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Decorrelation control by the cerebellum achieves
oculomotor plant compensation in simulated
vestibulo-ocular re� ex
Paul Dean*, John Porrill and James V. Stone
Department of Psychology, University of Shef� eld, Western Bank, Shef� eld S10 2TP, UK

We introduce decorrelation control as a candidate algorithm for the cerebellar microcircuit and demon-
strate its utility for oculomotor plant compensation in a linear model of the vestibulo-ocular re� ex (VOR).
Using an adaptive-� lter representation of cerebellar cortex and an anti-Hebbian learning rule, the algor-
ithm learnt to compensate for the oculomotor plant by minimizing correlations between a predictor vari-
able (eye-movement command) and a target variable (retinal slip), without requiring a motor-error signal.
Because it also provides an estimate of the unpredicted component of the target variable, decorrelation
control can simplify both motor coordination and sensory acquisition. It thus uni� es motor and sensory
cerebellar functions.
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1. INTRODUCTION

The uniform microstructure of cerebellar cortex indicates
the existence of a basic cerebellar algorithm, applicable
in many different contexts (Ito 1984). This algorithm has
proved dif� cult to identify, not least because the functions
of the cerebellum appear to be a disconcerting blend of
the sensory and motor. Although the classical signs of cer-
ebellar dysfunction relate to motor control, comparative
studies in a wide range of vertebrates suggest that the
expansion of cerebellar regions is associated with com-
plexity of sensory processing (Paulin 1993) and a variety
of experimental results have indicated a role for the cere-
bellum in the acquisition and prediction of sensory data
(e.g. Blakemore et al. 2000; Hartmann & Bower 2001;
Nixon & Passingham 2001). We propose here a candidate
algorithm for the cerebellum, which we term decorrelation
control, that offers the possibility of reconciling sensory
and motor views of cerebellar function.

Decorrelation control can be considered a development
of adaptive interference–cancellation (Widrow & Stearns
1985). In generic interference–cancellation (� gure 1a), a
signal of interest u is corrupted by additive interference n
to form what is termed here the target variable, u 1 n.
Predictor variables p carry versions of the interference n,
distorted in unknown ways. The goal of the adaptive pro-
cessor (labelled ‘decorrelator’ in � gure 1a) is to produce
an output n̂ that approximates the interference, so that
when n̂ is subtracted from the target variable, the resultant
output of the system û (= u 1 n 2 n̂) approximates the
original signal of interest u. The output û is also used as
a training signal and the adaptive processor changes as
long as there remains any correlation between the training
signal and the predictor variables, because such a corre-
lation means that there is still predictable interference
present. Thus, even though the version of the interference
carried by the predictor variables was distorted in ways
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unknown to the adaptive processor, an appropriate decor-
relation algorithm will eventually produce a system output
that is uncorrelated with the predictor variables. This sys-
tem output is an estimate of the uncontaminated signal of
interest. Decorrelating predictor and target variables is in
effect minimizing the mean-squared error of the inter-
ference estimate (see Appendix A).

The relevance of adaptive interference–cancellation for
understanding the cerebellar algorithm is that it is one of
the functions proposed for ‘cerebellar-like’ structures in
� sh, such as the dorsal octavolateral nucleus of elasmo-
branchs and the teleost electrosensory lobe (e.g. Bell et
al. 1997; Devor 2000). To map � gure 1a onto a speci� c
example, the signal of interest, u, would be the pertur-
bations in an electric � eld that are produced by an external
source. However, the response of the electroreceptors that
detect this � eld are affected by the � sh’s own movements,
u 1 n. The principal cells of a cerebellar-like structure
receive the contaminated sensory input via synapses on
their basal dendrites, and predictor variables, p, such as
corollary discharge, via synapses between parallel � bres
and their apical dendrites. These latter synapses are plastic
and, in effect, form the adaptive processor. The signal
delivered to the soma of the principal cells from their api-
cal dendrites is the interference estimate, n̂, but with the
sign reversed so that it can be simply added to the con-
taminated sensory signal, u 1 n 2 n̂, to produce the prin-
cipal cell output, û = u 1 n 2 n̂. The principal cell output
is thus an estimate û, of the uncontaminated signal u,
which is sent elsewhere in the brain, as well as being used
as a training signal to alter the parallel-� bre synapses (cf.
Nelson & Paulin 1995; Roberts & Bell 2000).

The development of adaptive interference–cancellation
into decorrelation control is illustrated in � gure 1b. The
output of the decorrelator now acts as a motor command
m to alter the properties of the sensor that transmits the
target variable, u 1 n. The alteration, which might for
example consist of moving the sensor surface, is mediated
via a set of physical processes referred to as the plant and,
in effect, constitutes an estimate n̂ of the interference n.
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Figure 1. Relationship between adaptive interference
cancellation and decorrelation control. (a) Adaptive
interference cancellation. Inputs to the system are: (i) a
target variable, which consists of an external signal of
interest u(t) corrupted by additive interference n(t); and
(ii) predictor variables p(t). The task of the system is to
extract an estimate of the signal of interest û(t) from the
target variable. It does so by subtracting from the target
variable an estimate n̂(t) of the interference. This estimate is
constructed by the decorrelator, which learns to remove the
correlations between the predictor variables and the signal
estimate. (b) Decorrelation control. This differs from
adaptive interference cancellation in that the interference
estimate n̂(t) is now a physical adjustment of the sensor.
Sensor output is no longer the target variable u(t) 1 n(t)
but the estimate û(t) of the signal of interest u(t). The
decorrelator must therefore learn the motor command m(t)
that will act on the plant to produce the appropriate
interference estimate.

The new sensor output then becomes an estimate of the
uncontaminated signal û (= u 1 n 2 n̂), available for gen-
eral use by the rest of the system, as well as for a training
signal for the decorrelator. To map � gure 1b onto a spe-
ci� c example that has long been used as a simple prep-
aration for studying cerebellar function (e.g. Ito 1970;
Lisberger 1998), one possible signal of interest is relative
movement of the world as detected by image movement
on the retina, u. The actual retinal-slip signal, u 1 n, is
contaminated by interference n produced by the animal’s
own head movements. The Purkinje cells of the cerebellar
� occulus receive the contaminated sensory input via syn-
apses from climbing � bres and predictor variables such as
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the vestibular response to head movement, p via synapses
between parallel � bres and their dendritic tree. As before,
these synapses are plastic and in effect constitute the
decorrelator. They drive the Purkinje cell output, which
acts as a motor command, m to the eye muscles, so mov-
ing the eye. The movement of the eye is, in effect, an
estimate, n̂ of the interference n caused by the head move-
ment, only with the sign reversed so that it can be simply
added to the contaminated retinal-slip signal, u 1 n 2 n̂
to produce the new retinal-slip signal, û. The new signal
is thus an estimate of how the world is moving, uncon-
taminated by head movement. If the world is in fact not
moving (u = 0), the result would be the abolition of retinal
slip (apart from the error n 2 n̂), as occurs in the vestib-
ulo-ocular re� ex (VOR).

Comparison of the two examples relevant to � gure 1a,b
indicates that the basic mechanism, whereby the decorrel-
ator continues to change until correlation between predic-
tor variables and training signal is minimized, remains the
same in both adaptive interference–cancellation and
decorrelation control. However, whereas the former pro-
duces an internal estimate of the signal of interest and
leaves the output of the sensor unaltered, decorrelation
control acts on the sensory surface to change its output
until it approximates the signal of interest. As a candidate
algorithm for the cerebellar microcomplex, decorrelation
control therefore has the advantage of combining sensory
and motor functionality.

However, the architecture illustrated in � gure 1b also
has a disadvantage, in that the decorrelator output, m is
no longer directly subtracted from the target variable as it
was for interference cancellation (� gure 1a). Instead, m
must pass though the plant P in order to in� uence the
target variable. To produce the least-squares estimate of
the interference in the target variable, the system must
decorrelate the predictor variables and the command
(motor error) that would have produced the observed reti-
nal slip (see Appendix A). Unfortunately, to deduce this
motor error from the actual retinal-slip signal requires
knowledge of the plant, which by de� nition is not available
to the system. Decorrelation control therefore has to make
do with those variables that are available, namely p and
û, just as in adaptive interference–cancellation. But now
the decorrelation learning rule is not certain to work in
the general case (see Appendix A). Therefore, the
important � rst test for decorrelation control as a candidate
algorithm for cerebellar function is whether it would in
fact work given the actual plant characteristics that have
been observed experimentally.

We addressed this issue by examining the performance
of a decorrelation controller in a model of the horizontal
VOR. A highly schematic view of the neural architecture
of the horizontal VOR (for a review, see Miles 1991) is
shown in � gure 2a, with the corresponding model for
comparison in � gure 2b. As illustrated in � gure 2a, head
movements are sensed by the vestibular apparatus and
converted to approximate head-velocity signals. These sig-
nals are re� ned and passed to a brainstem path consisting
of secondary vestibular neurons and ocular motor neu-
rons. The output of the motor neurons drives the
extraocular muscles that act via the mechanics of the
orbital tissue to move the eye. The connectivity of the sys-
tem is such that the eye moves in the opposite direction
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Figure 2. VOR. (a) Schematic neural circuitry. A processed
vestibular signal related to head velocity is passed both to
secondary vestibular neurons in the brainstem and to the
cerebellar � occulus (in the form of mossy-� bre input). The
� occulus also receives a mossy-� bre input closely related to
the command sent to the eye muscles. Floccular Purkinje
cells project to a subset of secondary vestibular neurons. If
the command to the eye muscles does not cancel out the
effects of head velocity, the eye will move relative to the
world. This movement is detected as retinal slip, a copy of
which is passed to the � occulus via the inferior olive as
climbing-� bre input. (b) Linearized model. Head velocity
n(t) is processed by the � lter V, then added to the output
c(t) of the decorrelator (cerebellar � occulus) C. The summed
signal is then passed to a brainstem controller B. The output
of B is a motor command m(t), which acts on the plant P. A
copy of m(t) is sent back to the cerebellum C. The effects of
m(t) acting on P are added to the head velocity n(t); the
difference is detected as retinal slip û(t) and sent to C.
Because there is no external visual signal u(t) acting on the
eye, the desired value of û(t) is zero. This will occur when
the effects of the eye-movement command m(t) acting on
the plant P exactly match those of the head velocity n(t).

to the original head movement. The head-velocity signal is
also sent as a mossy-� bre signal to the cerebellar � occulus,
along with a copy of the eye-movement command. The
output of the � occulus adds into the brainstem path at the
level of (some) secondary vestibular neurons. Retinal-slip
signals reach the � occulus as climbing-� bre inputs.

The structure of the model of the VOR used to test
decorrelation control is shown in � gure 2b. Head velocity
n(t) is transformed by the sensory processor V, which
delivers a signal to brainstem neural circuitry B. The out-
put m(t) of B is sent to the plant P, and so produces a
command to move the eye. The combination of controller
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and head actions on the eye produces an eye movement
with respect to the (stationary) world, namely retinal slip
û(t), which is the target variable for the decorrelator C (i.e.
the cerebellar � occulus). The predictor variable for C is
the eye-movement command m(t), and the output of C
adds to that of V.

It can be seen that the model in � gure 2b is a simpli� ed
version of the architecture of � gure 2a. The architecture
was simpli� ed because the full VOR is a complex re� ex
involving at least three kinds of adaptive calibration; two
of these calibrations were assumed to be performed per-
fectly in the model.

(i) The actual signal from the semicircular canals is in
part related to head acceleration and needs
additional processing to produce an accurate rep-
resentation of head velocity. In the model this pro-
cessing is represented by V, which simply
reproduces head velocity.

(ii) The basic gain of the VOR, which converts the head-
velocity signal to the correct eye-velocity command
assuming an all-viscous plant, is adaptively cali-
brated. However, a range of evidence indicates that
this adaptation involves plasticity at both � occular
and brainstem sites (see the review by Lisberger
1998). To avoid additional assumptions about the
nature of the brainstem learning process, the model
in � gure 2b assumes that the brainstem process B
has an accurate basic gain.

The problem that remains for the decorrelator C to
solve is that of plant compensation. This arises because
the plant P (which represents the mechanical properties
of both extraocular muscle and orbital tissue) has elasticity
as well as viscosity. The elasticity of the plant requires an
additional command signal proportional to the position
of the eye, a command that for a � rst-order plant in one
dimension is effectively an integrated eye-velocity signal
(Robinson 1975). This additional signal is partly gener-
ated in the brainstem B (reviewed in Fukushima &
Kaneko 1995): the task of the decorrelator C is therefore
to � ne-tune the brainstem eye-movement commands so
that they accurately cancel out head movement given the
particular plant properties existing at the time. The effects
of � occular damage on eye-position control are consistent
with a role for the � occulus in assisting the brainstem to
produce accurate compensation for the plant (Zee et al.
1981; Optican et al. 1986; Fukushima & Kaneko 1995)
using retinal slip as a cue (Optican & Miles 1985).

In the model illustrated in � gure 2b, the decorrelator C
is represented by a generalized adaptive linear � lter
(Widrow & Stearns 1985; Goodwin 1998), which can be
viewed as perhaps the simplest form of the basic Marr–
Albus–Ito model of cerebellar cortex (Gilbert 1974; Fujita
1982a). The predictor variable (mossy-� bre input) is a
copy of the motor command (� gure 2b), an arrangement
consistent with anatomical and electrophysiological evi-
dence (e.g. Büttner-Ennever & Horn 1996; Belton &
McCrea 2000; Nakamagoe et al. 2000). As shown in � g-
ure 3, the � lter expands the predictor variable m(t) into
components m1(t),…,mn(t) (parallel-� bre signals) using
appropriate basis functions (by the granule cell–Golgi cell
complex). The basis functions used initially were copies
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Figure 3. Structure of the decorrelator C (� gure 2b). The
predictor variable m(t) was recoded into components m1(t)
to mn(t). Each component mk(t) was weighted by wk and
then summed to produce the output c(t). wk was adjusted
according to the current value of the correlation between
mk(t) and retinal slip û(t) (so that wk was also a function of
time). Unless indicated otherwise, the recoding used in the
decorrelator produced versions of the eye-movement
command at increasing delays (separated by 0.02 s over
0–2 s).

of the eye-movement command at a range of delays. The
estimate of the signal of interest, (û(t) in � gure 2b) serves
as a training signal (climbing-� bre input) that adjusts the
component weights (parallel � bre–Purkinje cell synapses).
The weighted components are summed to produce the
� lter output (Purkinje cell � ring). The learning rule for
adjusting the weights is based on Sejnowski’s characteriz-
ation of anti-Hebbian learning at the parallel � bre–
Purkinje cell synapse as a covariance rule (Sejnowski
1977; Koch 1999). The size of the change in weight wk is
proportional to the correlation between the kth compo-
nent to the predictor variable mk(t) and the estimate û(t).

2. METHODS

(a) Basic system
The model architecture of � gure 2b was programmed in

Matlab. P, V, B and C were treated as linear processes, allowing
use of functions in the control system toolbox. The character-
istics of the linear processes in initial training were as follows.

(i) V was a unit gain (see § 1(i) above);
(ii) P was a � rst-order plant, with the transfer function Hp(s)

between eye-in-head velocity eh and motor command m
given by

Hp(s) =
eh(s)

m(s)
=

s
s 1 1/Tp

, (2.1)

where s denotes the Laplace complex frequency variable
and Tp is the time constant of the plant (0.2 s) (in sub-
sequent equations with transfer functions, their argument
(s) is omitted for simplicity).

(iii) The brainstem B had the transfer function Hb given by

Hb = Gd 1
Gi

s 1 1/Ti

, (2.2)

corresponding to a brainstem controller, where Gd is the
direct path gain and Gi is the indirect path gain. This

Proc. R. Soc. Lond. B (2002)

brainstem controller has two paths: (1) a direct path which
passed the head-velocity signal to the plant with the correct
gain (Gd = 1); and (2) an indirect path in which the head-
velocity signal was integrated and passed to the plant also
with the correct gain (Gi = 1/Tp = 5). The brainstem inte-
grator was leaky with time constant Ti = 0.5 s; and

(iv) the input m(t) to the adaptive � lter C was split into 100
components; m1(t), …, mn(t), with delays between compo-
nents of 0.02 s (2 s in total). C was thus effectively a � nite
impulse response � lter of length 100, with output c(t)
given by

c(t) = O100

i = 1

wim(t 2 0.02i ), (2.3)

where wi was the weight of component mi (� gure 3). The
rule for adjusting the weights was equivalent to that given
in equation (A 5) in Appendix A

dwj = 2bkmj(t).û(t)l, (2.4)

where dwj was the change in the jth weight wj b a learning
rate constant, û(t) the value of retinal slip at time t, mj(t)
the value of the jth � lter signal at time t and kl denotes the
expected value of the enclosed quantity over the time per-
iod used for training. The value of b was adjusted to give
rapid learning without instability.

The training input to the system was a head-velocity signal
modelled as coloured noise with unit power. The power had its
peak value at 0.2 Hz, then varied with increasing frequency f as
1/f (as would occur if white-noise head acceleration were inte-
grated to head velocity). For ef� ciency, weight-update was
implemented in batch mode using 5 s batches of head-velocity
data. Performance was assessed (i) from the û(t) produced by
the model, (ii) by applying a step head-position pro� le to the
trained model and (iii) by comparing the learned cerebellar � lter
with that of the exact compensating � lter. The value of the exact
� lter Ce was calculated by setting

Pm = n, (2.5)

i.e. when the � lter is exact, the head velocity n is exactly bal-
anced by the eye-movement command m, so that no retinal slip
is caused by head movement. For any value of C, m is given by
m = B(Vn 1 Cm), that is

m =
BVn

1 2 BC
. (2.6)

Combining equations (2.5) and (2.6) gives the equation for
the perfect � lter Ce as PBVn/(1 2 BCe) = n, so that:

Ce =
1
B

2 PV. (2.7)

(b) Variants of the basic system
After training with the basic system described above, a num-

ber of variants were investigated.

(i) Variants of B
(i) The integrator pathway was made undergained as well as

leaky (equation (2.2), with Gi reduced from 5 to 2.5,
Ti = 0.5).

(ii) The integrator was made overgained and non-leaky
(equation (2.2), with Gi increased from 5 to 7.5, 1/Ti = 0).



Decorrelation control by cerebellum P. Dean and others 1899

(ii) Variants of P
A second-order version of P was used with transfer function

Hp given by

Hp =
s(s 1 1/Tz)

(s 1 1/T1)(s 1 1/T2)
, (2.8)

where T1 = 0.37 s, T2 = 0.057 s and Tz = 0.2 s, taken from
Stahl’s estimate (Stahl 1992, p. 361) of the best-� t two-pole
one-zero transfer function (for eye-position from eye-movement
command) to the data of Fuchs et al. (1988). This plant was
combined with a leaky undergained integrator (equation (2.2),
with Gi = 5.05, Ti = 0.5).

(iii) Delay
The retinal-slip signal û(t) arriving at C was delayed by

100 ms. The system was trained with a � rst-order plant
(equation (2.1)) and a leaky undergained brainstem controller
(equation (2.2), with Gi = 2.5, Ti = 0.5). Subsequently, a variant
of the representation described in equation (2.4) was investi-
gated, in which the components mk(t) were convolved with an
‘eligibility trace’ r(t). The equation for the eligibility trace was
taken from eqns (11) and (12) of Kettner et al. (1997):

r(t) ~ te2(t/tpeak), (2.9)

where tpeak was set to 0.1 s.

(iv) Learning rule
The learning rule was changed from that shown in equation

(2.4) to

dwj = 2bkmj(t)sign[û(t)]l (2.10)

and used to train an adaptive � lter C with a � rst-order plant
(equation (2.1)) and a leaky undergained brainstem controller
(equation (2.2), Gi = 2.5, Ti = 0.5).

(v) Basis functions
The different delays used as basis functions for the predictor

variable were subsequently replaced by alternative functions.
These included sine waves of different frequencies and decaying
exponentials of different time constants, as well as basis func-
tions that were orthogonalized with respect to the motor com-
mands themselves. One method of achieving this was by spectral
decomposition, in which the motor outputs for a perfectly com-
pensated � rst-order plant were subjected to principal compo-
nent analysis. The 100 eigenvectors derived from the analysis
were then used as basis functions (Porrill et al. 2002). Learning
was examined for the second-order plant with a leaky
undergained brainstem controller (see § 2b(ii)).

3. RESULTS

The effects of training an adaptive controller with the
decorrelation algorithm were � rst investigated for the
compensation of a � rst-order � lter, which is an approxi-
mation to the plant that, although simple, has nonetheless
proved useful in a range of modelling applications
(Robinson 1981). The brainstem controller was rep-
resented by a leaky integrator, consistent with the effects
of � occular lesions on eye-position stability (Zee et al.
1981). The behaviour of the system before training is
shown in � gure 4. Its inaccurate response to coloured-
noise head-velocity input (set to 1 deg s21 root-mean-
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Figure 4. Performance of the model before training, with a
� rst-order plant P (time constant, 0.2 s). The brainstem
controller B was a leaky integrator with time constant 0.5 s
and accurate high-frequency gain. (a) Head velocity (grey
line) and retinal slip (solid line). The coloured-noise head-
velocity signal (root-mean-square amplitude 1 deg s21)
produced a relatively smooth retinal-slip signal. (b) The
reason for the smoothing is evident from the Bode plot of
VOR gain against frequency of head velocity. For
frequencies above ca. 1 Hz, the VOR gain is close to 1.0
because of the properties of the brainstem controller. (c) The
correlations present between delayed versions of the eye-
movement command and retinal slip, measured over a
period of 500 s. (d ) Eye-position response of the system to a
head-velocity pulse (equivalent to head-position step and
similar to a saccadic eye-movement command). Grey line,
pre; black line, desired. The eye position returns to its initial
value with a time course determined by the characteristics of
the plant and the brainstem controller.

square amplitude) gave rise to retinal slip (� gure 4a), with
predominantly low-frequency (less than 1 Hz) compo-
nents, as expected from the properties of the brainstem
controller. The correlations between past eye-movement
commands and current retinal slip are shown in � gure 4c.
Finally, the system’s inaccurate response to a head-
position step input (� gure 4d) indicated an inability to
maintain eccentric gaze (time constant ca. 1 s), similar to
that observed after a saccade in animals with � occular
lesions (Zee et al. 1981).

The effects of training with the decorrelation algorithm
are shown in � gure 5. A representative time course for
training is shown in � gure 5a. The error was still declining
after 1000 trials, but its value at that stage corresponded
to little apparent retinal slip (� gure 5b), to correlations
between past commands and current slip indistinguishable
from zero (not shown) and eccentric gaze indistinguish-
able from the ‘desired’ trace in � gure 4d. After training,
the � lter formed by the cerebellar controller C was close
to the theoretical ideal (� gure 5c), which is B21 2 VP
(derivation in § 2a, equations 2.5–2.7). In short, the
decorrelation algorithm was able to learn to compensate
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Figure 5. Performance of the model during and after
training, with a � rst-order plant P (time constant, 0.2 s) and
a brainstem controller B with a leaky integrator (time
constant 0.5 s) and accurate high-frequency gain. (a) Typical
decline in retinal-slip amplitude with training. Root-mean-
square (RMS) retinal-slip amplitude, measured over a 5 s
training trial as shown in � gure 4b, plotted on a log scale
against number of training trials. (b) The impulse response
of the trained decorrelator C, compared with that of the
ideal � lter Ce (grey line, pre; black line, post). (c) Post-
training reduction in retinal slip (grey line, desired; black
line, post) (note the change in scale from � gure 4a).

accurately for a � rst-order plant, given a leaky brainstem
controller.

To establish the robustness of the decorrelation algor-
ithm, we investigated learning with variants of the above
basic system (see § 2b).

(i) The precise nature of the brainstem controller B has
not been completely speci� ed. The two additional
variants tested here were (1) the integrator pathway
in B was undergained as well as leaky, and (2) the
integrator pathway was overgained, a possible
interpretation of data obtained from single-unit rec-
ording in rabbits (De Zeeuw et al. 1995). In both
cases, learning by the decorrelation algorithm was
slower than that shown in � gure 5a (error after 1000
trials ca. 4 times larger), but eventual convergence
to the ideal � lter (not shown) was as good and pro-
duced a similar post-training step response to that
shown, as the black line (‘desired’) in � gure 4d.
Convergence was also seen even if the gain of the
integrator pathway was set to zero.

(ii) The linearized models that have been proposed for
the plant P range from � rst-order, as used for the
results shown in � gures 4 and 5, to third- or higher-
order. Models made higher-order by inclusion of the
inertia of the globe are not relevant to the present
study because, in the VOR, the inertia of the globe
is acted on by both eye-muscle force and head force
and so does not affect the transfer function of eye-
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Figure 6. The decorrelation-control algorithm used with a
second-order plant P and a leaky-integrator brainstem
controller B. (a) Learning as measured by reduction on root
mean square (RMS) retinal-slip amplitude. Note the log
scale on both axes. The two curves are for decorrelators with
either the ‘delay’ (grey line) or the ‘spectral’ (black line) set
of basis functions. The latter were an orthogonal set derived
from the principal components of compensated motor
commands. The � nal performance of the trained � lter was
little affected by the basis functions used. (b) Pre- (grey line)
and post- (black line) training retinal slip in response to a
coloured-noise head-velocity input. (c) Pre- (grey line) and
post- (black line) training Bode gains for the VOR. (d) Pre-
(grey line) and post- (black line) training eye-position
response to a head-velocity pulse.

movement command to eye-in-world velocity. With
inertia excluded, the most frequently used linear
models relating eye-movement command to eye pos-
ition have been second order with two poles and one
zero (2P1Z; corresponding to two Voigt elements in
series where a Voigt element is a viscosity and elas-
ticity in parallel (e.g. Optican & Miles 1985; Optican
et al. 1986; Fuchs et al. 1988; Stahl 1992;
Goldstein & Reinecke 1994)). Accordingly, the
decorrelation algorithm was tested with a two-pole
one-zero model using the time constants estimated
by Stahl (1992) to � t the data of Fuchs et al. (1988),
and a brainstem controller B that was undergained
and leaky. The pre- and post-training performance
of the system is shown in � gure 6b–d, and the learn-
ing curve in � gure 6a (marked ‘delay’). Learning by
the decorrelation algorithm was slower than that
shown in � gure 5a for the � rst-order plant, but again
eventual convergence to the ideal � lter was good
(not shown) with near-elimination of retinal slip
(� gure 6b), Bode gains close to 1.0 (� gure 6c) and
an eye-position step response close to the desired
value (� gure 6d).

(iii) The retinal-slip signal that is delivered as climbing-
� bre input to the cerebellar � occulus is delayed by
about 100 ms (Miles 1991). A delay of 100 ms was
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therefore introduced in the model between the gen-
eration of the signal û(t) and its arrival at the cerebel-
lum C. The results of training with a � rst-order plant
and the brainstem controller with an undergained
leaky integrator pathway indicated that frequencies
in the training data higher than ca. 2.5 Hz could
cause instabilities. These instabilities were obviated
by use of an ‘eligibility trace’ (see § 2b(iii)), with
resultant learning similar to that illustrated in � gure
5. The eligibility trace acts in effect as a delay and
a smoothing � lter to remove high frequencies from
the predictor-variable components mk(t). Its exist-
ence is suggested both by behavioural studies of the
VOR (Raymond & Lisberger 1998) and by measure-
ments of calcium dynamics in Purkinje cell dendrites
(Wang et al. 2000).

(iv) The capacity of the climbing-� bre pathway to con-
vey detailed information appears to be limited by
low (, 10 Hz) � ring rates. The decorrelation-
control algorithm was therefore tested with a learn-
ing rule that simply used the sign of û(t), i.e. the
direction of retinal slip (see § 2b(iv)). Learning was
very similar to that shown in � gure 5, except that
� nal performance needed to be improved slightly by
reducing the learning rate near to convergence.

(v) Little is known about the actual function of the
granule-cell–Golgi-cell complex, here supposed to
correspond to the decomposition of the input signal
m(t) into components m1(t), …, mn(t). Different
methods of effecting this decomposition were there-
fore investigated, including obvious candidates such
as sine wave and decaying exponentials. Choice of
basis function appeared to in� uence speed of learn-
ing, rather than � nal convergence. For example,
learning the second-order problem (§ 2b(ii)) could
be speeded by up to 1000-fold by appropriate choice
of basis function, i.e. one that made the components
m1(t),…,mn(t) orthogonal (� gure 6a, black line).

4. DISCUSSION

We tested decorrelation control, a candidate algorithm
for cerebellar function, in a linearized model of oculomo-
tor plant compensation in the VOR. The algorithm proved
successful and robust. It was able to decorrelate the pre-
dictor variable of eye-movement command from the target
variable of retinal slip, both being signals that are available
to the cerebellum. The algorithm did not require the
unavailable signal of motor error (§ 1 and Appendix A),
nor did it depend on any speci� c decomposition of the
predictor variable (such as tapped delay lines).

The proposed application of decorrelation control to
oculomotor plant compensation is consistent with evi-
dence concerning the functions of the cerebellar � occulus
(e.g. Zee et al. 1981; Optican & Miles 1985; Optican et
al. 1986). Moreover, electrophysiological recordings from
Purkinje cells in the primate � occulus indicate that a sub-
set of them carry an eye-position signal, as required by the
present model (Lisberger & Fuchs 1978; Noda & Suzuki
1979; Belton & McCrea 2000; Leung et al. 2000). Decor-
relation control is also consistent with theoretical develop-
ments of the basic Marr–Albus–Ito model for cerebellar
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cortex as an adaptive linear � lter (Gilbert 1974; Fujita
1982a) and with Sejnowski’s covariance rule (Sejnowski
1977; Koch 1999), which is widely used in adaptive-� lter
type models of both cerebellum (e.g. Gluck et al. 1990;
Kettner et al. 1997; Medina & Mauk 2000) and cerebellar
precursors (Roberts & Bell 2000). Decorrelation control
shows how these components can be incorporated into a
system for motor learning that utilizes only sensory signals.

As well as its power and plausibility in the context of
oculomotor plant compensation, decorrelation control
provides an alternative to the existing method of avoiding
the unavailable signal of motor error, namely feedback
error learning (Kawato 1990; Gomi & Kawato 1993). In
feedback error learning, an estimate of the motor error
(P21û(t), see Appendix A) is provided by the output of a
conventional feedback controller, which uses a reference
model of the plant and receives the ‘sensory error’ û(t) as
input. Decorrelation control has a distinct advantage over
feedback error learning in that it does not raise the ‘inter-
esting and challenging theoretical problem of setting an
appropriate inverse reference model’ (Gomi & Kawato
1992, p. 112) . In the speci� c case of the oculomotor
plant, the feedback controller corresponds to the brain-
stem circuitry used in the optokinetic response (OKR)
(Fujita 1982b; Gomi & Kawato 1992). It is dif� cult to
compare the present results for compensation of the
oculomotor plant directly with those obtained from feed-
back error learning (Gomi & Kawato 1992). In the latter
study, the simulated plant–compensation occurred simul-
taneously with adaptation of the VOR and OKR, and the
basic architecture of the model system did not include the
neural integrator in the lower re� ex arc, so that ‘the
� occulus tried to construct its substitute unnaturally’
(Gomi & Kawato 1992, p. 110). It is possible that in prac-
tice a blend of decorrelation control and feedback error
learning is used, exploiting redundancy to decrease the
chances of catastrophic failure.

Finally, there is the question of the possible generality
of the decorrelation-control algorithm.

(i) For plant compensation itself, preliminary math-
ematical analysis indicates that, with plausible brain-
stem � lters, decorrelation control is stable in the
multidimensional linear case, i.e. it will learn to
compensate for any linear plant, provided that the
system is con� gured as in � gure 2b with a copy of
the motor command fed back to the decorrelator
(Porrill et al. 2002). This analysis also indicates that,
under these circumstances, decorrelation control is
also applicable to nonlinear systems if a suf� ciently
rich set of predictor variables is available (for
example, containing the nonlinear signal combi-
nations required in a Volterra expansion of the
solution). In effect, decorrelation control is a pro-
cedure whereby the cerebellum and its associated
brainstem (or spinal cord) controller can form an
inverse model of the plant (Wolpert et al. 1998),
using only sensory climbing-� bre input (Simpson et
al. 1996) to do so. Higher-level controllers, for
example in cerebral cortex, are thus enabled to
ignore plant characteristics and merely issue simpli-
� ed commands (such as the desired velocity com-
mand already mentioned). This can be seen as a part
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of a function long proposed for the cerebellum: ‘the
purpose of the cerebellum is to learn motor skills, so
that when they have been learnt a simple or incom-
plete message from the cerebrum will suf� ce to pro-
voke their execution’ (Marr 1969, p. 438).

With respect to the feedback con� guration shown
in � gure 2b, anatomical tracing of projections from
the cerebral cortex to cerebellar cortex (via the
pons), and in the opposite direction from cerebellar
to cerebral cortex (via the thalamus) indicate that,
for a given area of cerebral cortex, the two sets of
connections form a loop: ‘closed loop circuits may
be a fundamental feature of cerebellar interactions
with the cerebral cortex’ (Middleton & Strick 2000,
p. 240). This anatomical evidence is at least consist-
ent with the possibility that the feedback arrange-
ment required by decorrelation control for plant
compensation is widespread.

(ii) Achieving plant compensation allows further uses of
decorrelation control. In the case of the VOR, one
such use would be to correct inadequacies of head-
velocity processing (i.e. if V in � gure 2b ceases to
be equal to unity), a procedure known as adaptive
inversion (Widrow & Stearns 1985) that would be
of relevance to VOR adaptation. Also, it is known
that the retinal-slip signal û(t) is fed back to the
� occulus as a predictor variable (mossy-� bre input)
as well as the target variable (climbing-� bre input).
Once the plant is compensated, the decorrelation-
control algorithm should be able to move the eyes
in order to remove any correlations there may be
between earlier and later parts of the external signal
u(t) itself. This is in effect a mechanism that learns
to predict future values of the signal (at least over a
time range of the order of 1 s). A mechanism of this
kind has been identi� ed in smooth pursuit (e.g.
Barnes 1991) and appears to be implemented by the
cerebellar � occulus (Kettner et al. 1997; Suh et al.
2000).

(iii) One of the functions of decorrelation control is to
generate an estimate of the target variable that is not
predictable by information available to the control-
ler. This estimate is likely to be of use for the
acquisition of sensory information during active
exploration (e.g. Blakemore et al. 2000; Hartmann &
Bower 2001). It is this aspect of decorrelation con-
trol that serves to reconcile sensory and motor func-
tions of the cerebellum (cf. § 1).

In summary, decorrelation control is a simple, compact
and powerful algorithm, well suited to the role of the cere-
bellum in simplifying both motor control and sensory
acquisition in order to liberate computational power at
higher levels of the system.

Support for this work was provided by the Biotechnology and
Biological Sciences Research Council (BBSRC). J.V.S. was the
recipient of a Wellcome mathematical biology fellowship.

APPENDIX A

In the simplest case of interference cancellation (� gure
1a), the output of the decorrelator at time t is the value
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of a single predictor variable p(t) weighted by w. For
cerebellar-like structures, this output is in fact an estimate
of the interference n̂(t) with the sign reversed (see § 1)
so that

n̂(t) = 2wp(t). (A 1)

For adaptive interference cancellation, the decorrelator
is required to learn the value of the weight w that gives
the best estimate of the signal û(t), which is equivalent to
producing an estimate of interference n̂(t) that is as close
to the actual interference n(t) as possible. The error of the
estimate at time t is

e(t) = n(t) 2 n̂(t), (A 2)

so that the best least-squares estimate of the signal is one
that minimizes the sum of squared errors E de� ned as

E =
1
2Oe(t)2, (A 3)

where summation takes place over the time-steps of inter-
est. For the value of w that minimizes E, the gradient of
the error with respect to the weight ¶ E/ ¶ w is zero. Because
by the chain rule ¶ E/ ¶ w = ¶ E ¶ e/ ¶ e¶ w, and from equations
(2.1) and (2.2) e(t) = n(t) 1 wp(t), then ¶ e/¶ w = p(t) and

¶ E
¶ w

=O
t

p(t)e(t). (A 4)

Therefore when E is at its minimum the quantity
S
t
p(t)e(t) is zero. But as this quantity is proportional to the

correlation between p(t) and e(t), minimizing E is equival-
ent to decorrelating p(t) and e(t). This in turn is equivalent
to producing a system output û(t) that is decorrelated
from p(t), because û(t) = u(t) 1 e(t) and the component
u(t) is by de� nition not correlated with p(t).

The desired value of w can be arrived at with the gradi-
ent descent learning rule dw = 2b(E/ ¶ w), where dw is the
change in the weight and b is a learning-rate constant.
This rule is also known as the Widrow–Hoff or delta rule
(cf. Widrow & Stearns 1985). In the present case,

dw = 2bk p(t)e(t)l, (A 5)

where k p(t)e(t)l is the expected value of p(t)e(t) and is pro-
portional to the correlation between p(t) and e(t).

In the case of decorrelation control (� gure 1b), the out-
put of the decorrelator now has to pass through a plant P
in order to provide what is in effect an estimate n̂(t) of the
interference n(t). Thus, m̂(t) = P21[n̂(t)], where m̂(t) is the
output of the decorrelator (note the change in notation
from � gure 1b, where this output is called m(t)). Produ-
cing the best estimate n̂(t) of the interference n, requires
the decorrelator to learn the best motor command m̂(t).
This way of looking at the task introduces two new terms,
namely m(t) = P21[n(t)], where m(t) is the motor com-
mand that would produce the perfect interference esti-
mate, i.e. the ‘desired motor command’ for the system,
and em (t) = m(t) 2 m̂(t), where em (t) is the ‘motor error’,
namely the difference between desired and actual motor
commands. Minimizing the sum-of-squared motor errors
Em entails setting the expression

¶ Em

¶ w
= O

t

p(t)P21[e(t)] (A 6)
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to zero (cf. equation (A 4)), that is, decorrelating the pre-
dictor variable p(t) and the motor error P21[e(t)]. In a
feed-forward architecture, the gradient descent learning
rule corresponding to equation (A 6) is:

dw = 2bk p(t)P21[e(t)]l. (A 7)

Comparing equation (A 7) with equation (A 5) for
adaptive interference–cancellation indicates that whereas
in equation (A 5) the two signals to be decorrelated are
both available to the system, in the case of decorrelation
control equation (A 7) one of the signals to be decorre-
lated is not available to the system. The motor error
P21[e(t)] requires knowledge of the plant P, which by
de� nition in the problem under consideration is unknown
to the controller. Conversely, decorrelating p(t) and e(t)
as in equation (A 5) is no longer equivalent to minimizing
the least-squares error of the interference estimate once
there is a plant in the system.
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