 out of 100 datasets (see table 1), indicating that this
method slightly conservatively overestimates the standard
deviation of the estimated selection coef� cient. CM and
AM often yield poor estimates. Moreover, CM consist-
ently underestimates the standard deviation of the selec-
tion coef� cient, and thus yields estimates that are highly
signi� cantly different from the selection coef� cient used
to generate the data (see table 1).

GM requires longitudinal data for the fraction of
mutant virus and the total virus load, as well as the death
rate of infected cells. Although the method was primarily
developed to estimate selection coef� cients from in vivo
data, it can also be applied to in vitro growth competition
experiments, provided the appropriate data are available.
Note, however, that in this case the death rate of infected
cells in vitro has to be known for the speci� c experimental
set-up (see Appendix A).

The methods described in this paper are designed
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speci� cally to measure the selective effect of drug resist-
ance mutations in HIV. They all are based on three key
assumptions underlying equations (2.1) and (2.2). The
� rst is that the selective effect of the drug resistance
mutations is manifest in differences in the intrinsic repli-
cation rate (rather than the death rate) of the virus. The
rationale for this assumption is that drug resistance
mutations in HIV affect the reverse transcriptase and pro-
tease and therefore affect the infectivity of the virus, rather
than the death rate of infected cells. The second assump-
tion is that the death rate can be assumed to be constant
in time. This assumption is frequently made in models of
virus dynamics (Ho et al. 1995; Nowak et al. 1995; Wei
et al. 1995; Perelson et al. 1996; Bonhoeffer & Nowak
1997) and can be justi� ed if the contribution of the
immune responses to the death of infected cells is negli-
gible or constant in time. The third assumption is that the
free virus load is proportional to the infected cell load.
This assumption is commonly made for HIV, because the
dynamics of free virus are known to be much faster than
those of the infected cells (Wei et al. 1995; Perelson et
al. 1996; Ramratnam et al. 1999). For practical purposes,
measurements of the free virus load of wt and mt virus can
be used instead of the corresponding infected cell loads,
assuming that the proportionality factor between free virus
and infected cells does not change over the period of
observation or the range of observed virus loads.

In this paper, we intentionally focused on drug resist-
ance mutations in HIV. However, in principle, the
approach is much more general. In particular, if the above
assumptions can be justi� ed for mutations in other viruses
or affecting other parts of the HIV genome, then GM can
be applied without modi� cation. If, however, the
mutations are known to affect the death rate of infected
cells, GM needs to be modi� ed accordingly. All methods
discussed here assume competition between just two viral
variants. However, in some cases, more than two predomi-
nant variants may grow simultaneously. This problem can
be circumvented by restricting the analysis just to those
periods in which only two variants predominate.

In summary, we have developed a method (GM), which
reliably estimates the selection coef� cient between two
virus variants based on longitudinal data. Unlike the
methods typically used in the literature, this method does
not suffer from the often unrealistic assumption, that the
replication rate of the virus population is constant in time.
The estimated selection coef� cient measures the rep-
licative capacity of two competing variants relative to each
other and thus is independent of factors that simul-
taneously affect the replication rate of both variants. Selec-
tion coef� cients determined in this way should therefore
be more meaningful for the comparison between experi-
mental set-ups and between patients. A more accurate and
reliable quanti� cation of viral � tness will in turn improve
our understanding of the evolutionary dynamics of drug
resistance and may eventually help to establish a basis for
a more rational prescription of effective therapy.
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APPENDIX A

(a) Expectations and variances
Typically the experimental assays do not directly meas-

ure the log wt virus load (wi) and the log mt/wt ratio (hi),
but instead measure the total virus load (Vi) and the frac-
tion of mutant virus ( fi). Generally, the relationship
between these quantities is given by hi = ln[ f i/(1 2 f i)] and
wi = ln[(1 2 fi)Vi]. However, as the experimental measure-
ments of the total virus load and the fraction of mutants
are subject to experimental error, the computation of the
expected values of the log mt/wt ratio and the rescaled
time need to take into account the experimental error in
the original data. Using error propagation (Lynch & Walsh
1998) and ignoring all but � rst-order terms, one obtains
the following expressions for the expected values and
their variances

ĥi = lnS f̂i
1 2 f̂i

D 1
1
2
s 2

fi

2f̂i 2 1
f̂ 2
i (1 2 f̂i)2, (A 1)
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where f̂i and V̂i represent the experimental data (with cor-
responding variances s2

fi
and s2

Vi
). The variance in the

denominator of equation (2.6) is given by var(h0 1 st̂i

2 ĥi) = s2
hi

1 s2s2
ti

2 2s covar(t̂i,ĥ i), where covar(t̂i,ĥi) =
s2

fi
/( f i(fi 2 1)2).

(b) Estimation of infected cell death rates in vitro
The appropriate procedure to estimate infected cell

death rates in vitro clearly depends on the speci� c design
of the growth competition assay. In principle, the death
rate can be estimated by applying anti-retroviral drugs to
a virus culture and by measuring the decline kinetics of
infected cells. However, it is important to note that for
growth competition assays based on serial transfer, the
time between transfers has to be considerably larger than
the expected lifespan of infected cells. Otherwise one
needs to correct for the curtailed virus production due to
the transfer of virus into fresh medium prior to the natural
death of the infected cells.
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